AccScience Publishing / CP / Online First / DOI: 10.36922/CP025130022
ORIGINAL RESEARCH ARTICLE

Research trends and emerging themes in cancer microbiome studies: A bibliometric analysis (2009–2024)

Xiaoqi Sun1 Youngchul Kim2,3*
Show Less
1 Memorial Healthcare System, Miramar, Florida, United States of America
2 Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, United States of America
3 Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, Florida, United States of America
Received: 28 March 2025 | Revised: 20 June 2025 | Accepted: 16 September 2025 | Published online: 24 October 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The microbiome has been increasingly recognized as a crucial factor in cancer development and treatment. To guide future research by identifying key trends and thematic directions in cancer microbiome studies, we conducted a bibliometric analysis of 6,454 publications indexed in the Web of Science Core Collection between 2009 and 2024. The United States and China led in publication output and international collaboration. Prominent keywords included “gut microbiome,” “colorectal cancer,” “immunotherapy,” “intratumoral microbiome,” and “metabolism.” Rapidly emerging research areas encompassed the causal relationship between the microbiome and cancer, the role of microbial metabolites, the impact of dietary interventions on the microbiome, and the interplay between the intratumor microbiome and the tumor microenvironment. Co-citation network analysis revealed widely used analytical tools including QIIME and DADA2 for marker-gene sequencing, LEfSe for identifying taxa with differential abundance, and SIAMCAT for investigating microbiome–host phenotype associations. Research on colorectal and breast cancers dominated the literature, highlighting a relative lack of studies on other malignancies such as brain tumors and sarcomas. These findings offer valuable insights into current research priorities and may guide future cancer microbiome research toward the development of microbiome-based early cancer diagnostics, personalized anticancer therapies, and non-invasive monitoring strategies.

Keywords
Cancer
Microbiome
Bibliometric analysis
Bioinformatics
Biostatistics
Funding
This work was supported in part by the Biostatistics and Bioinformatics Shared Resource at the H. Lee Moffitt Cancer Center and Research Institute, a National Cancer Institute–designated Comprehensive Cancer Center, through grant P30 CA076292.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Weinberg RA, Weinberg RA. The Biology of Cancer. New York: WW Norton and Company; 2006.

 

  1. Singh AV, Bhardwaj P, Laux P, et al. AI and ML-based risk assessment of chemicals: Predicting carcinogenic risk from chemical-induced genomic instability. Front Toxicol. 2024;6:1461587. doi: 10.3389/ftox.2024.1461587

 

  1. Peluso G, Tisato V, Singh AV, Gemmati D, Scarpellini F. Semen cryopreservation to expand male fertility in cancer patients: Intracase evaluation of semen quality. J Pers Med. 2023;13(12):1654. doi: 10.3390/jpm13121654

 

  1. Blum HE. The human microbiome. Adv Med Sci. 2017;62(2):414-420.doi: 10.1016/j.advms.2017.04.005

 

  1. Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev. 2012;70(Suppl 1):S38-S44. doi: 10.1111/j.1753-4887.2012.00493.x

 

  1. Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA, Knight R. The microbiome and human cancer. Science. 2021;371(6536):eabc4552. doi: 10.1126/science.abc4552

 

  1. Herrera-Quintana L, Vazquez-Lorente H, Lopez-Garzon M, Cortes-Martin A, Plaza-Diaz J. Cancer and the microbiome of the human body. Nutrients. 2024;16(16):2790. doi: 10.3390/nu16162790

 

  1. Hunter C, Dia K, Boykins J, et al. An Investigation for Phylogenetic Characterization of Human Pancreatic Cancer Microbiome by 16SrDNA Sequencing and Bioinformatics Techniques. Research Square [Preprint]; 2024. doi: 10.21203/rs.3.rs-4140368/v1

 

  1. Xia YL, Sun J. Hypothesis testing and statistical analysis of microbiome. Genes Dis. 2017;4(3):138-148. doi: 10.1016/j.gendis.2017.06.001

 

  1. Wang C, Ma A, Li Y, et al. A bioinformatics tool for identifying intratumoral microbes from the ORIEN dataset. Cancer Res Commun. 2024;4(2):293-302. doi: 10.1158/2767-9764.CRC-23-0213

 

  1. Bokulich NA, Robeson MS. Bioinformatics challenges for profiling the microbiome in cancer: Pitfalls and opportunities. Trends Microbiol. 2024;32:1163-1166. doi: 10.1016/j.tim.2024.08.011

 

  1. Shah MS, DeSantis TZ, Weinmaier T, et al. Leveraging sequence-based faecal microbial community survey data to identify a composite biomarker for colorectal cancer. Gut. 2018;67(5):882-891. doi: 10.1136/gutjnl-2016-313189

 

  1. Liu F, Liu A, Lu X, et al. Dysbiosis signatures of the microbial profile in tissue from bladder cancer. Cancer Med. 2019;8(16):6904-6914. doi: 10.1002/cam4.2419

 

  1. Su SC, Chang LC, Huang HD, et al. Oral microbial dysbiosis and its performance in predicting oral cancer. Carcinogenesis. 2021;42(1):127-135. doi: 10.1093/carcin/bgaa062

 

  1. Yuan X, Chang C, Chen X, Li K. Emerging trends and focus of human gastrointestinal microbiome research from 2010- 2021: A visualized study. J Transl Med. 2021;19:327. doi: 10.1186/s12967-021-03009-8

 

  1. Sa’ed HZ, Smale S, Waring WS, Sweileh W, Al-Jabi SW. Global research trends in the microbiome related to irritable bowel syndrome: A bibliometric and visualized study. World J Gastroenterol. 2021;27(13):1341-1353. doi: 10.3748/wjg.v27.i13.1341

 

  1. Guleria D, Kaur G. Bibliometric analysis of ecopreneurship using VOSviewer and RStudio bibliometrix, 1989-2019. Library Hi Tech. 2021;39(4):1001-1024. doi: 10.1108/LHT-09-2020-0218

 

  1. Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: An overview and guidelines. J Bus Res. 2021;133:285-296. doi: 10.1016/j.jbusres.2021.04.070

 

  1. Pons P, Latapy M. Computing communities in large networks using random walks. In: Computer and Information Sciences. Vol. 3733. Berlin: Springer; 2005. p. 284-293. doi: 10.1007/11569596_31

 

  1. Rousseeuw PJ. Silhouettes - a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 1987;20:53-65. doi: 10.1016/0377-0427(87)90125-7

 

  1. Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359(6371):91-97. doi: 10.1126/science.aan3706

 

  1. Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97-103. doi: 10.1126/science.aan4236

 

  1. Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018;359(6371):104-108. doi: 10.1126/science.aao3290

 

  1. Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science. 2020;368(6494):973. doi: 10.1126/science.aay9189

 

  1. Poore GD, Kopylova E, Zhu QY, et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature. 2020;579(7800):567. doi: 10.1038/s41586-020-2095-1

 

  1. Yu J, Feng Q, Wong SH, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 2017;66(1):70-78. doi: 10.1136/gutjnl-2015-309800

 

  1. Bullman S, Pedamallu CS, Sicinska E, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science. 2017;358(6369):1443-1448. doi: 10.1126/science.aal5240

 

  1. Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852-7. doi: 10.1038/s41587-019-0209-9

 

  1. Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335-336. doi: 10.1038/nmeth.f.303

 

  1. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581-583. doi: 10.1038/nmeth.3869

 

  1. Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. doi: 10.1186/gb-2011-12-6-r60

 

  1. Wirbel J, Pyl PT, Kartal E, et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med. 2019;25(4):679-689. doi: 10.1038/s41591-019-0406-6

 

  1. Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42(2):344-355. doi: 10.1016/j.immuni.2015.01.010

 

  1. Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013;13(11):800-812. doi: 10.1038/nrc3610

 

  1. Garrett WS. Cancer and the microbiota. Science. 2015;348(6230):80-86. doi: 10.1126/science.aaa4972

 

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144(5):646-674. doi: 10.1016/j.cell.2011.02.013

 

  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249. doi: 10.3322/caac.21660

 

  1. Clemente-Suarez VJ, Beltran-Velasco AI, Redondo-Florez L, Martin-Rodriguez A, Tornero-Aguilera JF. Global Impacts of western diet and its effects on metabolism and health: A narrative review. Nutrients. 2023;15(12):2749. doi: 10.3390/nu15122749

 

  1. Zhou Y, Jiang M, Li X, et al. Bibliometric and visual analysis of human microbiome-breast cancer interactions: Current insights and future directions. Front Microbiol. 2024;15:1490007.doi: 10.3389/fmicb.2024.1490007

 

  1. Wu WG, Ouyang YB, Zheng P, et al. Research trends on the relationship between gut microbiota and colorectal cancer: A bibliometric analysis. Front Cell Infect Microbiol. 2023;12:1027448. doi: 10.3389/fcimb.2022.1027448

 

  1. Rebersek M. Gut microbiome and its role in colorectal cancer. BMC Cancer. 2021;21(1):1325. doi: 10.1186/s12885-021-09054-2

 

  1. Chattopadhyay I, Dhar R, Pethusamy K, et al. Exploring the role of gut microbiome in colon cancer. Appl Biochem Biotechnol. 2021;193:1780-1799. doi: 10.1007/s12010-021-03498-9

 

  1. Tong Y, Gao H, Qi Q, et al. High fat diet, gut microbiome and gastrointestinal cancer. Theranostics. 2021;11(12):5889. doi: 10.7150/thno.56157

 

  1. Dohlman AB, Mendoza DA, Ding S, et al. The cancer microbiome atlas: A pan-cancer comparative analysis to distinguish tissue-resident microbiota from contaminants. Cell Host Microbe. 2021;29(2):281-298.e5.

 

  1. Hurst R, Meader E, Gihawi A, et al. Microbiomes of urine and the prostate are linked to human prostate cancer risk groups. Eur Urol Oncol. 2022;5(4):412-419. doi: 10.1016/j.euo.2022.03.006

 

  1. Ogino S, Nowak JA, Hamada T, Milner DA, Nishihara R. Insights into pathogenic interactions among environment, host, and tumor at the crossroads of molecular pathology and epidemiology. Annu Rev Pathol-Mech. 2019;14:83-103. doi: 10.1146/annurev-pathmechdis-012418-012818

 

  1. Rocha L, Guimaraes PAS, Carvalho MGR, Ruiz JC. Tumor neoepitope-based vaccines: A scoping review on current predictive computational strategies. Vaccines (Basel). 2024;12(8):836. doi: 10.3390/vaccines12080836

 

  1. Liss MA, White JR, Goros M, et al. Metabolic biosynthesis pathways identified from fecal microbiome associated with prostate cancer. Eur Urol. 2018;74(5):575-582. doi: 10.1016/j.eururo.2018.06.033

 

  1. Chen MJ, Cui Y, Liu C, et al. Characteristics of the microbiome in lung adenocarcinoma tissue from patients in Kunming city of southwestern China. Environ Sci Pollut R. 2023;30(17):49992-50001. doi: 10.1007/s11356-023-25528-1

 

  1. Watson KM, Gardner IH, Anand S, et al. Colonic microbial abundances predict adenoma formers. Ann Surg. 2023;277(4):e817-e24. doi: 10.1097/Sla.0000000000005261

 

  1. Senaratne NLM, Chong CW, Yong LS, Yoke LF, Gopinath D. Impact of waterpipe smoking on the salivary microbiome. Front Oral Health. 2023;4:1275717. doi: 10.3389/froh.2023.1275717

 

  1. Singh AK, Kumar D, Gemmati D, et al. Investigating genetic diversity and population structure in rice breeding from association mapping of 116 accessions using 64 polymorphic SSR markers. Crops. 2024;4(2):180-194. doi: 10.3390/crops4020014

 

  1. Song M, Chan AT, Sun J. Influence of the gut microbiome, diet, and environment on risk of colorectal cancer. Gastroenterology. 2020;158(2):322-340. doi: 10.1053/j.gastro.2019.06.048

 

  1. Riquelme E, Zhang Y, Zhang L, et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell. 2019;178(4):795-806.e12. doi: 10.1016/j.cell.2019.07.008

 

  1. Zambirinis CP, Pushalkar S, Saxena D, Miller G. Pancreatic cancer, inflammation, and microbiome. Cancer J. 2014;20(3):195-202. doi: 10.1097/PPO.0000000000000045

 

  1. Engstrand L, Graham DY. Microbiome and gastric cancer. Dig Dis Sci. 2020;65(3):865-873. doi: 10.1007/s10620-020-06101-z

 

  1. Yang J, Zhou X, Liu X, Ling Z, Ji F. Role of the gastric microbiome in gastric cancer: From carcinogenesis to treatment. Front Microbiol. 2021;12:641322. doi: 10.3389/fmicb.2021.641322

 

  1. Rattan P, Minacapelli CD, Rustgi V. The microbiome and hepatocellular carcinoma. Liver Transpl. 2020;26(10):1316-1327. doi: 10.1002/lt.25828

 

  1. Ren Z, Li A, Jiang J, et al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut. 2019;68(6):1014-1023. doi: 10.1136/gutjnl-2017-315084

 

  1. Martin CR, Osadchiy V, Kalani A, Mayer EA. The brain-gut-microbiome axis. Cell Mol Gastroenterol Hepatol. 2018;6(2):133-148. doi: 10.1016/j.jcmgh.2018.04.003

 

  1. Dinan TG, Cryan JF. The microbiome-gut-brain axis in health and disease. Gastroenterol Clin North Am. 2017;46(1):77-89. doi: 10.1016/j.gtc.2016.09.007

 

  1. Wang WH, Ou ZH, Huang XX, et al. Microbiota and glioma: A new perspective from association to clinical translation. Gut Microbes. 2024;16(1):394166.doi: 10.1080/19490976.2024.2394166

 

  1. Pushalkar S, Hundeyin M, Daley D, et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 2018;8(4):403-416. doi: 10.1158/2159-8290.cd-17-1134

 

  1. Baruch EN, Youngster I, Ben-Betzalel G, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 2021;371(6529):602-609.doi: 10.1126/science.abb5920

 

  1. Feng Q, Liang S, Jia H, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun. 2015;6:6528. doi: 10.1038/ncomms7528

 

  1. Zeller G, Tap J, Voigt AY, et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol. 2014;10(11):766. doi: 10.15252/msb.20145645
Share
Back to top
Cancer Plus, Electronic ISSN: 2661-3840 Print ISSN: 2661-3832, Published by AccScience Publishing