AccScience Publishing / CP / Online First / DOI: 10.36922/CP025160028
REVIEW ARTICLE

From multicellular constraint to unicellular control: Ancient mechanisms of genome reconstruction, repair, and expansion in cancer evolution

Vladimir F. Niculescu1*
Show Less
1 Augsburg, Bavaria, Germany
Received: 14 April 2025 | Revised: 8 September 2025 | Accepted: 8 September 2025 | Published online: 22 October 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Recent advances in non-genetic and evolutionary cancer genomics increasingly challenge the long-standing mutational and molecular interpretations of cancer. At the core of this shift lies a fundamental contradiction between the traditional multicellular interpretation of cancer and the emerging concept of a self-organizing unicellular system. Traditional models view cancer as an aberration within the multicellular framework. In contrast, evolutionary research reveals that cancer reflects an inversion to unicellularity, predominantly expressed in the stemgermline and its archaic unicellular genome. The origins of cancer’s stemgermline trace back to an ancestral lineage (Urgermline) whose genomic and regulatory features have been inherited by all modern stem cell lineages. Since the lifestyle of this Urgermline evolved during periods of historical hypoxia (approximately 1,600–800 million years ago [Mya]) and gradual atmospheric oxygen increase (800–550 Mya), parasitic unicellular systems, such as amoebae and cancer—particularly their stemgermlines—benefit considerably from the low oxygen gradients present in tissues and organs that offer specific key inducers, suppressors, regulators, and effectors of cancer cell systems. One could argue that cancer reconstructs an autonomous cell system, mirroring developments from the Meso- and Neoproterozoic, and the evolutionary transition toward early multicellularity. As a result, cancer follows fundamentally different rules than those governing stable multicellular systems. Accordingly, conventional multicellular concepts such as uncontrolled proliferation, genomic chaos, genomic instability, and loss of genomic integrity are inadequate when viewed through evolutionary biology. The present work compares the mutational-molecular perspective of cancer with a non-genetic, evolutionary framework.

Keywords
Cancer
Entamoeba
Stemgermline
Committed cancer stem cells
Multicellular-unicellular transition
Genome evolution and stability
Funding
None.
Conflict of interest
The author declares no conflict of interest.
References
  1. Bodmer WF. The evolutionary progression of cancers. Acad Oncol. 2024;1(2):7415. doi: 10.20935/AcadOnco7415

 

  1. Bizzarri M. Systems biology for understanding cancer biology. Curr Synth Syst Biol. 2013;2(2):e103. doi: 10.4172/2332-0737.1000e103

 

  1. Dollo L. The Laws of Evolution. Bull Soc Belge Geol Paleontol Hydrol. 1893;7:164-166.

 

  1. Gould SJ. Dollo on Dollo’s law: Irreversibility and the status of evolutionary laws. J Hist Biol. 1970;3(2):189-212. doi: 10.1007/BF00137351

 

  1. Collin R, Miglietta MP. Reversing opinions on Dollo’s law. Trends Ecol Evol. 2008;23(11):602-609. doi: 10.1016/j.tree.2008.06.013

 

  1. Hall BK. Dollo’s law. In: Pagel M, editor. Encyclopedia of Evolution. Oxford, UK: Oxford University Press; 2002. p. 287-288.

 

  1. Elmer KR, Clobert J. Dollo’s law of irreversibility in the post-genomic age. Trends Ecol Evol. 2025;40(2):136-146. doi: 10.1016/j.tree.2024.09.010

 

  1. Forni G, Martelossi J, Valero P, et al. Macroevolutionary analyses provide new evidence of phasmid wings evolution as a reversible process. Syst Biol. 2022;71(6):1471-1486. doi: 10.1093/sysbio/syac058

 

  1. Sadier A, Sears KE, Womack M. Unraveling the heritage of lost traits. J Exp Zool B Mol Dev Evol. 2022;338(1-2):107-118. doi: 10.1002/jez.b.23030

 

  1. Paluh DJ, Dillard WA, Stanley EL, Fraser GJ, Blackburn DC. Reevaluating the morphological evidence for the re-evolution of lost mandibular teeth in frogs. Evolution. 2021;75(12):3203-3213. doi: 10.1111/evo.14393

 

  1. Barrere J, Nanda P, Murray AW. Alternating selection for dispersal and multicellularity favors regulated life cycles. Curr Biol. 2023;33(9):1809-1817.e3. doi: 10.1016/j.cub.2023.03.031

 

  1. Grosberg RK, Strathmann RR. The evolution of multicellularity: A minor major transition? Annu Rev Ecol Evol Syst. 2007;38:621-654. doi: 10.1146/annurev.ecolsys.36.102403.114735

 

  1. Brunet T, King N. The origin of animal multicellularity and cell differentiation. Dev Cell. 2017;43(2):124-140. doi: 10.1016/j.devcel.2017.09.016

 

  1. Velicer GJ, Yu YTN. Evolution of novel cooperative swarming in the bacterium Myxococcus xanthus. Nature. 2003;425:75-78. doi: 10.1038/nature01908

 

  1. Gilbert OM, Foster KR, Mehdiabadi NJ, Strassmann JE, Queller DC. High relatedness maintains multicellular cooperation in a social amoeba by controlling cheater mutants. Proc Natl Acad Sci U S A. 2007;104(22):8913-8917. doi: 10.1073/pnas.0702723104

 

  1. Kuzdzal-Fick JJ, Fox SA, Strassmann JE, Queller DC. High relatedness is necessary and sufficient to maintain multicellularity in Dictyostelium. Science. 2011;334(6062):1548-1551. doi: 10.1126/science.1213272

 

  1. Wielgoss S, Wolfensberger R, Sun L, Fiegna F, Velicer GJ. Social genes are selection hotspots in kin groups of a soil microbe. Science. 2019;363(6434):1342-1346. doi: 10.1126/science.aar4416

 

  1. Conlin PL, Ratcliff WC. Evolution: Understanding the origins of facultative multicellular life cycles. Curr Biol. 2023;33(9):R356-R358. doi: 10.1016/j.cub.2023.04.010

 

  1. Chen H, Lin F, Xing K, et al. The reverse evolution from multicellularity to unicellularity during carcinogenesis. Nat Commun. 2015;6:6367. doi: 10.1038/ncomms7367

 

  1. Srivastava M, Simakov O, Chapman J, et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature. 2010;466:720-726. doi: 10.1038/nature09201

 

  1. Davies PC, Lineweaver CH. Cancer tumors as Metazoa 1.0: Tapping genes of ancient ancestors. Phys Biol. 2011;8(1):015001. doi: 10.1088/1478-3975/8/1/015001

 

  1. Sanchez Alvarado A. Cellular hyperproliferation and cancer as evolutionary variables. Curr Biol. 2012;22(17):R772-R778. doi: 10.1016/j.cub.2012.07.048

 

  1. Niculescu VF. Reevaluating cancer stem cells and polyploid giant cancer cells from the evolutionary cancer cell biology perspective. Cancer Plus. 2024;6(4):3970. doi: 10.36922/cp.3970

 

  1. Niculescu VF. Understanding cancer from an evolutionary perspective: High-risk reprogramming of genome-damaged stem cells. Acad Med. 2024;2(1). doi: 10.20935/AcadMed6168

 

  1. Niculescu VF, Niculescu ER. The enigma of cancer polyploidy as deciphered by evolutionary cancer cell biology (ECCB). Acad Med. 2024;1(2). doi: 10.20935/AcadMed6233

 

  1. Niculescu VF. Cancer genomics: Restorative senescence, transition to unicellularization, and cycles of stemness recovery. Acad Mol Biol Gen. 2025;1(1). doi: 10.20935/AcadMolBioGen7755

 

  1. Bank S, Bradler S. A second view on the evolution of flight in stick and leaf insects (Phasmatodea). BMC Ecol Evol. 2022;22:62. doi: 10.1186/s12862-022-02059-5

 

  1. Visser B, Alborn HT, Rondeaux S, et al. Phenotypic plasticity explains apparent reverse evolution of fat synthesis in parasitic wasps. Sci Rep. 2021;11:7751. doi: 10.1038/s41598-021-86736-8

 

  1. Lynch VJ. Is there a loophole in Dollo’s law? A DevoEvo perspective on irreversibility (of felid dentition). J Exp Zool B Mol Dev Evol. 2023;340(7-8):509-517. doi: 10.1002/jez.b.23209

 

  1. Niculescu VF. Growth of Entamoeba invadens in sediments with metabolically repressed bacteria leads to multicellularity and redefinition of the amoebic cell system. Roum Arch Microbiol Immunol. 2013;72(1):25-48.

 

  1. Niculescu VF. On the origin of stemness and ancient cell lineages in single-celled eukaryotes. SOJ Microbiol Infect Dis. 2014;2(2):1-3. doi: 10.15226/sojmid.2014.00115

 

  1. Niculescu VF. Extrinsic and intrinsic signaling control cell fate specification in the stem cell system of Entamoeba invadens. ResearchGate Preprint; 2014. doi: 10.13140/2.1.3050.0801

 

  1. Niculescu VF. The cell system of Giardia lamblia in the light of the protist stem cell biology. Stem Cell Biol Res. 2014;1:3. doi: 10.7243/2054-717X-1-3

 

  1. Niculescu VF. Evidence for asymmetric cell fate and hypoxia-induced differentiation in the facultative pathogen protist Colpoda cucullus. Microbiol Discov. 2014;2:3. doi: 10.7243/2052-6180-2-3

 

  1. Niculescu VF. The stem cell biology of the protist pathogen Entamoeba invadens in the context of eukaryotic stem cell evolution. Stem Cell Biol Res. 2015;2:2. doi: 10.7243/2054-717X-2-2

 

  1. Niculescu VF. Axenic Stress Leads the Minor Stem Cell Line of Entamoeba histolytica to Defective Mitosis and Aberrant Reversible Endopolyploidy. In: XVIII Seminar of Amebiasis. Campeche, Mexico; 2015. doi: 10.13140/RG.2.1.1851.4648

 

  1. Niculescu VF. Low-oxygen environments slow down precursor cell development in the pathogen anaerobe protist Entamoeba invadens. J Stem Cell Res Med. 2016;1(1):27-35. doi: 10.15761/JSCRM.1000104

 

  1. Niculescu VF. Developmental and non-developmental polyploidy in xenic and axenic cultured stem cell lines of Entamoeba invadens and E. histolytica. Insights Stem Cells. 2016;2:1.

 

  1. Niculescu VF. Regulatory mechanisms of asymmetric/ symmetric cell division and quiescence in the primitive/ stem progenitor cell lineage of Entamoeba. Stem Cells Regen Med. 2017;1(2):1-7.

 

  1. Niculescu VF. The evolutionary cancer genome theory and its reasoning. Genet Med Open. 2023;1(1):100809. doi: 10.1016/j.gimo.2023.100809

 

  1. Krishnan D, Ghosh SK. Cellular events of multinucleated giant cell formation during the encystation of Entamoeba invadens. Front Cell Infect Microbiol. 2018;8:262. doi: 10.3389/fcimb.2018.00262

 

  1. Hazra S, Kalyan Dinda S, Kumar Mondal N, et al. Giant cells: Multiple cells unite to survive. Front Cell Infect Microbiol. 2023;13:1220589. doi: 10.3389/fcimb.2023.1220589

 

  1. Niculescu VF. The reproductive life cycle of cancer: Hypotheses of cell of origin, TP53 drivers and stem cell conversions in the light of the atavistic cancer cell theory. Med Hypotheses. 2019;123:19-23. doi: 10.1016/j.mehy.2018.12.006

 

  1. Niculescu VF. Carcinogenesis: Recent insights in protist stem cell biology lead to a better understanding of atavistic mechanisms implied in cancer development. MOJ Tumor Res. 2018;1(1):18-29. doi: 10.15406/mojtr.2018.01.00004

 

  1. Niculescu VF. aCLS cancers: Genomic and epigenetic changes transform the cell of origin of cancer into a tumorigenic pathogen of unicellular organization and lifestyle. Gene. 2020;726:144174. doi: 10.1016/j.gene.2019.144174

 

  1. Niculescu VF. Cancer genes and cancer stem cells in tumorigenesis: Evolutionary deep homology and controversies. Genes Dis. 2022;9(5):1234-1247. doi: 10.1016/j.gendis.2022.03.010

 

  1. Cheloni G, Poteti M, Bono S, et al. The leukemic stem cell niche: Adaptation to “hypoxia” versus oncogene addiction. Stem Cells Int. 2017;2017:4979474. doi: 10.1155/2017/4979474

 

  1. Knoll AH, Holland HD. Oxygen and proterozoic evolution: An update. In: National Research Council (US) Panel on Effects of Past Global Change on Life. Effects of Past Global Change on Life. Washington, DC: National Academies Press; 1995.

 

  1. Knoll AH. The early evolution of eukaryotes: A global perspective. Science. 1992;256(5057):622-627. doi: 10.1126/science.1585174

 

  1. Tostevin R, Mills BJW. Reconciling proxy records and models of Earth’s oxygenation during the neoproterozoic and palaeozoic. Interface Focus. 2020;10(4):20190137. doi: 10.1098/rsfs.2019.0137

 

  1. Yoo YD, Kwon YT. Molecular mechanisms controlling asymmetric and symmetric self-renewal of cancer stem cells. J Anal Sci Technol. 2015;6(1):28. doi: 10.1186/s40543-015-0071-4

 

  1. Iliopoulos D, Hirsch HA, Wang G, Struhl K. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci U S A. 2011;108(4):1397-1402. doi: 10.1073/pnas.1018898108

 

  1. Knoblich JA. Mechanisms of asymmetric stem cell division. Cell. 2008;132(4):583-597. doi: 10.1016/j.cell.2008.02.007

 

  1. Chao S, Yan H, Bu P. Asymmetric division of stem cells and its cancer relevance. Cell Regen. 2024;13:5. doi: 10.1186/s13619-024-00188-9

 

  1. Bajaj J, Zimdahl B, Reya T. Fearful symmetry: Subversion of asymmetric division in cancer development and progression. Cancer Res. 2015;75(5):792-797. doi: 10.1158/0008-5472.CAN-14-2750

 

  1. Choi HY, Siddique HR, Zheng M, et al. p53 destabilizing protein skews asymmetric division and enhances NOTCH activation to direct self-renewal of TICs. Nat Commun. 2020;11:3084. doi: 10.1038/s41467-020-16616-8

 

  1. Li Z, Zhang YY, Zhang H, Yang J, Chen Y, Lu H. Asymmetric cell division and tumor heterogeneity. Front Cell Dev Biol. 2022;10:938685. doi: 10.3389/fcell.2022.938685

 

  1. Zhang S, Mercado-Uribe I, Xing Z, Sun B, Kuang J, Liu J. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene. 2014;33(1):116-128. doi: 10.1038/onc.2013.96

 

  1. Zhou X, Zhou M, Zheng M, et al. Polyploid giant cancer cells and cancer progression. Front Cell Dev Biol. 2022;10:1017588. doi: 10.3389/fcell.2022.1017588

 

  1. Granit RZ, Masury H, Condiotti R, et al. Regulation of cellular heterogeneity and rates of symmetric and asymmetric divisions in triple-negative breast cancer. Cell Rep. 2018;24(12):3237-3250. doi: 10.1016/j.celrep.2018.08.053

 

  1. Mittelman D, Wilson JH. The fractured genome of HeLa cells. Genome Biol. 2013;14(4):111. doi: 10.1186/gb-2013-14-4-111

 

  1. Mohyeldin A, Garzón-Muvdi T, Quiñones-Hinojosa A. Oxygen in stem cell biology: A critical component of the stem cell niche. Cell Stem Cell. 2010;7(2):150-161. doi: 10.1016/j.stem.2010.07.007

 

  1. Ward PS, Thompson CB. Metabolic reprogramming: A cancer hallmark even Warburg did not anticipate. Cancer Cell. 2012;21(3):297-308. doi: 10.1016/j.ccr.2012.02.014

 

  1. Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol. 1999;15:551-578. doi: 10.1146/annurev.cellbio.15.1.551

 

  1. Edwald E, Stone MB, Gray EM, Wu J, Veatch SL. Oxygen depletion speeds and simplifies diffusion in HeLa cells. Biophys J. 2014;107(8):1873-1884. doi: 10.1016/j.bpj.2014.08.023

 

  1. Upadhyay A. Cancer: An unknown territory; rethinking before going ahead. Genes Dis. 2020;8(5):655-661. doi: 10.1016/j.gendis.2020.09.002

 

  1. Ostroverkhova D, Przytycka TM, Panchenko AR. Cancer driver mutations: Predictions and reality. Trends Mol Med. 2023;29(7):554-566. doi: 10.1016/j.molmed.2023.03.007

 

  1. Gerstung M, Jolly C, Leshchiner I, et al. The evolutionary history of 2,658 cancers. Nature. 2020;578(7793):122-128. doi: 10.1038/s41586-020-1969-6

 

  1. Heng HH. The genome-centric concept: Resynthesis of evolutionary theory. Bioessays. 2009;31(5):512-525. doi: 10.1002/bies.200800189

 

  1. Horne SD, Ye CJ, Abdallah BY, Liu G, Heng HH. Cancer genome evolution. Transl Cancer Res. 2015;4(3):303-313. doi: 10.3978/j.issn.2218-676X.2015.06.01

 

  1. Heng HH. Bio-complexity: Challenging reductionism. In: Sturmberg JP, Martin CM, editors. Handbook on Systems and Complexity in Health. New York: Springer; 2013. p. 193-208.

 

  1. Heng HH, Liu G, Stevens JB, et al. Decoding the genome beyond sequencing: The new phase of genomic research. Genomics. 2011;98(4):242-252. doi: 10.1016/j.ygeno.2011.05.008

 

  1. Danovi S. The evolving cancer genome. Nat Genet. 2023;55(7):1082. doi: 10.1038/s41588-023-01457-0

 

  1. Jolly C, Van Loo P. Timing somatic events in the evolution of cancer. Genome Biol. 2018;19:95. doi: 10.1186/s13059-018-1456-8

 

  1. Mitchell TJ, Turajlic S, Rowan A, et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell. 2018;173(3):611-623.e17. doi: 10.1016/j.cell.2018.02.020

 

  1. Gundem G, Van Loo P, Kremeyer B, et al. The evolutionary history of lethal metastatic prostate cancer. Nature. 2015;520(7547):353-357. doi: 10.1038/nature14347

 

  1. Yates LR, Gerstung M, Knappskog S, et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat Med. 2015;21(7):751-759. doi: 10.1038/nm.3886

 

  1. Brastianos PK, Carter SL, Santagata S, et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 2015;5(11):1164-1177. doi: 10.1158/2159-8290.CD-15-0369

 

  1. Landau DA, Tausch E, Taylor-Weiner AN, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526(7574):525-530. doi: 10.1038/nature15395

 

  1. European Molecular Biology Laboratory. Cancer Mutations Occur Decades Before Diagnosis. ScienceDaily; 2020. Available from: https://www.sciencedaily.com/ releases/2020/02/200206080451.htm [Last accessed on 2025 Sep 21].

 

  1. Cheek DM, Naxerova K. Mapping the long road to cancer. Cell. 2022;185(6):939-940. doi: 10.1016/j.cell.2022.02.020

 

  1. Hanahan D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022;12(1):31-46. doi: 10.1158/2159-8290.CD-21-1059

 

  1. Sarker DB, Xue Y, Mahmud F, Jocelyn JA, Sang QXA. Interconversion of cancer cells and induced pluripotent stem cells. Cells. 2024;13(2):125. doi: 10.3390/cells13020125

 

  1. Gandre-Babbe S, Paluru P, Aribeana C, et al. Patient-derived induced pluripotent stem cells recapitulate hematopoietic abnormalities of juvenile myelomonocytic leukemia. Blood. 2013;121(24):4925-4929. doi: 10.1182/blood-2013-01-478412

 

  1. Oshima N, Yamada Y, Nagayama S, et al. Induction of cancer stem cell properties in colon cancer cells by defined factors. PLoS One. 2014;9(7):e101735. doi: 10.1371/journal.pone.0101735

 

  1. Yu Z, Pestell TG, Lisanti MP, Pestell RG. Cancer stem cells. Int J Biochem Cell Biol. 2012;44(12):2144-2151. doi: 10.1016/j.biocel.2012.08.022

 

  1. Miyoshi N, Ishii H, Nagai KI, et al. Defined factors induce reprogramming of gastrointestinal cancer cells. Proc Natl Acad Sci U S A. 2010;107(1):40-45. doi: 10.1073/pnas.0912407107

 

  1. Utikal J, Maherali N, Kulalert W, Hochedlinger K. Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci. 2009;122(Pt 19):3502-3510. doi: 10.1242/jcs.054783

 

  1. Shamsian A, Sahebnasagh R, Norouzy A, Hussein SH, Ghahremani MH, Azizi Z. Cancer cells as a new source of induced pluripotent stem cells. Stem Cell Res Ther. 2022;13(1):459. doi: 10.1186/s13287-022-03145-y

 

  1. Kim HJ, Jeong J, Park S, et al. Establishment of hepatocellular cancer induced pluripotent stem cells using a reprogramming technique. Gut Liver. 2017;11(2):261-269. doi: 10.5009/gnl15389

 

  1. Mahalingam D, Kong CM, Lai J, Tay LL, Yang H, Wang X. Reversal of aberrant cancer methylome and transcriptome upon direct reprogramming of lung cancer cells. Sci Rep. 2012;2:592. doi: 10.1038/srep00592

 

  1. Graham TA, Sottoriva A. Measuring cancer evolution from the genome. J Pathol. 2016;241(2):183-191. doi: 10.1002/path.4820

 

  1. Levitt NC, Hickson ID. Caretaker tumour suppressor genes that defend genome integrity. Trends Mol Med. 2002;8(4):179-186. doi: 10.1016/S1471-4914(02)02298-0

 

  1. Kinzler KW, Vogelstein B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature. 1997;386(6627):761, 763. doi: 10.1038/386761a0

 

  1. Frank SA. Somatic mutation: Early cancer steps depend on tissue architecture. Curr Biol. 2003;13(7):R261-R263. doi: 10.1016/S0960-9822(03)00195-7

 

  1. Campisi J. Aging, tumor suppression and cancer: High wire-act! Mech Ageing Dev. 2005;126(1):51-58. doi: 10.1016/j.mad.2004.09.024

 

  1. Michor F, Iwasa Y, Nowak MA. Dynamics of cancerprogression. Nat Rev Cancer. 2004;4(3):197-205. doi: 10.1038/nrc1295

 

  1. Fanale D, Maragliano R, Bazan V, Russo A. Caretakers and Gatekeepers. In: Willey Online Library: Encyclopedia of Life Sciences (eLS); Genetic and Diseases; 2017. doi: 10.1002/9780470015902.a0006048.pub2

 

  1. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23-28. doi: 10.1126/science.959840

 

  1. Yao Y, Dai W. Genomic instability and cancer. J Carcinog Mutagen. 2014;5:1000165. doi: 10.4172/2157-2518.1000165

 

  1. Polo SE, Jackson SP. Dynamics of DNA damage response proteins at DNA breaks: A focus on protein modifications. Genes Dev. 2011;25(5):409-433. doi: 10.1101/gad.2021311

 

  1. Loeb LA. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 1991;51(12):3075-3079.

 

  1. Loeb LA. A mutator phenotype in cancer. Cancer Res. 2001;61(8):3230-3239.

 

  1. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability--an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11(3):220-228. doi: 10.1038/nrm2858

 

  1. Warrier NM, Kelkar N, Johnson CT, Govindarajan T, Prabhu V, Kumar P. Understanding cancer stem cells and plasticity: Towards better therapeutics. Eur J Cell Biol. 2023;102(2):151321. doi: 10.1016/j.ejcb.2023.151321

 

  1. Plaks V, Kong N, Werb Z. The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015;16(3):225-238. doi: 10.1016/j.stem.2015.02.015

 

  1. Nam AS, Chaligne R, Landau DA. Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nat Rev Genet. 2021;22(1):3-18. doi: 10.1038/s41576-020-00275-5

 

  1. Martincorena I, Fowler JC, Wabik A, et al. Somatic mutant clones colonize the human esophagus with age. Science. 2018;362(6417):911-917. doi: 10.1126/science.aau3879

 

  1. Yizhak K, Aguet F, Kim J, et al. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science. 2019;364(6444):eaaw0726. doi: 10.1126/science.aaw0726

 

  1. Yokoyama A, Kakiuchi N, Yoshizato T, et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature. 2019;565(7739):312-317. doi: 10.1038/s41586-018-0811-x

 

  1. Martincorena I, Roshan A, Gerstung M, et al. High burden and pervasive positive selection of somatic mutations in normal human skin. Science. 2015;348(6237):880-886. doi: 10.1126/science.aaa6806

 

  1. Yoshida K, Gowers KHC, Lee-Six H, et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature. 2020;578(7794):266-272. doi: 10.1038/s41586-020-1961-1

 

  1. Teixeira VH, Pipinikas CP, Pennycuick A, et al. Deciphering the genomic, epigenomic, and transcriptomic landscapes of pre-invasive lung cancer lesions. Nat Med. 2019;25(3):517-525. doi: 10.1038/s41591-018-0323-0

 

  1. Kaufman CK, Mosimann C, Fan ZP, et al. A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science. 2016;351(6272):aad2197. doi: 10.1126/science.aad2197

 

  1. Turajlic S, Sottoriva A, Graham T, Swanton C. Resolving genetic heterogeneity in cancer. Nat Rev Genet. 2019;20(7):404-416. doi: 10.1038/s41576-019-0114-6

 

  1. Pepper JW, Findlay CS, Kassen R, Spencer SL, Maley CC. Cancer research meets evolutionary biology. Evol Appl. 2009;2(1):62-70. doi: 10.1111/j.1752-4571.2008.00063.x

 

  1. Vincent MD. The animal within: Carcinogenesis and the clonal evolution of cancer cells are speciation events sensu stricto. Evolution. 2010;64(4):1173-1183. doi: 10.1111/j.1558-5646.2009.00942.x

 

  1. Huxley J. Cancer biology: Comparative and genetic. Biol Rev. 1956;31(4):474-514. doi: 10.1111/j.1469-185X.1956.tb01513.x

 

  1. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(7381):306-313. doi: 10.1038/nature10762

 

  1. Swanton C. Intratumor heterogeneity: Evolution through space and time. Cancer Res. 2012;72(19):4875-4882. doi: 10.1158/0008-5472.CAN-12-2217

 

  1. Duesberg P, Rasnick D. Aneuploidy, the somatic mutation that makes cancer a species of its own. Cell Motil Cytoskeleton. 2000;47(2):81-107. doi: 10.1002/1097-0169(200006)47:2<81:AID-CM1>3.0.CO;2-B

 

  1. Merlo LMF, Pepper JW, Reid BJ, Maley CC. Cancer as an evolutionary and ecological process. Nat Rev Cancer. 2006;6(12):924-935. doi: 10.1038/nrc2013

 

  1. Gray MW, Lang BF, Burger G. Mitochondria of protists. Annu Rev Genet. 2004;38:477-524. doi: 10.1146/annurev.genet.37.110801.143811

 

  1. Rivera MC, Lake JA. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature. 2004;431(7005):152-155. doi: 10.1038/nature02848

 

  1. Vincent M. Cancer: A de-repression of a default survival program common to all cells? A life-history perspective on the nature of cancer. Bioessays. 2012;34(1):72-82. doi: 10.1002/bies.201100049

 

  1. Domazet-Lošo T, Tautz D. An ancient evolutionary origin of genes associated with human genetic diseases. Mol Biol Evol. 2008;25(12):2699-2707. doi: 10.1093/molbev/msn214

 

  1. Domazet-Lošo T, Tautz D. Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoa. BMC Biol. 2010;8:66. doi: 10.1186/1741-7007-8-66

 

  1. Trigos AS, Pearson RB, Papenfuss AT, Goode DL. Altered interactions between unicellular and multicellular genes drive hallmarks of transformation in a diverse range of solid tumors. Proc Natl Acad Sci U S A. 2017;114(24):6406-6411. doi: 10.1073/pnas.1617743114

 

  1. Trigos AS, Pearson RB, Papenfuss AT, Goode DL. How the evolution of multicellularity set the stage for cancer. Br J Cancer. 2018;118(2):145-152. doi: 10.1038/bjc.2017.398

 

  1. Trigos AS, Pearson RB, Papenfuss AT, Goode DL. Somatic mutations in early metazoan genes disrupt regulatory links between unicellular and multicellular genes in cancer. Elife. 2019;8:e40947. doi: 10.7554/eLife.40947

 

  1. Lineweaver CH, Davies P. Comparison of the atavistic model of cancer to somatic mutation theory: Phylostratigraphic analyses support the atavistic model. In: Gerstman BS, editor. The Physics of Cancer: Research Advances. Singapore: World Scientific; 2020. p. 243-261. doi: 10.1142/9789811223495_0012

 

  1. Zhou J, Cisneros L, Knijnenburg T, Truhana K, Davies PWC, Hang S. Phylostratigraphic analysis of tumor and developmental transcriptomes reveals relationship between oncogenesis, phylogenesis and ontogenesis. Converg Sci Phys Oncol. 2018;4(2):025001. doi: 10.1088/2057-1739/aab1b0

 

  1. Rebolleda-Gomez M, Travisano M. The cost of being big: Local competition, importance of dispersal and experimental evolution of reversal to unicellularity. Am Nat. 2018;192(6):731-744. doi: 10.1086/700095

 

  1. Libby E, Ratcliff WC. Ratcheting the evolution of multicellularity. Science. 2014;346(6208):426-427. doi: 10.1126/science.1262053

 

  1. Michod RE, Viossat Y, Solari CA, Hurand M, Nedelcu AM. Life-history evolution and the origin of multicellularity. J Theor Biol. 2006;239(2):257-272. doi: 10.1016/j.jtbi.2005.08.043

 

  1. Michod RE. Evolution of individuality during the transition from unicellular to multicellular life. Proc Natl Acad Sci U S A. 2007;104 Suppl 1:8613-8618. doi: 10.1073/pnas.0701489104

 

  1. Folse HJ, Roughgarden J. What is an individual organism? A multilevel selection perspective. Q Rev Biol. 2010;85(4):447-472. doi: 10.1086/656904.

 

  1. Rebolleda-Gómez M, Travisano M. Adaptation, chance, and history in experimental evolution reversals to unicellularity. Evolution. 2019;73(1):73-83. doi: 10.1111/evo.13654

 

  1. Canval S. Effect of O-GlcNAcylation on Tamoxifen Sensitivity in Breast Cancer Derived MCF-7 Cells. [Master’s Thesis]. Paris: Université René Descartes -Paris V; 2013.

 

  1. Liu ZL, Chen HH, Zheng LL, et al. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther. 2023;8:198. doi: 10.1038/s41392-023-01460-1

 

  1. Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell. 2011;145(4):529-542. doi: 10.1016/j.cell.2011.03.041

 

  1. Chen Q, Zou J, He Y, et al. A narrative review of circulating tumor cells clusters: A key morphology of cancer cells in circulation promotes hematogenous metastasis. Front Oncol. 2022;12:944487. doi: 10.3389/fonc.2022.944487

 

  1. Ashworth TR. A case of cancer in which cells similar to those in the tumour were seen in the blood after death. Aust Med J. 1869;14:146-147.

 

  1. Gwark S, Kim J, Kwon NJ, et al. Publisher correction: Analysis of the serial circulating tumor cell count during neoadjuvant chemotherapy in breast cancer patients. Sci Rep. 2021;11(1):6148. doi: 10.1038/s41598-021-85731-3. Erratum for: Sci Rep. 2020;10(1):17466. doi: 10.1038/s41598-020-74577-w

 

  1. Tellez-Gabriel M, Knutsen E, Perander M. Current status of circulating tumor cells, circulating tumor DNA, and exosomes in breast cancer liquid biopsies. Int J Mol Sci. 2020;21(22):9457. doi: 10.3390/ijms21229457

 

  1. Vismara M, Reduzzi C, Daidone MG, Cappelletti V. Circulating tumor cells (CTCs) heterogeneity in metastatic breast cancer: Different approaches for different needs. Adv Exp Med Biol. 2020;1220:81-91. doi: 10.1007/978-3-030-36214-0_7

 

  1. Pinheiro R, Martínez-Pena I, López-López R. Relevance of CTC clusters in breast cancer metastasis. Adv Exp Med Biol. 2020;1220:93-115. doi: 10.1007/978-3-030-36214-0_8

 

  1. Gu X, Wei S, Lv X. Circulating tumor cells: From new biological insights to clinical practice. Signal Transduct Target Ther. 2024;9(1):226. doi: 10.1038/s41392-024-01938-6

 

  1. Gao D, Mittal V, Ban Y, Lourenco AR, Yomtoubian S, Lee S. Metastatic tumor cells: Genotypes and phenotypes. Front Biol (Beijing). 2018;13(4):277-286. doi: 10.1007/s11515-018-1513-3

 

  1. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168(4):670-691. doi: 10.1016/j.cell.2017.01.025

 

  1. Liu H, Patel MR, Prescher JA, Clarke MF. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci U.S.A. 2010;107(42):18115-18120. doi: 10.1073/pnas.1006732107

 

  1. Comaills V, Kabeche L, Morris R, et al. Genomic instability is induced by persistent proliferation of cells undergoing epithelial-to-mesenchymal transition. Cell Rep. 2016;17(10):2632-2647. doi: 10.1016/j.celrep.2016.11.022

 

  1. Levine MS, Holland AJ. The impact of mitotic errors on cell proliferation and tumorigenesis. Genes Dev. 2018;32(9- 10):620-638. doi: 10.1101/gad.314351.118

 

  1. Davoli T, Uno H, Wooten EC, Elledge SJ. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science. 2017;355(6322):eaaf8399. doi: 10.1126/science.aaf8399

 

  1. Germano G, Lamba S, Rospo G, et al. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature. 2017;552(7683):116-120. doi: 10.1038/nature24673

 

  1. Christensen S, Van der Roest B, Besselink N, et al. 5-fluorouracil treatment induces characteristic T>G mutations in human cancer. Nat Commun. 2019;10:4571. doi: 10.1038/s41467-019-12594-8

 

  1. Schuster E, Taftaf R, Reduzzi C, Albert MK, Romero-Calvo I, Liu H. Better together: Circulating tumor cell clustering in metastatic cancer. Trends Cancer. 2021;7(11):1020-1032. doi: 10.1016/j.trecan.2021.07.001

 

  1. Aguilera A, García-Muse T. Causes of genome instability. Annu Rev Genet. 2013;47:1-32. doi: 10.1146/annurev-genet-111212-133232

 

  1. Schlacher K, Wu H, Jasin M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell. 2012;22(1):106-116. doi: 10.1016/j.ccr.2012.05.015

 

  1. Nassour J, Radford R, Correia A, et al. Autophagic cell death restricts chromosomal instability during replicative crisis. Nature. 2019;565(7741):659-663. doi: 10.1038/s41586-019-0885-0

 

  1. Ira G, Pellicioli A, Balijja A, et al. DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature. 2004;431(7011):1011-1017. doi: 10.1038/nature02964

 

  1. Wyman C, Ristic D, Kanaar K. Homologous recombination-mediated double-strand break repair. DNA Repair (Amst). 2004;3(8-9):827-833. doi: 10.1016/j.dnarep.2004.03.020

 

  1. Piazza A, Heyer WD. Homologous recombination and the formation of complex genomic rearrangements. Trends Cell Biol. 2019;29(2):135-149. doi: 10.1016/j.tcb.2018.09.009

 

  1. Liu X, Taftaf R, Kawaguchi M, et al. Homophilic CD44 interactions mediate tumor cell aggregation and polyclonal metastasis in patient-derived breast cancer models. Cancer Discov. 2019;9(1):96-113. doi: 10.1158/2159-8290.CD-18-0065

 

  1. Taftaf R, Liu X, Singh S, et al. ICAM1 initiates CTC cluster formation and trans-endothelial migration in lung metastasis of breast cancer. Nat Commun. 2021;12(1):4867. doi: 10.1038/s41467-021-25189-z

 

  1. Chimonidou M, Strati A, Tzitzira A, et al. DNA methylation of tumor suppressor and metastasis suppressor genes in circulating tumor cells. Clin Chem. 2011;57(8):1169-1177. doi: 10.1373/clinchem.2011.165902

 

  1. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321-330. doi: 10.1038/nature21349

 

  1. Lara-Gonzalez P, Westhorpe FG, Taylor SS. The spindle assembly checkpoint. Curr Biol. 2012;22(22):R966-R980. doi: 10.1016/j.cub.2012.10.006

 

  1. McClintock B. The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes. Genetics. 1938;23(4):315-376. doi: 10.1093/genetics/23.4.315

 

  1. Drost J, van Jaarsveld RH, Ponsioen B, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature. 2015;521(7550):43-47. doi: 10.1038/nature14415

 

  1. Davies AA, Masson JY, McIlwraith MJ, et al. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell. 2001;7(2):273-282. doi: 10.1016/S1097-2765(01)00175-7

 

  1. Petros JA, Baumann AK, Ruiz-Pesini E, et al. mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci U S A. 2005;102(3):719-724. doi: 10.1073/pnas.0408894102

 

  1. Coleman RE, Croucher PI, Padhani AR, et al. Bone metastases. Nat Rev Dis Primers. 2020;6(1):83. doi: 10.1038/s41572-020-00216-3

 

  1. Croucher PI, McDonald MM, Martin TJ. Bone metastasis: The importance of the neighbourhood. Nat Rev Cancer. 2016;16(6):373-386. doi: 10.1038/nrc.2016.44

 

  1. Shen Z. Genomic instability and cancer: An introduction. J Mol Cell Biol. 2011;3(1):1-3. doi: 10.1093/jmcb/mjq057

 

  1. Salmaninejad A, Ilkhani K, Marzban H, et al. Genomic instability in cancer: Molecular mechanisms and therapeutic potentials. Curr Pharm Des. 2021;27(28):3161-3169. doi: 10.2174/1381612827666210426100206

 

  1. Chen M, Linstra R, van Vugt MATM. Genomic instability, inflammatory signaling and response to cancer immunotherapy. Biochim Biophys Acta Rev Cancer. 2022;1877(1):188661. doi: 10.1016/j.bbcan.2021.188661

 

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144(5):646-674. doi: 10.1016/j.cell.2011.02.013

 

  1. Lawrence KS, Chau T, Engebrecht J. DNA damage response and spindle assembly checkpoint function throughout the cell cycle to ensure genomic integrity. PLoS Genet. 2015;11(3):e1005150. doi: 10.1371/journal.pgen.1005150

 

  1. Hatch EM, Fischer AH, Deerinck TJ, Hetzer MW. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell. 2013;154(1):47-60. doi: 10.1016/j.cell.2013.06.007

 

  1. Chu X, Tian W, Ning J, et al. Cancer stem cells: Advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther. 2024;9(1):170. doi: 10.1038/s41392-024-01851-y

 

  1. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730-737. doi: 10.1038/nm0797-730

 

  1. Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704-715. doi: 10.1016/j.cell.2008.03.027

 

  1. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871-890. doi: 10.1016/j.cell.2009.11.007

 

  1. Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009;11(12):1487-1495. doi: 10.1038/ncb1998

 

  1. Zhou J, Zhou XA, Zhang N, Wang J. Evolving insights: How DNA repair pathways impact cancer evolution. Cancer Biol Med. 2020;17(4):805-827. doi: 10.20892/j.issn.2095-3941.2020.0177

 

  1. Barber LJ, Sandhu S, Chen L, et al. Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor. J Pathol. 2013;229(3):422-429. doi: 10.1002/path.4140
Share
Back to top
Cancer Plus, Electronic ISSN: 2661-3840 Print ISSN: 2661-3832, Published by AccScience Publishing