Long non-coding RNAs and drug resistance in breast cancer patients: A scoping review
Breast cancer (BC) is the most prevalent cancer among women. Despite improvements in the detection and treatment of BC, drug resistance is widespread, making it the leading cause of cancer mortality in women. Long non-coding RNAs (lncRNAs) have been shown to play essential roles in regulating drug resistance in pre-clinical models. However, their clinical relevance remains largely unexplored. This review addresses this gap by identifying and examining lncRNAs with potential predictive value as biomarkers for drug resistance in BC cancer patients. A systematic search (last updated February 7, 2024) was conducted across five databases (Cochrane Library, Embase, PubMed, Scopus, and Web of Science) for research articles in English, published after 2010, involving BC patients who underwent treatment. Following the selection and review process, 66 studies were short-listed, and 185 unique lncRNAs linked to drug resistance in BC patients were identified. Notably, only five lncRNAs (BCAR4, CCAT2, DSCAM-AS1, GAS5, and H19) were reported in at least two independent studies, indicating the scarcity of replicated evidence in clinical cohorts. Receiver operating characteristic curve analysis for these five lncRNAs confirmed that BCAR4, GAS5, and H19 expression levels have prognostic potential for predicting chemotherapy response. However, further validation is required before lncRNAs can be effectively utilized as prognostic markers in a clinical setting.
- GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: A systematic analysis for the global burden of disease study 2013. Lancet. 2015;385(9963):117-171. doi: 10.1016/s0140-6736(14)61682-2
- Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263. doi: 10.3322/caac.21834
- Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol. 2005;205(2):275-292. doi: 10.1002/path.1706
- Nahta R, Esteva FJ. HER2 therapy: Molecular mechanisms of trastuzumab resistance. Breast Cancer Res. 2006;8(6):215. doi: 10.1186/bcr1612
- Haque MM, Desai KV. Pathways to endocrine therapy resistance in breast cancer. Front Endocrinol (Lausanne). 2019;10:573. doi: 10.3389/fendo.2019.00573
- Cosentino G, Plantamura I, Tagliabue E, Iorio MV, Cataldo A. Breast cancer drug resistance: Overcoming the challenge by capitalizing on microRNA and tumor microenvironment interplay. Cancers (Basel). 2021;13(15):3691. doi: 10.3390/cancers13153691
- Early Breast Cancer Trialists’ Collaborative G, Peto R, Davies C, et al. Comparisons between different polychemotherapy regimens for early breast cancer: Meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet. 2012;379(9814):432-444. doi: 10.1016/S0140-6736(11)61625-5
- Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414): 101-108. doi: 10.1038/nature11233
- Mattick JS, Amaral PP, Carninci P, et al. Long non-coding RNAs: Definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;24(6):430-447. doi: 10.1038/s41580-022-00566-8
- Ulitsky I, Bartel DP. LincRNAs: Genomics, evolution, and mechanisms. Cell. 2013;154(1):26-46. doi: 10.1016/j.cell.2013.06.020
- Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci. 2016;73(13):2491-2509. doi: 10.1007/s00018-016-2174-5
- Statello L, Guo CJ, Chen LL, Huarte M. Author correction: Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):159. doi: 10.1038/s41580-021-00330-4
- Zhang T, Hu H, Yan G, et al. Long non-coding RNA and breast cancer. Technol Cancer Res Treat. 2019;18:1533033819843889. doi: 10.1177/1533033819843889
- Li Y, Ma HY, Hu XW, et al. LncRNA H19 promotes triple-negative breast cancer cells invasion and metastasis through the p53/TNFAIP8 pathway. Cancer Cell Int. 2020;20:200. doi: 10.1186/s12935-020-01261-4
- Li S, Zhou J, Wang Z, Wang P, Gao X, Wang Y. Long noncoding RNA GAS5 suppresses triple negative breast cancer progression through inhibition of proliferation and invasion by competitively binding miR-196a-5p. Biomed Pharmacother. 2018;104:451-457. doi: 10.1016/j.biopha.2018.05.056
- Zhang K, Liu P, Tang H, et al. AFAP1-AS1 promotes epithelial-mesenchymal transition and tumorigenesis through Wnt/β-catenin signaling pathway in triple-negative breast cancer. Front Pharmacol. 2018;9:1248. doi: 10.3389/fphar.2018.01248
- Du T, Shi Y, Xu S, Wan X, Sun H, Liu B. Long non-coding RNAs in drug resistance of breast cancer. Onco Targets Ther. 2020;13:7075-7087. doi: 10.2147/OTT.S255226
- Liu K, Gao L, Ma X, et al. Long non-coding RNAs regulate drug resistance in cancer. Mol Cancer. 2020;19(1):54. doi: 10.1186/s12943-020-01162-0
- Page MJ, McKenzie JE, Bossuyt PM, et al. [The PRISMA 2020 statement: An updated guideline for reporting systematic reviews declaración PRISMA 2020: Una guía actualizada para la publicación de revisiones sistemáticas]. Rev Panam Salud Publica. 2022;46:e112. doi: 10.26633/RPSP.2022.112
- In: Innovation VH, editor. Covidence Systematic Review Software. Melbourne. Available from: https://www.com/ covidence.org/australia [Last accessed on 2024 Mar 24].
- Bramer W, Bain P. Updating search strategies for systematic reviews using EndNote. J Med Libr Assoc. 2017;105(3): 285-289. doi: 10.5195/jmla.2017.183
- Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523. doi: 10.1038/s41467-019-09234-6
- Li Z, Zhang Y, Fang J, et al. NcPath: A novel platform for visualization and enrichment analysis of human non-coding RNA and KEGG signaling pathways. Bioinformatics. 2023;39(1):btac812. doi: 10.1093/bioinformatics/btac812
- Kang J, Tang Q, He J, et al. RNAInter v4.0: RNA interactome repository with redefined confidence scoring system and improved accessibility. Nucleic Acids Res. 2022;50(D1):D326-D332. doi: 10.1093/nar/gkab997
- Li J, Li Z, Wang Y, Lin H, Wu B. TLSEA: A tool for lncRNA set enrichment analysis based on multi-source heterogeneous information fusion. Front Genet. 2023;14:1181391. doi: 10.3389/fgene.2023.1181391
- Fekete JT, Győrffy B. ROCplot.org: Validating predictive biomarkers of chemotherapy/hormonal therapy/anti-HER2 therapy using transcriptomic data of 3,104 breast cancer patients. Int J Cancer. 2019;145(11):3140-3151. doi: 10.1002/ijc.32369
- Michmerhuizen AR, Spratt DE, Pierce LJ, Speers CW. ARe we there yet? Understanding androgen receptor signaling in breast cancer. NPJ Breast Cancer. 2020;6:47. doi: 10.1038/s41523-020-00190-9
- Kolyvas EA, Caldas C, Kelly K, Ahmad SS. Androgen receptor function and targeted therapeutics across breast cancer subtypes. Breast Cancer Res. 2022;24(1):79. doi: 10.1186/s13058-022-01574-4
- Oh S, Oh C, Yoo KH. Functional roles of CTCF in breast cancer. BMB Rep. 2017;50(9):445-453. doi: 10.5483/bmbrep.2017.50.9.108
- Segueni J, Noordermeer D. CTCF: A misguided jack-of-all-trades in cancer cells. Comput Struct Biotechnol J. 2022;20:2685-2698. doi: 10.1016/j.csbj.2022.05.044
- Kakani P, Dhamdhere SG, Pant D, et al. Hypoxia-induced CTCF promotes EMT in breast cancer. Cell Rep. 2024;43(7):114367. doi: 10.1016/j.celrep.2024.114367
- Miziak P, Baran M, Błaszczak E, et al. Estrogen receptor signaling in breast cancer. Cancers (Basel). 2023;15(19):4689. doi: 10.3390/cancers15194689
- Liu N, Wang A, Xue M, Zhu X, Liu Y, Chen M. FOXA1 and FOXA2: The regulatory mechanisms and therapeutic implications in cancer. Cell Death Discov. 2024;10(1):172. doi: 10.1038/s41420-024-01936-1
- Metovic J, Borella F, D’Alonzo M, et al. FOXA1 in breast cancer: A luminal marker with promising prognostic and predictive impact. Cancers (Basel). 2022;14(19):4699. doi: 10.3390/cancers14194699
- Bhin J, Yemelyanenko J, Chao X, et al. MYC is a clinically significant driver of mTOR inhibitor resistance in breast cancer. J Exp Med. 2023;220(11):e20211743. doi: 10.1084/jem.20211743
- Gao FY, Li XT, Xu K, Wang RT, Guan XX. c-MYC mediates the crosstalk between breast cancer cells and tumor microenvironment. Cell Commun Signal. 2023;21(1):28. doi: 10.1186/s12964-023-01043-1
- Fallah Y, Brundage J, Allegakoen P, Shajahan-Haq AN. MYC-driven pathways in breast cancer subtypes. Biomolecules. 2017;7(3):53. doi: 10.3390/biom7030053
- Muste Sadurni M, Saponaro M. Deregulations of RNA pol II subunits in cancer. Appl Biosci. 2023;2(3):459-476. doi: 10.3390/applbiosci2030029
- Chai Y, Shi Y. Exosomal POU5 F1 derived from TNBC promotes cancer progression by regulating M2 macrophage polarization via inhibiting TRAF6 ubiquitination and activating AKT in macrophage. Cell Biol Toxicol. 2025;41(1):95. doi: 10.1007/s10565-025-10041-7
- Gwak JM, Kim M, Kim HJ, Jang MH, Park SY. Expression of embryonal stem cell transcription factors in breast cancer: Oct4 as an indicator for poor clinical outcome and tamoxifen resistance. Oncotarget. 2017;8(22):36305-36318. doi: 10.18632/oncotarget.16750
- Cai S, Geng S, Jin F, Liu J, Qu C, Chen B. POU5F1/Oct-4 expression in breast cancer tissue is significantly associated with non-sentinel lymph node metastasis. BMC Cancer. 2016;16:175. doi: 10.1186/s12885-015-1966-6
- Zaher DM, Abdin SM, Semreen MH, et al. Identifying the impact of RelA overexpression in triple-negative breast cancer cells using mass spectroscopy-based proteomics and metabolomics analysis. Chem Biodivers. 2025:e00717. doi: 10.1002/cbdv.202500717
- Xia W, Bacus S, Husain I, et al. Resistance to ErbB2 tyrosine kinase inhibitors in breast cancer is mediated by calcium-dependent activation of RelA. Mol Cancer Ther. 2010;9(2):292-299. doi: 10.1158/1535-7163.MCT-09-1041
- Shahbandi A, Nguyen HD, Jackson JG. TP53 mutations and outcomes in breast cancer: Reading beyond the headlines. Trends Cancer. 2020;6(2):98-110. doi: 10.1016/j.trecan.2020.01.007
- Shi T, Gao G, Cao Y. Long noncoding RNAs as novel biomarkers have a promising future in cancer diagnostics. Dis Markers. 2016;2016:9085195. doi: 10.1155/2016/9085195
- Bolha L, Ravnik-Glavač M, Glavač D. Long noncoding RNAs as biomarkers in cancer. Dis Markers. 2017;2017:7243968. doi: 10.1155/2017/7243968
- Jiang MC, Ni JJ, Cui WY, Wang BY, Zhuo W. Emerging roles of lncRNA in cancer and therapeutic opportunities. Am J Cancer Res. 2019;9(7):1354-1366.
- Fathi Dizaji B. Strategies to target long non-coding RNAs in cancer treatment: Progress and challenges. Egypt J Med Hum Gen. 2020;21(1):41. doi: 10.1186/s43042-020-00074-4
- Peng L, Jiang J, Tang B, Nice EC, Zhang YY, Xie N. Managing therapeutic resistance in breast cancer: From the lncRNAs perspective. Theranostics. 2020;10(23):10360-10377. doi: 10.7150/thno.49922
- Jin H, Du W, Huang W, et al. lncRNA and breast cancer: Progress from identifying mechanisms to challenges and opportunities of clinical treatment. Mol Ther Nucleic Acids. 2021;25:613-637. doi: 10.1016/j.omtn.2021.08.005
- Zangouei AS, Zangoue M, Taghehchian N, et al. Cell cycle related long non-coding RNAs as the critical regulators of breast cancer progression and metastasis. Biol Res. 2023;56(1):1. doi: 10.1186/s40659-022-00411-4
- Cabanski CR, White NM, Dang HX, et al. Pan-cancer transcriptome analysis reveals long noncoding RNAs with conserved function. RNA Biol. 2015;12(6):628-642. doi: 10.1080/15476286.2015.1038012
- Saadh MJ, Rasulova I, Almoyad MAA, et al. Recent progress and the emerging role of lncRNAs in cancer drug resistance; Focusing on signaling pathways. Pathol Res Pract. 2024;253:154999. doi: 10.1016/j.prp.2023.154999
- Peng L, Yuan XQ, Liu ZY, et al. High lncRNA H19 expression as prognostic indicator: Data mining in female cancers and polling analysis in non-female cancers. Oncotarget. 2017;8(1):1655-1667. doi: 10.18632/oncotarget.13768
- Sun F, Liang W, Qian J. The identification of CRNDE, H19, UCA1 and HOTAIR as the key lncRNAs involved in oxaliplatin or irinotecan resistance in the chemotherapy of colorectal cancer based on integrative bioinformatics analysis. Mol Med Rep. 2019;20(4):3583-3596. doi: 10.3892/mmr.2019.10588
- Zhang L, Wang DL, Yu P. LncRNA H19 regulates the expression of its target gene HOXA10 in endometrial carcinoma through competing with miR-612. Eur Rev Med Pharmacol Sci. 2018;22(15):4820-4827. doi: 10.26355/eurrev_201808_15617
- Chen JS, Wang YF, Zhang XQ, et al. H19 serves as a diagnostic biomarker and up-regulation of H19 expression contributes to poor prognosis in patients with gastric cancer. Neoplasma. 2016;63(2):223-230. doi: 10.4149/207_150821N454
- Zheng ZG, Xu H, Suo SS, et al. The essential role of H19 contributing to cisplatin resistance by regulating glutathione metabolism in high-grade serous ovarian cancer. Sci Rep. 2016;6:26093. doi: 10.1038/srep26093
- Pan R, Zhou H. Exosomal transfer of lncRNA H19 promotes erlotinib resistance in non-small cell lung cancer via miR- 615-3p/ATG7 axis. Cancer Manag Res. 2020;12:4283-4297. doi: 10.2147/CMAR.S241095
- Guan N, Wang R, Guo WS, Lai YJ, Zhang YD, Cheng YY. Long non-coding RNA H19 regulates the development of gliomas through the Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(10):4243-4253. doi: 10.26355/eurrev_201905_17929
- Collins LC, Cole KS, Marotti JD, Hu R, Schnitt SJ, Tamimi RM. Androgen receptor expression in breast cancer in relation to molecular phenotype: Results from the Nurses’ health study. Mod Pathol. 2011;24(7):924-931. doi: 10.1038/modpathol.2011.54
- Kensler KH, Regan MM, Heng YJ, et al. Prognostic and predictive value of androgen receptor expression in postmenopausal women with estrogen receptor-positive breast cancer: Results from the breast international group trial 1-98. Breast Cancer Res. 2019;21(1):30. doi: 10.1186/s13058-019-1118-z
- Anestis A, Zoi I, Papavassiliou AG, Karamouzis MV. Androgen receptor in breast cancer-clinical and preclinical research insights. Molecules. 2020;25(2):358. doi: 10.3390/molecules25020358
- Dai C, Ellisen LW. Revisiting androgen receptor signaling in breast cancer. Oncologist. 2023;28(5):383-391. doi: 10.1093/oncolo/oyad049
- Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750-2767. doi: 10.1172/JCI45014
- Fang C, Wang Z, Han C, et al. Cancer-specific CTCF binding facilitates oncogenic transcriptional dysregulation. Genome Biol. 2020;21(1):247. doi: 10.1186/s13059-020-02152-7
- Lee JY, Mustafa M, Kim CY, Kim MH. Depletion of CTCF in breast cancer cells selectively induces cancer cell death via p53. J Cancer. 2017;8(11):2124-2131. doi: 10.7150/jca.18818
- Docquier F, Farrar D, D’Arcy V, et al. Heightened expression of CTCF in breast cancer cells is associated with resistance to apoptosis. Cancer Res. 2005;65(12):5112-5122. doi: 10.1158/0008-5472.CAN-03-3498
- Wong KM, Song J, Wong YH. CTCF and EGR1 suppress breast cancer cell migration through transcriptional control of Nm23-H1. Sci Rep. 2021;11(1):491. doi: 10.1038/s41598-020-79869-9
- Sun W, Li AQ, Zhou P, et al. DSCAM-AS1 regulates the G1/S cell cycle transition and is an independent prognostic factor of poor survival in luminal breast cancer patients treated with endocrine therapy. Cancer Med. 2018;7(12):6137-6146. doi: 10.1002/cam4.1603
- Ma Y, Bu D, Long J, Chai W, Dong J. LncRNA DSCAM-AS1 acts as a sponge of miR-137 to enhance Tamoxifen resistance in breast cancer. J Cell Physiol. 2019;234(3):2880-2894. doi: 10.1002/jcp.27105
- Godinho MF, Wulfkuhle JD, Look MP, et al. BCAR4 induces antioestrogen resistance but sensitises breast cancer to lapatinib. Br J Cancer. 2012;107(6):947-955. doi: 10.1038/bjc.2012.351
- Lei JT, Gou X, Seker S, Ellis MJ. ESR1 alterations and metastasis in estrogen receptor positive breast cancer. J Cancer Metastasis Treat. 2019;5:38. doi: 10.20517/2394-4722.2019.12
- Mehta A, Tripathy D. Co-targeting estrogen receptor and HER2 pathways in breast cancer. Breast. 2014;23(1):2-9. doi: 10.1016/j.breast.2013.09.006
- Baselga J, Albanell J, Ruiz A, et al. Phase II and tumor pharmacodynamic study of gefitinib in patients with advanced breast cancer. J Clin Oncol. 2005;23(23):5323-5333. doi: 10.1200/JCO.2005.08.326
- Osborne CK, Neven P, Dirix LY, et al. Gefitinib or placebo in combination with tamoxifen in patients with hormone receptor-positive metastatic breast cancer: A randomized phase II study. Clin Cancer Res. 2011;17(5):1147-1159. doi: 10.1158/1078-0432.CCR-10-1869
- Ye X, Liu Q, Qin X, et al. BCAR4 facilitates trastuzumab resistance and EMT in breast cancer via sponging miR-665 and interacting with YAP1. FASEB J. 2024;38(7):e23589. doi: 10.1096/fj.202301617RR
- Mazumder A, Shiao S, Haricharan S. HER2 activation and endocrine treatment resistance in HER2-negative breast cancer. Endocrinology. 2021;162(10):bqab153. doi: 10.1210/endocr/bqab153
- Godinho MF, Sieuwerts AM, Look MP, et al. Relevance of BCAR4 in tamoxifen resistance and tumour aggressivenessof human breast cancer. Br J Cancer. 2010;103(8):1284-1291. doi: 10.1038/sj.bjc.6605884
- Gan FJ, Li Y, Xu MX, et al. LncRNA BCAR4 expression predicts the clinical response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. Cancer Biomark. 2021;32(3):339-351. doi: 10.3233/CBM-210048
- Xuan J, Liu Y, Zeng X, Wang H. Sequence requirements for miR-424-5p regulating and function in cancers. Int J Mol Sci. 2022;23(7):4037. doi: 10.3390/ijms23074037
- Chen Z, Pan T, Jiang D, et al. The lncRNA-GAS5/miR- 221-3p/DKK2 axis modulates ABCB1-mediated adriamycin resistance of breast cancer via the Wnt/β-catenin signaling pathway. Mol Ther Nucleic Acids. 2020;19:1434-1448. doi: 10.1016/j.omtn.2020.01.030
- Zheng S, Li M, Miao K, Xu H. lncRNA GAS5-promoted apoptosis in triple-negative breast cancer by targeting miR- 378a-5p/SUFU signaling. J Cell Biochem. 2020;121(3): 2225-2235. doi: 10.1002/jcb.29445
- Li W, Zhai L, Wang H, et al. Downregulation of LncRNA GAS5 causes trastuzumab resistance in breast cancer. Oncotarget. 2016;7(19):27778-27786. doi: 10.18632/oncotarget.8413
- Zhang X, Luo M, Zhang J, et al. The role of lncRNA H19 in tumorigenesis and drug resistance of human cancers. Front Genet. 2022;13:1005522. doi: 10.3389/fgene.2022.1005522
- Zhu QN, Wang G, Guo Y, et al. LncRNA H19 is a major mediator of doxorubicin chemoresistance in breast cancer cells through a cullin4A-MDR1 pathway. Oncotarget. 2017;8(54):91990-92003. doi: 10.18632/oncotarget.21121
- Wang Y, Zhou P, Li P, Yang F, Gao XQ. Long non-coding RNA H19 regulates proliferation and doxorubicin resistance in MCF-7 cells by targeting PARP1. Bioengineered. 2020;11(1):536-546. doi: 10.1080/21655979.2020.1761512
- Yan L, Yang S, Yue CX, et al. Long noncoding RNA H19 acts as a miR-340-3p sponge to promote epithelial-mesenchymal transition by regulating YWHAZ expression in paclitaxel-resistant breast cancer cells. Environ Toxicol. 2020;35(9):1015-1028. doi: 10.1002/tox.22938
- Si X, Zang R, Zhang E, et al. LncRNA H19 confers chemoresistance in ERα-positive breast cancer through epigenetic silencing of the pro-apoptotic gene BIK. Oncotarget. 2016;7(49):81452-81462. doi: 10.18632/oncotarget.13263
- Han J, Han B, Wu X, et al. Knockdown of lncRNA H19 restores chemo-sensitivity in paclitaxel-resistant triple-negative breast cancer through triggering apoptosis and regulating Akt signaling pathway. Toxicol Appl Pharmacol. 2018;359:55-61. doi: 10.1016/j.taap.2018.09.018
- Wang X, Pei X, Guo G, et al. Exosome-mediated transfer of long noncoding RNA H19 induces doxorubicin resistance in breast cancer. J Cell Physiol. 2020;235(10):6896-6904. doi: 10.1002/jcp.29585
- Wang J, Xie S, Yang J, et al. The long noncoding RNA H19 promotes tamoxifen resistance in breast cancer via autophagy. J Hematol Oncol. 2019;12(1):81. doi: 10.1186/s13045-019-0747-0
- Gao H, Hao G, Sun Y, Li L, Wang Y. Long noncoding RNA H19 mediated the chemosensitivity of breast cancer cells via Wnt pathway and EMT process. Onco Targets Ther. 2018;11:8001-8012. doi: 10.2147/OTT.S172379
- Sun Z, Zhang C, Wang T, Shi P, Tian X, Guo Y. Correlation between long non-coding RNAs (lncRNAs) H19 expression and trastuzumab resistance in breast cancer. J Cancer Res Ther. 2019;15(4):933-940. doi: 10.4103/jcrt.JCRT_208_19
- Zhou D, Gu J, Wang Y, Luo B, Feng M, Wang X. Long noncoding RNA CCAT2 reduces chemosensitivity to 5-fluorouracil in breast cancer cells by activating the mTOR axis. J Cell Mol Med. 2022;26(5):1392-1401. doi: 10.1111/jcmm.17041
- Pirlog R, Drula R, Nutu A, Calin GA, Berindan-Neagoe I. The roles of the colon cancer associated transcript 2 (CCAT2) long non-coding RNA in cancer: A comprehensive characterization of the tumorigenic and molecular functions. Int J Mol Sci. 2021;22(22):12491. doi: 10.3390/ijms222212491
- Cai Y, He J, Zhang D. Long noncoding RNA CCAT2 promotes breast tumor growth by regulating the Wnt signaling pathway. Onco Targets Ther. 2015;8:2657-2664. doi: 10.2147/OTT.S90485
- Redis RS, Sieuwerts AM, Look MP, et al. CCAT2, a novel long non-coding RNA in breast cancer: Expression study and clinical correlations. Oncotarget. 2013;4(10):1748-1762. doi: 10.18632/oncotarget.1292
- Sarrafzadeh S, Geranpayeh L, Tasharrofi B, et al. Expression study and clinical correlations of MYC and CCAT2 in breast cancer patients. Iran Biomed J. 2017;21(5):303-311. doi: 10.18869/acadpub.ibj.21.5.303
- Cai Y, He J, Zhang D. [Suppression of long non-coding RNA CCAT2 improves tamoxifen-resistant breast cancer cells’ response to tamoxifen]. Mol Biol (Mosk). 2016;50(5): 821-827. doi: 10.7868/S0026898416030046
- Moradi F, Mohajerani F, Sadeghizadeh M. CCAT2 knockdown inhibits cell growth, and migration and promotes apoptosis through regulating the hsa-mir-145-5p/ AKT3/mTOR axis in tamoxifen-resistant MCF7 cells. Life Sci. 2022;311(Pt B):121183. doi: 10.1016/j.lfs.2022.121183
- Xie H, Guo Y, Xu Z, et al. Dual function of CCAT2 in regulating luminal subtype of breast cancer depending on the subcellular distribution. Cancers (Basel). 2023;15(2):538. doi: 10.3390/cancers15020538
- Acheampong T, Kehm RD, Terry MB, Argov EL, Tehranifar P. Incidence trends of breast cancer molecular subtypes by age and race/ethnicity in the US from 2010 to 2016. JAMA Netw Open. 2020;3(8):e2013226. doi: 10.1001/jamanetworkopen.2020.13226
