3D-printed personalized bolus designed through structured-light scanning for adaptive radiotherapy

Conformal dose delivery in external beam radiotherapy often requires a tissue‐equivalent bolus to compensate for surface irregularities and increase skin dose. However, traditional bolus fabrication methods are time‐consuming, imprecise, and poorly adaptable to patient anatomy. This study presents an alternative, innovative workflow that integrates three-dimensional (3D) structured-light scanning (SLS), computer-aided design, and 3D printing to rapidly and accurately fabricate patient‐specific boluses. First, a chin bolus was generated within the treatment planning system using a Rando anthropomorphic phantom as a reference. The generated bolus was then processed, 3D-printed, and tested. To avoid additional computed tomography scans and unnecessary X-ray exposure, a high‐resolution, inoffensive SLS scanner was used to capture the treatment surface. The resulting point‐cloud data were imported into 3D modeling software to design a custom bolus geometry that conforms exactly to the patient’s skin contour. The workflow also incorporated a rapid rescanning and reprinting loop, enabling intra‐fractional and inter‐fractional modifications in response to anatomical changes. The 3D‐printed bolus demonstrated excellent conformity to the phantom surface. The entire process, from scanning to bolus deployment, was completed within a reasonable timeframe, substantially reducing patient waiting time compared with conventional methods. Overall, the proposed 3D printing-based workflow offers a rapid, accurate, and patient-specific alternative to conventional bolus fabrication. By leveraging SLS and digital modeling, this approach enhances conformity, improves dosimetric accuracy, and allows agile modifications to accommodate anatomical changes, thereby optimizing radiotherapy treatment delivery.
- Basaula D, Hay B, Wright M, et al. Additive manufacturing of patient specific bolus for radiotherapy: Large scale production and quality assurance. Phys Eng Sci Med. 2024;47(2):551-561. doi: 10.1007/s13246-024-01385-1
- McCallum S, Maresse S, Fearns P. Evaluating 3D-printed bolus compared to conventional bolus types used in external beam radiation therapy. Curr Med Imaging. 2021;17(7): 820-831. doi: 10.2174/1573405617666210202114336
- Lu Y, Song J, Yao X, An M, Shi Q, Huang X. 3D printing polymer-based bolus used for radiotherapy. Int J Bioprint. 2021;7(4):414. doi: 10.18063/ijb.v7i4.414
- Gugliandolo SG, Pillai SP, Rajendran S, et al. 3D-printed boluses for radiotherapy: Influence of geometrical and printing parameters on dosimetric characterization and air gap evaluation. Radiol Phys Technol. 2024;17(2):347-359. doi: 10.1007/s12194-024-00782-1
- Bochyńska A, Zawadzka A, Kukołowicz P, Spałek MJ. Application of 3D printing for personalized boluses in radiotherapy: A systematic review. Rep Pract Oncol Radiother. 2025;30(1):100-113. doi: 10.5603/rpor.104014
- Rooney MK, Rosenberg DM, Braunstein S, et al. Three-dimensional printing in radiation oncology: A systematic review of the literature. J Appl Clin Med Phys. 2020;21(8):15-26. doi: 10.1002/acm2.12907
- Sands G, Clark CH, McGarry CK. A review of 3D printing utilisation in radiotherapy in the United Kingdom and Republic of Ireland. Phys Med. 2023;115:103143. doi: 10.1016/j.ejmp.2023.103143
- Douglass MJJ. Can optical scanning technologies replace CT for 3D printed medical devices in radiation oncology? J Med Radiat Sci. 2022;69(2):139-142. doi: 10.1002/jmrs.579
- Bridger CA, Caraça Santos AM, Reich PD, Douglass MJJ. An evaluation of consumer smartphones for generating bolus and surface mould applicators for radiation oncology. Med Phys. 2024;51(6):4447-4457. doi: 10.1002/mp.17103
- Kharfi F, Benkahila K, Boulkhessaim F, et al. Implementation of 3D printing and modeling technologies for the fabrication of dose boluses for external radiotherapy at the CLCC of Sétif, Algeria. Technol Cancer Res Treat. 2024;23:15330338241266479. doi: 10.1177/15330338241266479
- Weerasinghe C, Estoesta P, Cullen A, Claridge Mackonis E. Three-dimensional printing in breast radiation therapy: A scoping review of the literature. J Med Radiat Sci. 2025;72(3):297-307. doi: 10.1002/jmrs.70000
- Takanen S, Ianiro A, Pinnarò P, et al. A customized 3D-printed bolus for high-risk breast cancer with skin infiltration: A pilot study. Curr Oncol. 2024;31(9): 5224-5232. doi: 10.3390/curroncol31090386
- Yu S, Ahn SH, Choi SH, Ahn WS, Jung IH. Clinical application of a customized 3D-printed bolus in radiation therapy for distal extremities. Life (Basel). 2023;13(2):362. doi: 10.3390/life13020362
- Canters RA, Lips IM, Wendling M, et al. Clinical implementation of 3D printing in the construction of patient specific bolus for electron beam radiotherapy for non-melanoma skin cancer. Radiother Oncol. 2016;121(1): 148-153. doi: 10.1016/j.radonc.2016.07.011
- Dipasquale G, Poirier A, Sprunger Y, Uiterwijk JWE, Miralbell R. Improving 3D-printing of megavoltage X-rays radiotherapy bolus with surface-scanner. Radiat Oncol. 2018;13:203. doi: 10.1186/s13014-018-1148-1
- Hobbis D, Michael DA, Samir HP, Tegtmeier RC, Laughlin BS, Chitsazzadeh S. Comprehensive clinical implementation, workflow, and FMEA of bespoke silicone bolus cast from 3D printed molds using open-source resources. J Appl Clin Med Phys. 2024;25(11):e14498. doi: 10.1002/acm2.14498
- Sasaki DK, McGeachy P, Alpuche Aviles JE, McCurdy B, Koul R, Dubey A. A modern mold room: Meshing 3D surface scanning, digital design, and 3D printing with bolus fabrication. J Appl Clin Med Phys. 2019;20(9):78-85. doi: 10.1002/acm2.12703
- Crowe S, Luscombe J, Maxwell S, et al. Evaluation of optical 3D scanning system for radiotherapy use. J Med Radiat Sci. 2022;69:218-226. doi: 10.1002/jmrs.562
- Robar JL, Moran K, Allan J, et al. Intrapatient study comparing 3D printed bolus versus standard vinyl gel sheet bolus for postmastectomy chest wall radiation therapy. Pract Radiat Oncol. 2018;8(4):221-229. doi: 10.1016/j.prro.2017.12.008
- Ciobanu AC, Petcu LC, Jarai-Szabo F, Balint Z. Validation of a 3D printed bolus for radiotherapy: A proof-of-concept study. Biomed Phys Eng Express. 2025;11(2):025033. doi: 10.1088/2057-1976/adb15d
- Wang X, Wang X, Xiang Z, et al. The clinical application of 3D-printed boluses in superficial tumor radiotherapy. Front Oncol. 2021;11:698773. doi: 10.3389/fonc.2021.698773
- Zhang C, Lewin W, Cullen A, Thommen D, Hill R. Evaluation of 3D printed bolus for radiotherapy using megavoltage X-ray beams. Radiol Phys Technol. 2023;16(3):414-421. doi: 10.1007/s12194-023-00727-0
- Ghediri N, Kharfi F, Benkahila K, et al. Dosimetric validation and surface fit evaluation of 3D-printed dose boluses for radiation therapy applications. Int J Cancer Manag. 2025;18(1):e159515. doi: 10.5812/ijcm-159515
- Malone C, Gill E, Lott T, et al. Evaluation of the quality of fit of flexible bolus material created using 3D printing technology. J Appl Clin Med Phys. 2022;23(3):e13490. doi: 10.1002/acm2.13490
- Ehler E, Sterling D, Dusenbery K, Lawrence J. Workload implications for clinic workflow with implementation of three-dimensional printed customized bolus for radiation therapy: A pilot study. PLoS One. 2018;13(10):e0204944. doi: 10.1371/journal.pone.0204944
- Kang D, Wang B, Peng Y, Liu X, Deng X. Low-cost iphone-assisted processing to obtain radiotherapy bolus using optical surface reconstruction and 3D-printing. Sci Rep 2020;10(1):8016. doi: 10.1038/s41598-020-64967-5
- Spałek MJ, Bochyńska A, Borkowska A, Mroczkowski P, Szostakowski B. Challenges and solutions in 3D printing for oncology: A narrative review. Chin Clin Oncol. 2024;13(4):49. doi: 10.21037/cco-24-4
- Lizondo M, Lorenzo A, Adell-Gómez N, et al. Comparative study of flexible 3D printing materials for clinical application as boluses in radiotherapy. Phys Med. 2025;134:104987. doi: 10.1016/j.ejmp.2025.104987
- Park JM, Son J, An HJ, Kim JH, Wu HG, Kim JI. Bio-compatible patient-specific elastic bolus for clinical implementation. Phys Med Biol. 2019;64(10):105006. doi: 10.1088/1361-6560/ab1c93
- Kong Y, Yan T, Sun Y, et al. A dosimetric study on the use of 3D-printed customized boluses in photon therapy: A hydrogel and silica gel study. J Appl Clin Med Phys. 2019;20(1):348-55. doi: 10.1002/acm2.12489
- Su S, Moran K, Robar JL. Design and production of 3D printed bolus for electron radiation therapy. J Appl Clin Med Phys. 2014;15(4):4831. doi: 10.1120/jacmp.v15i4.4831
- Kim SW, Shin HJ, Kay CS, Son SH. A customized bolus produced using a 3-dimensional printer for radiotherapy. PloS One. 2014;9(10):e110746. doi: 10.1371/journal.pone.0110746
- Zhao Y, Moran K, Yewondwossen M, et al. Clinical applications of 3-dimensional printing in radiation therapy. Med Dosim. 2017;42(2):150-155. doi: 10.1016/j.meddos.2017.03.001