Effectiveness of raw and activated laterite in removing lead and copper from aqueous solutions: A kinetic and thermodynamic study
The growing interest in local materials as natural adsorbents stems from their abundance, low cost, and eco-friendliness, offering an effective, economical, and sustainable alternative to commercial options. The present work investigates the removal performance of lead (Pb2+) and copper (Cu2+) ions from synthetic aqueous solutions using both raw and activated laterite (KN-Ac) under batch conditions. The experiments were carried out to examine the effects of contact time, adsorbent dose, temperature, pH, and initial metal-ion concentration. High determination coefficients obtained from the pseudo-second-order kinetics and Langmuir isotherm models indicate that these models reliably describe the experimental adsorption behavior of the metal ions. The diffusion model-adjusted data revealed that adsorption occurred rapidly at the beginning, with fast adsorption on the outer surface followed by slower adsorption controlled by intraparticle diffusion. The KN-Ac, designated KN-Ac, proved to be highly effective in removing both heavy metals, achieving removal percentages of 97.81 ± 0.23% (4.07 ± 0.01 mg/g) for Pb2+ and 94.24 ± 0.18% (1.18 ± 0.02 mg/g) for Cu2+ at an initial concentration of 10 mg/L. The ΔG values obtained for the metal ions were all negative, indicating that the adsorption process is feasible and spontaneous for Pb(II) and Cu(II) ions on the adsorbents, following the order of thermodynamic stability: Pb2+(KN-Ac) > Cu2+(KN-Ac) > Pb2+(raw laterite [KN]) > Cu2+(KN) in the temperature range of 303–333 K. The positive ΔH values for all metal ions suggest that adsorption onto the adsorbents is endothermic and involves physisorption. The energy values derived from the Dubinin–Radushkevich equation are all below 8 kJ/mol, indicating that the adsorption of Pb2+ and Cu2+ is physical in nature. Furthermore, the Fourier transform infrared spectra of adsorbent residues loaded with heavy metals show no changes compared to the spectra of the unloaded adsorbents, confirming physisorption as the main adsorption mechanism.
- Pyrgaki K, Messini P, Zotiadis V. Adsorption of Pb and Cu from aqueous solutions by raw and heat-treated attapulgite clay. Geosciences. 2018;8(5):157. doi: 10.3390/geosciences8050157
- Bo S, Luo J, An Q, Xiao Z, Wang H, Shangru ZL. Efficiently selective adsorption of Pb(II) with functionalized alginate-based adsorbent in batch/column systems: Mechanism and application simulation. J Clean Prod. 2020;250:119585. doi: 10.1016/j.jclepro.2019.119585
- Chowdhury IR, Chowdhury S, Mazumder MAJ, Al-Ahmed A. Removal of lead ions (Pb2+) from water and wastewater: A review on the low-cost adsorbents. Appl Water Sci. 2022;12(8):185. doi: 10.1007/s13201-022-01703-6
- Hama AKH, Mustafa FS, Omer KM, Hama S, Hamarawf RF, Rahman KO. Heavy metal pollution in the aquatic environment: Efficient and low-cost removal approaches to eliminate their toxicity: A review. RSC Adv. 2023;13(26):17595-17610. doi: 10.1039/D3RA00723E
- Zhao S, Chen K, Xiong B, Guo C, Dang Z. Prediction of adsorption of metal cations by clay minerals using machine learning. Sci Total Environ. 2024;924:171733. doi: 10.1016/j.scitotenv.2024.171733
- Khalfa L, Sdiri A, Bagane M, Cervera ML. A calcined clay fixed bed adsorption studies for the removal of heavy metals from aqueous solutions. J Clean Prod. 2021;278:123935. doi: 10.1016/j.jclepro.2020.123935
- Moradpour S, Entezari M, Ayoubi S, Karimi A, Naimi S. Digital exploration of selected heavy metals using Random Forest and a set of environmental covariates at the watershed scale. J Hazard Mater. 2023;455:131609. doi: 10.1016/j.jhazmat.2023.131609
- Muthu M, Sadowski L. Heavy metals removal in a graphene engineered concrete-based filter column. J Build Eng. 2024;91:109583. doi: 10.1016/j.jobe.2024.109583
- Gu S, Kang X, Wang L, Lichtfouse E, Wang C. Clay mineral adsorbents for heavy metal removal from wastewater: A review. Environ Chem Lett. 2019;17(2):629-654. doi: 10.1007/s10311-018-0813-9
- Mritunjay, Quaff AR. Adsorption of copper on activated Ganga sand from aqueous solution: Kinetics, isotherm, and optimization. Int J Environ Sci Technol. 2022;9(10):9679-9690. doi: 10.1007/s13762-021-03651-1
- Alghamdi AG, Alasmary Z. Fate and transport of lead and copper in calcareous soil. Sustainability. 2023;15:775. doi: 10.3390/su15010775
- Chatterjee S, Mondal S, De S. Design and scaling up of fixed bed adsorption columns for lead removal by treated laterite. J Clean Prod. 2018;177:760-774. doi: 10.1016/j.jclepro.2017.12.249
- Pham TD, Nguyen HH, Nguyen NV, et al. Adsorptive removal of copper by using surfactant modified laterite soil. J Chem. 2017;2017:1-10. doi: 10.1155/2017/1986071
- Chatterjee S, Sivareddy I, De S. Adsorptive removal of potentially toxic metals (cadmium, copper, nickel and zinc) by chemically treated laterite: Single and multicomponent batch and column study. J Environ Chem Eng. 2017;5(4):3273-3289. doi: 10.1016/j.jece.2017.06.029
- Uditha N, Dissanayake S, Jayawardana DT, Mapatuna H, Ravilojan H. Thermally modified laterite soil by means of an adsorptive material for copper and chromium elimination from polluted Water. Chem Environ Sci Arch. 2023;3(1):8-14. doi: 10.47587/CESA.2023.3102
- Fouodjouo M, Fotouo-Nkaffo H, Laminsi S, Cassini FA, Brito-Benetoli LO, Debacher NA. Adsorption of copper (II) onto Cameroonian clay modified by non-thermal plasma: Characterization, chemical equilibrium and thermodynamic studies. Appl Clay Sci. 2017;142:136-144. doi: 10.1016/j.clay.2016.09.028
- Mitra S, Thakur LS, Rathore VK, Mondal P. Removal of Pb(II) and Cr(VI) by laterite soil from synthetic waste water: Single and bi-component adsorption approach. Desalination Water Treat. 2016;57(39):18406-18416. doi: 10.1080/19443994.2015.1088806
- Mohapatra M, Khatun S, Anand S. Kinetics and thermodynamics of lead (II) adsorption on lateritic nickel ores of Indian origin. Chem Eng J. 2009;155:184-190. doi: 10.1016/j.cej.2009.07.035
- He F, Ma B, Wang C, Chen Y, Hu X. Adsorption of Pb(II) and Cd(II) hydrates via inexpensive limonitic laterite: Adsorption characteristics and mechanisms. Sep Purif Technol. 2023;310:123234. doi: 10.1016/j.seppur.2023.123234
- Budsaereechai S, Kamwialisak K, Ngernyen Y. Adsorption of lead, cadmium and copper on natural and acid activated bentonite clay. KKU Res J. 2012;17(5):800-810.
- Sandy, Maramis V, Kurniawan A, Ayucitra A, Sunarso J, Ismadji S. Removal of copper ions from aqueous solution by adsorption using LABORATORIES-modified bentonite (organo-bentonite). Front Chem Sci Eng. 2012;6(1):58-66. doi: 10.1007/s11705-011-1160-6
- Mhamdi M, Galai H, Mnasri N, Elaloui E, Trabelsi- Ayadi M. Adsorption of lead onto smectite from aqueous solution. Environ Sci Pollut Res. 2013;20(3):1686-1697. doi: 10.1007/s11356-012-1015-9
- Chaari I, Fakhfakh E, Chakroun S, et al. Lead removal from aqueous solutions by a Tunisian smectitic clay. J Hazard Mater. 2008;156:545-551. doi: 10.1016/j.jhazmat.2007.12.080
- Olgun A, Atar N. Equilibrium, thermodynamic and kinetic studies for the adsorption of lead (II) and nickel (II) onto clay mixture containing boron impurity. J Ind Eng Chem. 2012;18(5):1751-1757. doi: 10.1016/j.jiec.2012.03.020
- Resmi G, Thampi SG, Chandrakaran S. Removal of lead from wastewater by adsorption using acid-activated clay. Environ Technol. 2012;33(3):291-297. doi: 10.1080/09593330.2011.572917
- Al-Jlil SA, Alsewailem FD. Saudi Arabian clays for lead removal in wastewater. Appl Clay Sci. 2009;42:671-674. doi: 10.1016/j.clay.2008.03.012
- Es-Sahbany H, Hsissou R, El Hachimi ML, Allaoui M, Nkhili S, Elyoubi MS. Investigation of the adsorption of heavy metals (Cu, Co, Ni and Pb) in treatment synthetic wastewater using natural clay as a potential adsorbent (Sale-Morocco). Mater Today Proc. 2021;45:7290-7298. doi: 10.1016/j.matpr.2020.12.1100
- Rakhym AB, Seilkhanova GA, Kurmanbayeva TS. Adsorption of lead (II) ions from water solutions with natural zeolite and chamotte clay. Mater Today Proc. 2020;31:482-485. doi: 10.1016/j.matpr.2020.05.672
- Oubagaranadin JUK, Murthy ZVP. Adsorption of divalent lead on a montmorillonite-illite type of clay. Ind Eng Chem Res. 2009;48(23):10627-10636. doi: 10.1021/ie9005047
- Chen C, Liu H, Chen T, Chen D, Frost RL. An insight into the removal of Pb(II), Cu(II), Co(II), Cd(II), Zn(II), Ag(I), Hg(I), Cr(VI) by Na(I)-montmorillonite and Ca(II)- montmorillonite. Appl Clay Sci. 2015;118:239-247. doi: 10.1016/j.clay.2015.09.004
- Kushwaha A, Rani R, Patra JK. Adsorption kinetics and molecular interactions of lead [Pb(II)] with natural clay and humic acid. Int J Environ Sci Technol. 2020;17(3):1325-1336. doi: 10.1007/s13762-019-02411-6
- Sudha Rani K, Srinivas B, Gourunaidu K, Ramesh KV. Removal of copper by adsorption on treated laterite. Mater Today Proc. 2018;5(1):463-469. doi: 10.1016/j.matpr.2017.11.106
- Federal T, Ilaro P, State O, State O. Sorption of competing heavy metals on laterite. FEPI JOPAS. 2023;5(1):1-9.
- Ouedraogo RD, Bakouan C, Sorgho B, Guel B, Bonou LD. Characterization of a natural laterite of Burkina Faso for the elimination of arsenic (III) and arsenic (V) in groundwater. Int J Biol Chem Sci. 2019;13(6):2959-2977. doi: 10.4314/ijbcs.v13i6.41
- Bakouan C. Caractérisation de Quelques Sites Latéritiques du Burkina Faso: Application à L’élimination de L’arsenic (III) et (V) Dans Les Eaux Souterraines. Ph.D. Thesis, Université de Ouaga I Pr Joseph KI-ZERBO, Ouagadougou, Burkina Faso. Université de Mons, Mons, Belgium; 2018. p. 1-241. Available from: https:// orbi.umons.ac.be/bitstream/20.500.12907/31806/1/ Th%C3%A8se [Last accessed on 2018 Feb 01].
- Bakouan C, Chenoy L, Guel B, Hantson AL. Physicochemical and mineralogical characterizations of two natural laterites from Burkina Faso: Assessing their potential usage as adsorbent materials. Minerals. 2025;15(4):379. doi: 10.3390/min15040379
- Karki S, Timalsina H, Budhathoki S, Budhathoki S. Arsenic removal from groundwater using acid-activated laterite. Groundw Sustain Dev. 2021;18:100769. doi: 10.1016/j.gsd.2022.100769
- Chatterjee S, De S. Application of novel, low-cost, laterite-based adsorbent for removal of lead from water: Equilibrium, kinetic and thermodynamic studies. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2016;51(3):193-203. doi: 10.1080/10934529.2015.1094321
- Chaari I, Moussi B, Jamoussi F. Interactions of the dye, C.I. direct orange 34 with natural clay. J Alloys Compd. 2015;647:720-727. doi: 10.1016/j.jallcom.2015.06.142
- Vasic A, Gulicovski J, Stojmenovic M, et al. Removal of ethyl xanthate anions from contaminated aqueous solutions using hazardous waste slag generated by lignite combustion. Water. 2024;16:2037. doi: 10.3390/w16142037
- Rouibah K, Ferkous H, Abdessalam-Hassan M, et al. Exploring the efficiency of algerian kaolinite clay in the adsorption of Cr(III) from aqueous solutions: Experimental and computational. Molecules. 2024;29(9):2135. doi: 10.3390/molecules29092135
- Chu Y, Khan MA, Wang F, Xia M, Lei W, Zhu S. Kinetics and equilibrium isotherms of adsorption of Pb(II) and Cu(II) onto raw and arginine-modified montmorillonite. Adv Powder Technol. 2019;30(5):1067-1078. doi: 10.1016/j.apt.2019.03.002
- Wang C, Qiao J, Yuan J, et al. Novel chitosan-modified biochar prepared from a Chinese herb residue for multiple heavy metals removal: Characterization, performance and mechanism. Bioresour Technol. 2024;402:130830. doi: 10.1016/j.biortech.2024.130830
- Abbou B, Lebkiri I, Ouaddari H, et al. Removal of Cd(II), Cu(II), and Pb(II) by adsorption onto natural clay: A kinetic and thermodynamic study. Turk J Chem. 2021;45(2):362-376. doi: 10.3906/kim-2004-82
- Hussain TS, Khaleefa Ali SA. Removal of heavy metal by ion exchange using bentonite clay. J Ecol Eng. 2020;22(1):104-111. doi: 10.12911/22998993/128865
- Ayach J, Duma L, Badran A, et al. Enhancing wastewater depollution: Sustainable biosorption using chemically modified chitosan derivatives for efficient removal of heavy metals and dyes. Materials (Basel). 2024;17(11):2724. doi: 10.3390/ma17112724
- Dash B, Dash B, Rath SS. A thorough understanding of the adsorption of Ni (II), Cd (II) and Zn (II) on goethite using experiments and molecular dynamics simulation. Sep Purif Technol. 2020;240:116649. doi: 10.1016/j.seppur.2020.116649
- El-Enein SA, Okbah MA, Hussain SG, Soliman NF, Ghounam HH. Adsorption of selected metals ions in solution using nano-bentonite particles: Isotherms and kinetics. Environ Process. 2020;7(2):463-477. doi: 10.1007/s40710-020-00430-x
- Potgieter JH, Potgieter-Vermaak SS, Kalibantonga PD. Heavy metals removal from solution by palygorskite clay. Miner Eng. 2006;19(5):463-470. doi: 10.1016/j.mineng.2005.07.004
- Zhu D, He Y, Zhang B, et al. Simultaneous removal of multiple heavy metals from wastewater by novel plateau laterite ceramic in batch and fixed-bed studies. J Environ Chem Eng. 2021;9(5):1-9. doi:10.1016/j.jece.2021.105792
- Nguyen TC, Loganathan P, Nguyen TV, Vigneswaran S, Kandasamy SJ, Naidu R. Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies. Chem Eng J. 2015;270:393-404. doi: 10.1016/j.cej.2015.02.047
- Qiu Q, Jiang X, Lv G, et al. Adsorption of heavy metal ions using zeolite materials of municipal solid waste incineration fly ash modified by microwave-assisted hydrothermal treatment. Powder Technol. 2018;335:156-163. doi: 10.1016/j.powtec.2018.05.003
- Zou C, Jiang W, Liang J, Sun X, Guan Y. Removal of Pb(II) from aqueous solutions by adsorption on magnetic bentonite. Environ Sci Pollut Res. 2019;26(2):315-1322. doi: 10.1007/s11356-018-3652-0
- Khater D, Alkhabbas M, Al-Ma’abreh AM. Adsorption of Pb, Cu, and Ni Ions on activated carbon prepared from oak cupules: Kinetics and thermodynamics studies. Molecules. 2024;29(11):2489. doi: 10.3390/molecules29112489
- Wu S, Xie F, Chen S, Fu B. The removal of Pb (II) and Cd (II) with hydrous manganese dioxide: Mechanism on zeta potential and adsorption behavior. Environ Technol. 2020;41(24):3219-3232. doi: 10.1080/09593330.2019.1604814
- Chuang Y, Chen J, Lu J, et al. Sorption studies of Pb(II) onto montmorillonite clay. IOP Conf Ser Earth Environ Sci. 2022;1087(1):1087012007. doi: 10.1088/1755-1315/1087/1/012007
- Nguyen THN. Appication of Laterite Soil to Heavy Metal Treatment in Water. In: Proceedings of the 19th IAHR-APD Congress 2014, Hanoi, Vietnam; 2014. p. 1-7.
- Panda L, Rath SS, Rao DS, Nayak BB, Das B, Misra PK. Thorough understanding of the kinetics and mechanism of heavy metal adsorption onto a pyrophyllite mine waste based geopolymer. J Mol Liq. 2018;263:428-441. doi: 10.1016/j.molliq.2018.05.016
- Zhou Q, Liao B, Lin L, Qiu W, Song Z. Adsorption of Cu(II) and Cd(II) from aqueous solutions by ferromanganese binary oxide-biochar composites. Sci Total Environ. 2018;615:115-122. doi: 10.1016/j.scitotenv.2017.09.220
- Bishwas RK, Mostofa S, Alam MA, Jahan SA. Removal of malachite green dye by sodium dodecyl sulfate modified bentonite clay: Kinetics, thermodynamics and isotherm modeling. Next Nanotechnol. 2023;3-4:100021. doi: 10.1016/j.nxnano.2023.100021
- Mostafapour FK, Yilmaz M, Mahvi AH, Younesi A, Ganji F, Balarak D. Adsorptive removal of tetracycline from aqueous solution by surfactant-modified zeolite: Equilibrium, kinetics and thermodynamics. Desalination Water Treat. 2022;247:216-228. doi: 10.5004/dwt.2022.27943
- Qiu W, Zheng Y. Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash. Chem Eng J. 2009;145(3):483-488. doi: 10.1016/j.cej.2008.05.001
- Ozdes D, Duran C, Senturk HB. Adsorptive removal of Cd(II) and Pb(II) ions from aqueous solutions by using Turkish illitic clay. J Environ Manage. 2011;92(12):3082-3090. doi: 10.1016/j.jenvman.2011.07.022
- Frantz TS, Silveira N, Quadro MS, et al. Cu(II) adsorption from copper mine water by chitosan films and the matrix effects. Environ Sci Pollut Res. 2017;24(6):5908-5917. doi: 10.1007/s11356-016-8344-z
- Nguyen TH, Tran HN, Vu HA, et al. Laterite as a low-cost adsorbent in a sustainable decentralized filtration system to remove arsenic from groundwater in Vietnam. Sci Total Environ. 2020;699:134267. doi: 10.1016/j.scitotenv.2019.134267
- Rathore VK, Dohare DK, Mondal P. Competitive adsorption between arsenic and fluoride from binary mixture on chemically treated laterite. J Environ Chem Eng. 2016;4(2):2417-2430. doi: 10.1016/j.jece.2016.04.017
- Ghani U, Hussain S, Amin N, Imtiaz M, Ali Khan S. Laterite clay-based geopolymer as a potential adsorbent for the heavy metals removal from aqueous solutions. J Saudi Chem Soc. 2020;24(11):874-884. doi: 10.1016/j.jscs.2020.09.004
- Nguyen TH, Nguyen AT, Loganathan P, et al. Low-cost laterite-laden household filters for removing arsenic from groundwater in Vietnam and waste management. Process Saf Environ Protect. 2021;152: 154-163. doi: 10.1016/j.psep.2021.06.002
