AccScience Publishing / AJWEP / Online First / DOI: 10.36922/AJWEP025400308
REVIEW ARTICLE

Advances in remote sensing and machine learning techniques for air quality monitoring

Alexander Uzhinskiy*
Show Less
1 Meshcheryakov Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
Received: 2 October 2025 | Revised: 17 November 2025 | Accepted: 20 November 2025 | Published online: 17 December 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Various techniques are used to assess air quality. Data for basic parameters, including particulate matter and major air pollutants, can be easily obtained from local meteorological stations, whereas obtaining more detailed information, such as heavy metal concentrations, requires laboratory analysis of collected samples. The structural limitations of regulatory monitoring systems limit their ability to provide continuous coverage across both the spatial and temporal domains. Satellite imagery provides vital information about atmospheric conditions and surface data. Each year, new missions with advanced sensors further enhance remote sensing capabilities. Sentinel-5 precursor, mounted with a tropospheric monitoring instrument, currently provides ready-to-use air quality data, including measurements of gases and aerosols, whereas Sentinel-4 and Sentinel-5, part of the Copernicus program, will extend these capabilities. Public satellite missions, such as Landsat and Sentinel, and instruments such as the moderate resolution imaging spectroradiometer, are widely used and provide high-resolution data with frequent updates. Integrating in situ measurements with satellite data and machine learning (ML) techniques enhances the accuracy and comprehensiveness of air quality monitoring. Modeling serves an important role in bridging data gaps, producing detailed assessments of particular areas, and supporting the partial automation of environmental control systems. This review assesses satellite-based programs, data processing tools, and project realization methods that enable efficient air quality estimation. The review demonstrates how ML-based remote sensing technology is effective for monitoring air quality, discusses commercial satellite missions, presents firsthand experience, and outlines future directions for advancing air quality monitoring technologies.

Keywords
Air quality monitoring
Remote sensing
Machine learning
Satellite missions
Environmental control
Modeling
Prediction
Funding
None.
Conflict of interest
The author declares no competing interests.
References
  1. Jia S. Evolution of water governance in China. J Water Resour Plan Manage. 2021;147:04021050. doi: 10.1061/(ASCE)WR.1943-5452.0001420

 

  1. Bernard S, McConnell J, Di Rita F, et al. An environmental and climate history of the roman expansion in Italy. J Interdiscip Hist. 2023;54:1-41. doi: 10.1162/jinh_a_01971

 

  1. Willems H, Dahms JM, editors. The Nile: Natural and Cultural Landscape in Egypt. Bielefeld, Germany: Transcript Verlag; 2017.

 

  1. Dong G, Wang L, Zhang DD, et al. Climate-driven desertification and its implications for the ancient Silk Road trade. Clim Past. 2021;17:1395-1407. doi: 10.5194/cp-17-1395-2021

 

  1. United States Environmental Protection Agency (EPA). Summary of the Clean Air Act; 1963. Available from: https://www.epa.gov/laws-regulations/summary-clean-air-act [Last accessed on 2025 Nov 26].

 

  1. United Nations Economic Commission for Europe (UNECE). Convention on Long-Range Transboundary Air Pollution. Available from: https://unece.org/ environment-policy/air/about [Last accessed on 2025 Nov 26].

 

  1. Ullo SL, Sinha GR. Advances in smart environment monitoring systems using IoT and sensors. Sensors. 2020;20:3113. doi: 10.3390/s20113113

 

  1. Jia J, Chen C, Liu Q, Ding B, et al. Soil salinity monitoring model based on the synergistic construction of ground- UAV-satellite data. Soil Use Manage. 2024;40:e12980. doi: 10.1111/sum.12980

 

  1. Cillero Castro C, Domínguez Gómez JA, Delgado Martín J, et al. An UAV and satellite multispectral data approach to monitor water quality in small reservoirs. Remote Sens. 2020;12:1514. doi: 10.3390/rs12091514

 

  1. Institute for Health Metrics and Evaluation (IHME). Global Burden of Disease Study 2021 (GBD 2021) Results. Seattle, United States: IHME; 2024. Available from: https://www.healthdata.org/sites/default/ files/2024-05/gbd_2021_booklet_final_2024.05.16.pdf [Last accessed on 2025 Nov 26].

 

  1. Tariq H, Tariq S, Crescini D, Mnaouer AB. State-of-the-art low-cost air quality sensors, assemblies, calibration and evaluation for respiration-associated diseases: A systematic review. Atmosphere. 2024;15:471. doi: 10.3390/atmos15040471

 

  1. Kosior G, Frontasyeva M, Ziembik Z, et al. The moss biomonitoring method and neutron activation analysis in assessing pollution by trace elements in selected polish national parks. Arch Environ Contam Toxicol. 2020;79:310-320. doi: 10.1007/s00244-020-00755-6

 

  1. Grell GA, Peckham SE, Schmitz R, et al. Fully coupled “online” chemistry within the WRF model. Atmos Environ. 2005;39:6957-6975. doi: 10.1016/j.atmosenv.2005.04.027

 

  1. Byun D, Schere KL. Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl Mech Rev. 2006;59:51-77. doi: 10.1115/1.2128636

 

  1. Li W, Tang B, Campbell PC, et al. Updates and evaluation of NOAA’s online-coupled air quality model version 7 (AQMv7) within the Unified Forecast System. Geosci Model Dev. 2025;18:1635-1660. doi: 10.5194/gmd-18-1635-2025

 

  1. Hoek G, Beelen R, de Hoogh K, et al. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos Environ. 2008;42:7561-7578. doi: 10.1016/j.atmosenv.2008.05.057

 

  1. Zhang Y, Wang X, Wang J, Li Y, Chen L. Advances in air quality modeling and forecasting. Environ Sci Ecotechnol. 2020;2:100023. doi: 10.1016/j.glt.2020.11.001

 

  1. Gianquintieri L, Oxoli D, Caiani EG, Brovelli MA. State-of-art in modelling particulate matter (PM) concentration: A scoping review of aims and methods. Environ Dev Sustain. 2024; 27:5889–25911. doi: 10.1007/s10668-024-04781-5

 

  1. Smith J, Wang L, Gupta R. A systematic survey of air quality prediction based on deep learning. Alexandria Eng J. 2024;93:128-141. doi: 10.1016/j.aej.2024.03.031

 

  1. Li J, Li Y, Wang Z, et al. Next generation air quality models: Dynamical mesh, new insights into mechanism, datasets and applications. Curr Pollut Rep. 2025;11:25. doi: 10.1007/s40726-025-00355-9

 

  1. Labow GJ, McPeters RD, Bhartia PK, Kramarova N. A comparison of 40 years of SBUV measurements of column ozone with data from the dobson/brewer network. J Geophys Res Atmos. 2013;118:7370-7378. doi: 10.1002/jgrd.50503

 

  1. Irie H, Sudo K, Akimoto H, et al. Evaluation of long-term tropospheric NO2 data obtained by GOME over East Asia in 1996–2002. Geophys Res Lett. 2005;32:L11810. doi: 10.1029/2005GL022770

 

  1. Uzhinskiy A, Vergel K. Central russia heavy metal contamination model based on satellite imagery and machine learning. Comput Opt. 2023;47:137-151. doi: 10.18287/2412-6179-CO-1149

 

  1. Holloway T, Miller D, Anenberg S, et al. Satellite monitoring for air quality and health. Annu Rev Biomed Data Sci. 2021;4:417-447. doi: 10.1146/annurev-biodatasci-110920-093120

 

  1. Holloway T, Bratburd JR, Fiore AM, Kerr GH, Mao J. Satellite data to support air quality assessment and management. J Air Waste Manag Assoc. 2025;75(6):429-463. doi: 10.1080/10962247.2025.2484153

 

  1. Tang D, Zhan Y, Yang F. A review of machine learning for modeling air quality: Overlooked but important issues. Atmos Res. 2024;300:107261.doi: 10.1016/j.atmosres.2024.107261

 

  1. Binetti MS, Massarelli C, Uricchio VF. Machine learning in geosciences: A review of complex environmental monitoring applications. Mach Learn Knowl Extr. 2024;6:1263-1280. doi: 10.3390/make6020059

 

  1. Garbagna L, Saheer LB, Maktab Dar Oghaz M. AI-driven approaches for air pollution modelling: A comprehensive systematic review. Environ Pollut. 2025;373:125937. doi: 10.1016/j.envpol.2025.125937

 

  1. Stratoulias D, Nuthammachot N, Dejchanchaiwong R, Tekasakul P, Carmichael GR. Recent developments in satellite remote sensing for air pollution surveillance in support of sustainable development goals. Remote Sens. 2024;16:2932. doi: 10.3390/rs16162932

 

  1. Shetty S, Schneider P, Stebel K, Hamer PD, Kylling A, Berntsen TK. Estimating surface NO2 concentrations over europe using sentinel-5P TROPOMI observations and machine learning. Remote Sens Environ. 2024;312:114321. doi: 10.1016/j.rse.2024.114321

 

  1. Rowley A, Karakuş O. Predicting air quality via multimodal AI and satellite imagery. Remote Sens Environ. 2023;293:113609. doi: 10.1016/j.rse.2023.113609

 

  1. Balamurugan V, Chen J, Wenzel A, Keutsch FN. Spatiotemporal modeling of air pollutant concentrations in Germany using machine learning. Atmos Chem Phys. 2023;23:10267-10285. doi: 10.5194/acp-23-10285-2023

 

  1. Liang L, Daniels J, Phillips R, South J, Hu L. Integrating low-cost sensor monitoring, satellite mapping, and geospatial artificial intelligence for intraurban air pollution predictions. Environ Pollut. 2023;331:121832. doi: 10.1016/j.envpol.2023.121832

 

  1. Muthukumar P, Nagrecha K, Comer D, et al. PM2.5 air pollution prediction through deep learning using multisource meteorological, wildfire, and heat data. Atmosphere. 2022;13:822. doi: 10.3390/atmos13050822

 

  1. Chen W, Zhang N, Bai X, Cao X. Research on the estimation of air pollution models with machine learning in urban sustainable development based on remote sensing. Sustainability. 2024;16:10949. doi: 10.3390/su162410949

 

  1. Yang Y, Wang Z, Cao C, et al. Estimation of PM2.5 concentration across china based on multi-source remote sensing data and machine learning methods. Remote Sens. 2024;16:467. doi: 10.3390/rs16030467

 

  1. Malings C, Emma Knowland K, Pavlovic N, et al. Air quality estimation and forecasting via data fusion with uncertainty quantification. J Geophys Res Atmos. 2024;1:e2024JH000183. doi: 10.1029/2024JH000183

 

  1. Xia H, Chen X, Wang Z, Chen X, Dong F. A multi-modal deep-learning air quality prediction method based on multi-station time-series data and remote-sensing images: Case study of Beijing and Tianjin. Entropy. 2024;26:91. doi: 10.3390/e26010091

 

  1. NASA. NASA Make Way for Satellites. Available from: https://spinoff.nasa.gov/make_way_for_satellites [Last accessed on 2025 Nov 26].

 

  1. NASA/USGS. Landsat 8 Overview. Available from: https://landsat.gsfc.nasa.gov/landsat-8 [Last accessed on 2025 Nov 26].

 

  1. European Space Agency (ESA). Sentinel-2. Available from: https://www.earthdata.nasa.gov/data/instruments/ sentinel-2-msi [Last accessed on 2025 Nov 26].

 

  1. NASA. MODIS Overview. Available from: https://modis. gsfc.nasa.gov/about [Last accessed on 2025 Nov 26].

 

  1. NOAA/NASA. VIIRS. Available from: https://viirsland. gsfc.nasa.gov [Last accessed on 2025 Nov 26].

 

  1. European Space Agency (ESA). Sentinel-5P Mission Overview. Available from: https://sentinels. copernicus.eu/copernicus/sentinel-5p [Last accessed on 2025 Nov 26].

 

  1. European Space Agency (ESA). Sentinel-4 Mission Overview. Available from: https://www.esa.int/ applications/observing_the_earth/copernicus/sentinel-4 [Last accessed on 2025 Nov 26].

 

  1. European Space Agency (ESA). Sentinel-5 Mission Overview. Available from: https://www.esa.int/ Applications/Observing_the_Earth/Copernicus/ Sentinel-5 [Last accessed on 2025 Nov 26].

 

  1. National Institute of Environmental Research (NIER). GEMS Overview. Available from: https://nesc.nier. go.kr/en/html/cntnts/73/satellite/introduction.do [Last accessed on 2025 Nov 26].

 

  1. Zoogman P, Liu X, Suleiman RM, et al. Tropospheric emissions: Monitoring of pollution (TEMPO). J Quant Spectrosc Radiat Transf. 2017;186:17-39. doi: 10.1016/j.jqsrt.2016.05.028

 

  1. Levelt PF, van den Oord GHJ, Dobber MR, et al. The ozone monitoring instrument. IEEE Trans Geosci Remote Sens. 2006;44:1093-1101. doi: 10.1109/TGRS.2006.872333

 

  1. German Aerospace Center (DLR). GOME-2/MetOp Overview. Available from: https://atmos.eoc.dlr.de/app/ missions/gome2 [Last accessed on 2025 Nov 26].

 

  1. Planet Labs. Planet Labs Official Site. Available from: https://www.planet.com [Last accessed on 2025 Nov 26].

 

  1. Planet Labs. Introducing Planet Tanager - Hyperspectral Satellite. Available from: https://www.planet.com/pulse/ planet-launches-first-tanager-1-hyperspectral-satellite-and-36-superdoves-with-spacex [Last accessed on 2025 Nov 26].

 

  1. Maxar Technologies. WorldView and GeoEye Satellite Overview. Available from: https://www.maxar. com/products/satellite-imagery [Last accessed on 2025 Nov 26].

 

  1. Airbus Defence and Space. Satellite Imagery Product Portal. Available from: https://www.intelligence-airbusds.com [Last accessed on 2025 Nov 26].

 

  1. TNO. TANGO Satellite: Earth Observation for Greenhouse Gas Emissions Monitoring; 2025. Available from: https://www.tno.nl/en/sustainable/ earth-observation/tango-satellite [Last accessed on 2025 Nov 26].

 

  1. European Space Agency (ESA). Copernicus Carbon Dioxide Monitoring (CO₂M) Mission Overview; 2025. Available from: https://www.eoportal.org/satellite-missions/co2m [Last accessed on 2025 Nov 26].

 

  1. NASA Jet Propulsion Laboratory (JPL). MAIA Mission Overview — Multi-Angle Imager for Aerosols; 2024. Available from: https://maia.jpl.nasa.gov [Last accessed on 2025 Nov 26].

 

  1. NASA Earth Science Division. NASA Earth Fleet: Earth- Observing Satellite and Instrument Portfolio (Mission Timeline Poster). Available from: https://svs.gsfc.nasa. gov/30065 [Last accessed on 2025 Nov 26].

 

  1. Google Earth Engine Platform. Available from: https:// earthengine.google.com [Last accessed on 2025 Nov 26].

 

  1. Sinergise. Sentinel Hub Platform. Available from: https:// www.sentinel-hub.com [Last accessed on 2025 Nov 26].

 

  1. Microsoft. Planetary Computer Platform. Available from: https://planetarycomputer.microsoft.com [Last accessed on 2025 Nov 26].

 

  1. Lobo FdL, Nagel GW, Maciel DA, et al. AlgaeMAp: Algae bloom monitoring application for inland waters in Latin America. Remote Sens. 2021;13:2874. doi: 10.3390/rs13152874

 

  1. Méndez M, Merayo MG, Núñez M. Machine learning algorithms to forecast air quality: A survey. Artif Intell Rev. 2023;56:10031-10066. doi: 10.1007/s10462-023-10424-4

 

  1. Abuouelezz W, Ali N, Aung Z, et al. Exploring PM2.5 and PM10 ML forecasting models: A comparative study in the UAE. Sci Rep. 2025;15:9797. doi: 10.1038/s41598-025-94013-1

 

  1. Ajala AA, Adeoye OL, Salami OM, et al. An examination of daily CO₂ emissions prediction through a comparative analysis of machine learning, deep learning, and statistical models. Environ Sci Pollut Res. 2025;32:2510-2535. doi: 10.1007/s11356-024-35764-8

 

  1. Lilhore UK, Simaiya S, Singh RK, et al. Advanced air quality prediction using multimodal data and dynamic modelling. Sci Rep. 2025;15:27867. doi: 10.1038/s41598-025-11039-1

 

  1. Fu Q, Guo H, Gu X, et al. High-resolution PM2.5 concentrations estimation based on stacked ensemble learning model using multi-source satellite TOA data. Remote Sens. 2023;15:5489. doi: 10.3390/rs15235489

 

  1. Wei J, Wang Z, Li Z, et al. Global aerosol retrieval over land from landsat imagery integrating transformer and google earth engine. Remote Sens Environ. 2024;315:114404. doi: 10.1016/j.rse.2024.114404

 

  1. Emeç M, Yurtsever M. A novel ensemble machine learning method for accurate air quality prediction. Int J Environ Sci Technol. 2025;22:459-476. doi: 10.1007/s13762-024-05671-z

 

  1. Mampitiya L, Rathnayake N, Hoshino Y, Rathnayake U. Forecasting PM₁₀ levels in Sri Lanka: A comparative analysis of machine learning models. J Hazard Mater Adv. 2024;13:100395. doi: 10.1016/j.hazadv.2023.100395

 

  1. Park MH, Choi JH, Lee WJ. Toward sustainable clean ports: Smoke opacity measurement based on semantic segmentation and edge device. J Environ Manage. 2025;393:127139. doi: 10.1016/j.jenvman.2025.127139

 

  1. Nurseitov D.B, Abdimanap G, Abdallah A, et al. A remote sensing satellite data for oil spill detection on land. Eng Sci. 2024;32:1348. doi: 10.30919/es1348

 

  1. Gharahbagh AA, Hajihashemi V, Machado JJM, Tavares JMRS. Land cover classification model using multispectral satellite images based on a deep learning synergistic semantic segmentation network. Sensors (Basel). 2025;25:1988. doi: 10.3390/s25071988

 

  1. van Donkelaar A, Martin RV, Brauer M, et al. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application. Environ Health Perspect. 2010;118(6):847-855. doi: 10.1289/ehp.0901623

 

  1. Stirnberg R, Cermak J, Andersen H. An analysis of factors influencing the relationship between satellite-derived AOD and ground-level PM10. Remote Sens. 2018;10:1353. doi: 10.3390/rs10091353

 

  1. Zhu H, Martin RV, van Donkelaar A, et al. Importance of aerosol composition and aerosol vertical profiles in global spatial variation in the relationship between PM2.5 and aerosol optical depth. Atmos Chem Phys. 2024;24:11565-11584. doi: 10.5194/acp-24-11565-2024

 

  1. Li X, Zhou Y, Zhao M, et al. A harmonized global nighttime light dataset 1992–2018. Sci Data. 2020;7:168. doi: 10.1038/s41597-020-0510-y

 

  1. Zheng Q, Seto KC, Zhou Y, You S, Weng Q. Nighttime light remote sensing for urban applications: Progress, challenges, and prospects. ISPRS J Photogramm Remote Sens. 2023;202:125-141. doi: 10.1016/j.isprsjprs.2023.05.028

 

  1. Kayastha SG, Ghahremanloo M, Park J, Singh D, Westenbarger D, Choi Y. A deep learning framework for satellite-derived surface PM₂.₅ estimation: Enhancing spatial analysis in the United States. Artif Intell Earth Syst. 2024;3(4):e240028. doi: 10.1175/AIES-D-24-0028.1

 

  1. Zhang Z, Ao Z, Wu W, Wang Y, Xin Q. Developing a multi-scale convolutional neural network for spatiotemporal fusion to generate MODIS-like data using AVHRR and landsat images. Remote Sens. 2024;16:1086. doi: 10.3390/rs16061086

 

  1. Wongvorachan T, He S, Bulut O. A comparison of undersampling, oversampling, and SMOTE methods for dealing with imbalanced classification in educational data mining. Information. 2023;14:54. doi: 10.3390/info14010054

 

  1. Verhoelst T, Compernolle S, Lambert JC, Vanpoucke C, Fierens F. Synergistic use of satellite and in-situ data for policy-relevant air quality information: A case study on Belgium. Atmos Environ. 2025;361:121447. doi: 10.1016/j.atmosenv.2025.121447
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing