AccScience Publishing / AJWEP / Online First / DOI: 10.36922/AJWEP025400310
ORIGINAL RESEARCH ARTICLE

Aligning safe water access with SDG 6: A yearlong multisite assessment of drinking water quality in East Java, Indonesia

Asri Wijiastuti1* Wahyu Budi Sabtiawan2 Dwi Oktavianto Wahyu Nugroho3 Febrita Ardianingsih4 Ahmad Abdullah Zawawi5
Show Less
1 Department of Special Education, Faculty of Education, Universitas Negeri Surabaya, Surabaya, East Java, Indonesia
2 Department of Science Education, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Surabaya, East Java, Indonesia
3 Department of Instrumentation Techniques, Institut Teknologi Sepuluh Nopember, Surabaya, East Java, Indonesia
4 Department of Medicine, Faculty of Medicine, Universitas Negeri Surabaya, Surabaya, East Java, Indonesia
5 Department of Educational Management, Faculty of Education, Universitas Negeri Surabaya, Surabaya, East Java, Indonesia
Received: 3 October 2025 | Revised: 27 November 2025 | Accepted: 27 November 2025 | Published online: 16 December 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Drinking water quality in East Java is a significant concern for achieving Sustainable Development Goal (SDG) 6 on safe drinking water and adequate sanitation. This study analyzed and monitored drinking water quality over 12 months, with monthly sampling at six water source points in East Java, covering physical, chemical, and microbiological parameters. We used a case study method with Spearman’s rank correlation analysis. Based on our analysis, the physical parameters were odorless, met regulatory standards, and were suitable for consumption. In addition, color values remained below 0.33 on the Pt-Co scale. Chemical parameters showed that the average pH ranged from 7.36 to 7.42, total dissolved solids levels between 131.83 and 135.42 mg/L, and Fe levels between 0.032 and 0.043 mg/L. Most locations showed Mn levels below the detection limit (<0.006 mg/L), with occasional detectable values up to 0.033 mg/L. Residual chlorine concentrations during the monitoring period ranged from 0.35 to 0.41 mg/L, and no indicator bacteria were detected. Microbiological indicators did not detect Escherichia coli or coliform bacteria, indicating that the drinking water met microbiological safety requirements. Our results underscore that drinking water quality at the six monitoring stations in East Java is satisfactory, though there are temporal differences in some locations. Emphasis should be placed on regular monitoring to ensure that water quality is maintained in reservoirs and remains suitable for consumers, thereby supporting progress toward SDG 6.

Graphical abstract
Keywords
Drinking water quality
Water bodies
Health
Sustainable Development Goals
Funding
This study was funded by Universitas Negeri Surabaya (UNESA). No external funding was received.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Li P, Wu J. Drinking water quality and public health. Expo Health. 2019;11(2):73-79. doi: 10.1007/s12403-019-00299-8

 

  1. Sharif MN, Khaliq A, Khalil MN, et al. Contaminated waters: Unveiling the environmental and health impacts of global water pollution. Kashf J Multidiscip Res. 2025;2(05):64-85. doi: 10.71146/kjmr448

 

  1. Methal A, Khobrani SH, Doubi M, et al. Suitability assessment of groundwater quality in sidi allal tazi region using water quality index. Trop J Nat Prod Res. 2023;7(12):5646. doi: 10.26538/tjnpr/v7i12.41

 

  1. Osiemo MM, Ogendi GM, M’Erimba C. Microbial quality of drinking water and prevalence of water-related diseases in marigat Urban centre, Kenya. Environ Health Insights. 2019;13:1178630219836988. doi: 10.1177/1178630219836988

 

  1. Pule M, Yahya A, Chuma J. Wireless sensor networks: A survey on monitoring water quality. J Appl Res Technol. 2017;15(6):562-570. doi: 10.1016/j.jart.2017.07.004

 

  1. Vadde KK, Wang J, Cao L, Yuan T, McCarthy AJ, Sekar R. Assessment of water quality and identification of pollution risk locations in tiaoxi river (Taihu Watershed), China. Water. 2018;10(2):183. doi: 10.3390/w10020183

 

  1. World Health Organization. Nitrate and Nitrite in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality; 2016. Available from: https://www.who.int/docs/default/ source/wash/documents/wash/chemicals/nitrate/nitrite/ background-document.pdf [Last accessed on 2025 Dec 13].

 

  1. Ochoo B, Valcour J, Sarkar A. Association between perceptions of public drinking water quality and actual drinking water quality: A community-based exploratory study in Newfoundland (Canada). Environ Res. 2017;159:435-443. doi: 10.1016/j.envres.2017.08.019

 

  1. Ibrahim S, El-Liethy MA, Elwakeel KZ, Hasan MAEG, Al Zanaty AM, Kamel MM. Role of identified bacterial consortium in treatment of quhafa wastewater treatment plant influent in Fayuom, Egypt. Environ Monit Assess. 2020;192(3):161. doi: 10.1007/s10661-020-8105-9

 

  1. Adiele G, Ojeaga K, Ekhator O, Akhionbare S. Effects of abattoir waste discharge on the quality of the trans-amadi creek, port harcourt, rivers State, Nigeria. Trop J Nat Prod Res. 2019;3(4):132-137. doi: 10.26538/tjnpr/v3i4.5

 

  1. Dietrich AM. Aesthetic issues for drinking water. J Water Health. 2006;4(S1):11-16. doi: 10.2166/wh.2006.0038

 

  1. Kementerian Kesehatan Republik Indonesia. Peraturan Menteri Kesehatan Republik Indonesia Nomor 2 Tahun 2023 tentang Peraturan Pelaksanaan Peraturan Pemerintah Nomor 66 Tahun 2014 tentang Kesehatan Lingkungan; 2023. Available from: https://peraturan.bpk. go.id/details/245563 [Last accessed on 2025 Dec 13].

 

  1. Sawka MN, Cheuvront SN, Carter R 3rd. Human water needs. Nutr Rev. 2005;63(Suppl_1):S30-S39. doi: 10.1111/j.1753-4887.2005.tb00152.x

 

  1. Benelam B, Wyness L. Hydration and health: A review. Nutr Bull. 2010;35(1):3-25. doi: 10.1111/j.1467-3010.2009.01795.x

 

  1. Van Dyke N, Yenugadhati N, Birkett NJ, et al. Association between aluminum in drinking water and incident Alzheimer’s disease in the Canadian study of health and aging cohort. Neurotoxicology. 2021;83:157-165. doi: 10.1016/j.neuro.2020.04.002

 

  1. Onda K, LoBuglio J, Bartram J. Global access to safe water: Accounting for water quality and the resulting impact on MDG progress. Int J Environ Res Public Health. 2012;9(3):880-894. doi: 10.3390/ijerph9030880

 

  1. Achieving Water Security in Asia: Modern Lessons from Ancient Civilizations; 2025. Available from: https:// www.youtube.com/watch?v=cjvu3vzojtk [Last accessed on 2025 Dec 13].

 

  1. Zhang Q, Hirsch RM. River water-quality concentration and flux estimation can be improved by accounting for serial correlation through an autoregressive model. Water Resour Res. 2019;55(11):9705-9723. doi: 10.1029/2019WR025338

 

  1. Das D, Nandi BK. Removal of Fe (II) ions from drinking water using electrocoagulation (EC) process: Parametric optimization and kinetic study. J Environ Chem Eng. 2019;7(3):103116. doi: 10.1016/j.jece.2019.103116

 

  1. Elgarahy AM, Eloffy MG, Saber AN, et al. Exploring the sources, occurrence, transformation, toxicity, monitoring, and remediation strategies of per- and polyfluoroalkyl substances: A review. Environ Monit Assess. 2024;196(12):1209. doi: 10.1007/s10661-024-13334-2

 

  1. Slater S, Baker R. Forecasting future student mastery. Distance Educ. 2019;40(3):380-394. doi: 10.1080/01587919.2019.1632169

 

  1. Hargrove A. Economic and social impacts on well-being: A cross-national multilevel analysis of determinants of access to water and sanitation. Sociol Inq. 2020;90(3):497-526. doi: 10.1111/soin.12282

 

  1. Takhumova O, Goncharova M. Innovative approaches to water resource management in achieving sustainable development goals. E3S Web Conf. 2025;614:04019. doi: 10.1051/e3sconf/202561404019

 

  1. Ouhakki H, Elfallah K, Adiba A, Hamid T, Elmejdoub N. Investigation of the water quality in oum er rbia river (Morocco): A multifaceted analysis of physicochemical, undesirable substances, toxic compounds, and bacteriological traits. Trop J Nat Prod Res. 2024;8(4):6820-6831.

 

  1. Yin RK. Case Study Research: Design and Methods. London: SAGE; 2009.

 

  1. Gupta SK, Gupta IC. Drinking Water Quality Assessment and Management. Singapore: Scientific Publishers; 2020.

 

  1. Bhateria R, Jain D. Water quality assessment of lake water: A review. Sustain Water Resour Manag. 2016;2(2):161-173. doi: 10.1007/s40899-015-0014-7

 

  1. Zeeshan M, Ingold V, Saal L, Höra C, Kämpfe A, Ruhl AS. Compositions and concentrations of dissolved organic matter, selected elements and anions in German drinking waters. J Environ Manage. 2025;376:124459. doi: 10.1016/j.jenvman.2025.124459

 

  1. Cheswick R, Moore G, Nocker A, Hassard F, Jefferson B, Jarvis P. Chlorine disinfection of drinking water assessed by flow cytometry: New insights. Environ Technol Innov. 2020;19:101032. doi: 10.1016/j.eti.2020.101032

 

  1. Chapman DV, editor. Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring, Second Edition. 2nd ed. United States: CRC Press; 2021. doi: 10.1201/9781003062103

 

  1. Adams H, Burlingame G, Ikehata K, Furatian L, Suffet IH (Mel). The effect of pH on taste and odor production and control of drinking water. AQUA Water Infrastruct Ecosyst Soc. 2022;71(11):1278-1290. doi: 10.2166/aqua.2022.133

 

  1. Mayori AR, Islam I. Analisis kualitas air minum ditinjau dari parameter TDS dan pH pada air minum dalam Kemasan. BIOMARAS J Life Sci Technol. 2024;2(1):1-6.

 

  1. Water Quality Index and Human Health Risk Assessment of Drinking Water in Selected Urban Areas of a Mega City. Available from: https://www.mdpi.com/2305- 6304/11/7/577 [Last accessed on 2025 Nov 19].

 

  1. Pushpalatha N, Sreeja V, Karthik R, Saravanan G. Total dissolved solids and their removal techniques. Int J Environ Sustain Prot. 2022;2(2):13-20. doi: 10.35745/ijesp2022v02.02.0002

 

  1. Hasanuddin LF. Konsentrasi logam berat besi (Fe), mangan (Mn), tembaga (Cu) pada perairan sungai radda. J Penelit Multidisiplin Ilmu. 2023;2(4):2167-2172.

 

  1. Siahaan MA. Analisis kadar besi (Fe) pada air sumur gali penduduk wilayah kompleks rahayu kelurahan mabar hilir kecamatan medan deli kota medan. J Kim SAINTEK DAN Pendidik. 2019;3(1):19-22.

 

  1. Xu X, Liu S, Smith K, Cui Y, Wang Z. An overview on corrosion of iron and steel components in reclaimed water supply systems and the mechanisms involved. J Clean Prod. 2020;276:124079. doi: 10.1016/j.jclepro.2020.124079

 

  1. Martin-Bastida A, Tilley BS, Bansal S, Gentleman SM, Dexter DT, Ward RJ. Iron and inflammation: In vivo and post-mortem studies in Parkinson’s disease. J Neural Transm (Vienna). 2021;128(1):15-25. doi: 10.1007/s00702-020-02271-2

 

  1. Rizkiyah NS, Budiyono B, Nurjazuli N. The effectiveness of tray aerator to reduce iron (Fe) in drinking water. AIP Conf Proc. 2023;2683(1):030027. doi: 10.1063/5.0126457

 

  1. Adlillah M, Umar U, Yulianto E. Development of a simple tray aerator physical model to improve groundwater quality in bonti village, sanggau regency. J Tek Sipil. 2025;25(3):2322-2334. doi: 10.26418/jts.v25i3.90528

 

  1. Horning KJ, Caito SW, Tipps KG, Bowman AB, Aschner M. Manganese is essential for neuronal health. Annu Rev Nutr. 2015;35:71-108. doi: 10.1146/annurev-nutr-071714-034419

 

  1. Rushdi MI, Basak R, Das P, Ahamed T, Bhattacharjee S. Assessing the health risks associated with elevated manganese and iron in groundwater in Sreemangal and Moulvibazar Sadar, Bangladesh. J Hazard Mater Adv. 2023;10:100287. doi: 10.1016/j.hazadv.2023.100287

 

  1. Khan K, Wasserman GA, Liu X, et al. Manganese exposure from drinking water and children’s academic achievement. NeuroToxicology. 2012;33(1):91-97. doi: 10.1016/j.neuro.2011.12.002

 

  1. Wanta KC, Putra FD, Susanti RF, et al. Pengaruh derajat keasaman (pH) dalam proses presipitasi hidroksida selektif ion logam dari larutan ekstrak spent catalyst. J Rekayasa Proses. 2019;13(2):94. doi: 10.22146/jrekpros.44007

 

  1. Cutipa-Díaz YM, Huanacuni-Lupaca C, Limache-Sandoval EM, et al. Exposure to aluminum in drinking water and the risk of developing Alzheimer’s disease: A bibliometric analysis and systematic evaluation. Water. 2024;16(17):2386. doi: 10.3390/w16172386

 

  1. Kullar SS, Shao K, Surette C, et al. A benchmark concentration analysis for manganese in drinking water and IQ deficits in children. Environ Int. 2019;130:104889. doi: 10.1016/j.envint.2019.05.083

 

  1. Sears L, Myers JV, Sears CG, Brock GN, Zhang C, Zierold KM. Manganese body burden in children is associated with reduced visual motor and attention skills. Neurotoxicol Teratol. 2021;88:107021. doi: 10.1016/j.ntt.2021.107021

 

  1. Smeets PWMH, Medema GJ, Van Dijk JC. The dutch secret: How to provide safe drinking water without chlorine in the Netherlands. Drink Water Eng Sci. 2009;2(1):1-14. doi: 10.5194/dwes-2-1-2009

 

  1. Winder C. The toxicology of chlorine. Environ Res. 2001;85(2):105-114. doi: 10.1006/enrs.2000.4110

 

  1. Cai L, Huang H, Li Q, et al. Formation characteristics and acute toxicity assessment of THMs and HAcAms from DOM and its different fractions in source water during chlorination and chloramination. Chemosphere. 2023;329:138696. doi: 10.1016/j.chemosphere.2023.138696

 

  1. Mahant V, Biswal D. Water-borne diseases classification and prevention. J Adv Med Dent Sci Res. 2022;10(12):109-113. doi: 10.21276/jamdsr

 

  1. Penna P, Baldrighi E, Betti M, et al. Water quality integrated system: A strategic approach to improve bathing water management. J Environ Manage. 2021;295:113099. doi: 10.1016/j.jenvman.2021.113099

 

  1. Ali S, Amir S, Ali S, Rehman MU, Majid S, Yatoo AM. Water pollution: Diseases and health impacts. In: Freshwater Pollution and Aquatic Ecosystems. United States: Apple Academic Press; 2021.

 

  1. Prasad MNV, Grobelak A. Waterborne Pathogens: Detection and Treatment. Oxford: Butterworth- Heinemann; 2020.

 

  1. Some S, Mondal R, Mitra D, Jain D, Verma D, Das S. Microbial pollution of water with special reference to coliform bacteria and their nexus with environment. Energy Nexus. 2021;1:100008. doi: 10.1016/j.nexus.2021.100008

 

  1. Bruyand M, Mariani-Kurkdjian P, Gouali M, et al. Hemolytic uremic syndrome due to Shiga toxin-producing Escherichia coli infection. Médecine Mal Infect. 2018;48(3):167-174. doi: 10.1016/j.medmal.2017.09.012

 

  1. Pond K. Water Recreation and Disease: Plausibility of Associated Infections: Acute Effects, Sequelae and Mortality. London: IWA Publishing; 2005.

 

  1. Nayak NP, Kudapa VK, Bhan U, Goswami L, Kumar S, Kushwaha A. Impacts of climate change on weathering and erosion of rock types exposed on earths surface. In: Weathering and Erosion Processes in the Natural Environment. United States: John Wiley and Sons, Ltd.; 2023. p. 359-373. doi: 10.1002/9781394157365.ch15

 

  1. Huang GZ, Hsu TC, Yu CK, Huang JC, Lin TC. Dilution and precipitation dominated regulation of stream water chemistry of a volcanic watershed. J Hydrol. 2020;583:124564. doi: 10.1016/j.jhydrol.2020.124564

 

  1. Rusydi AF, Onodera SI, Saito M, et al. Vulnerability of groundwater to iron and manganese contamination in the coastal alluvial plain of a developing Indonesian city. SN Appl Sci. 2021;3(4):399. doi: 10.1007/s42452-021-04385-y

 

  1. Iyare PU. The effects of manganese exposure from drinking water on school-age children: A systematic review. Neurotoxicology. 2019;73:1-7. doi: 10.1016/j.neuro.2019.02.013

 

  1. Branz A, Levine M, Lehmann L, et al. Chlorination of drinking water in emergencies: A review of knowledge to develop recommendations for implementation and research needed. Waterlines. 2017;36(1):4-39. doi: 10.3362/1756-3488.2017.002

 

  1. Singh Y, Choudhary DS. Heavy metal concentration in contaminated water caused by a release of industrial pollutants and city waste. J Sci Innov Nat Earth. 2025;5(1):38-40. doi: 10.59436/jsiane.331.2583-2093

 

  1. Rino, Sulaeman U, Sumiaty, Baharuddin A, Puspitasari A. Analisis spasial kualitas air oleh logam berat timbal (Pb) di kanal hertasning kota makassar tahun 2022. Window Public Health J. 2022;3(3):470-479. doi: 10.33096/woph.v3i3.81

 

  1. Nuri NS, Santoso A, Widowati I. Akumulasi logam berat timbal (Pb) pada kerang bulu (Anadara antiquata) di Perairan Bandengan Kendal serta analisis batas aman konsumsi. J Mar Res. 2023;12(3):403-412. doi: 10.14710/jmr.v12i3.35276

 

  1. Wijaya YN, Potalangi JG. Kualitas air sungai di sulawesi utara: Systematic literature review ditinjau dari parameter fisika, kimia dan biologi. TEKNO. 2024;22(90):2381-2389. doi: 10.35793/jts.v22i90.60641

 

  1. Wang X, Mao Y, Tang S, Yang H, Xie YF. Disinfection byproducts in drinking water and regulatory compliance: A critical review. Front Environ Sci Eng. 2015;9(1):3-15. doi: 10.1007/s11783-014-0734-1

 

  1. Zhang Z, Xiao C, Yang W, Adeyeye OA, Liang X. Effects of the natural environment and human activities on iron and manganese content in groundwater: A case study of Changchun city, Northeast China. Environ Sci Pollut Res. 2021;28(30):41109-41119. doi: 10.1007/s11356-021-13576-4

 

  1. Hussein H, Menga F, Greco F. Monitoring transboundary water cooperation in SDG 6.5.2: How a critical hydropolitics approach can spot inequitable outcomes. Sustainability. 2018;10(10):3640. doi: 10.3390/su10103640

 

  1. Yang G, Giuliani M, Castelletti A. Operationalizing equity in multipurpose water systems. Hydrol Earth Syst Sci. 2023;27(1):69-81. doi: 10.5194/hess-27-69-2023

 

  1. Davie T. Fundamentals of Hydrology. 3rd ed. London: Routledge; 2019. doi: 10.4324/9780203798942
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing