AccScience Publishing / AJWEP / Online First / DOI: 10.36922/AJWEP025140101
ORIGINAL RESEARCH ARTICLE

A greenhouse pot experiment assessing the zinc-accumulating behavior of Lupinus uncinatus Schldl

Muhammad Ehsan1,2* Vicente Espinosa Hernández1 Dilawar Hassan3 Ayesha Sani3 Francisco Marcelo Lara Viveros4 Jorge Luis Becerra López5 Eduardo Baltierra Trejo6 Rehana Gulzar7 Nisbat Ali8 Shahid Bashir9
Show Less
1 Department of Soil Science, Postgraduate College of Agricultural Sciences, Montecillos, State of Mexico, Mexico
2 Centro de Bachillerato Tecnológico Agropecuario No. 162 (Agricultural and Livestock Technology College No. 162), Francisco I. Madero, Tlaxcala, Mexico
3 Department of Nanotechnology, School of Sciences and Engineering, Tecnológico de Monterrey, Atizapán de Zaragoza, State of Mexico, Mexico
4 Department of Biosciences and Agrotechnology, Centro de Investigación en Química Aplicada (Center for Research in Applied Chemistry), Saltillo, Coahuila, Mexico
5 Climate Change and Natural Resources Conservation Laboratory, Ecological Studies Centre, Faculty of Biological Sciences, Universidad Juárez del Estado de Durango, Gomez Palacio, Durango, Mexico
6 Researchers for Mexico Program, Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT – National Council of Humanities, Sciences and Technologies), Mexico City, Mexico
7 Department of English, Faculty of Languages and Literature, International Islamic University, Islamabad, Pakistan
8 Department of Management Science, Faculty of Management Sciences, National University of Modern Languages, Islamabad, Pakistan
9 Department of Marketing, Business School, Tecnológico de Monterrey, Atizapán de Zaragoza, State of Mexico, Mexico
Received: 3 April 2025 | Revised: 6 July 2025 | Accepted: 16 July 2025 | Published online: 9 September 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

A greenhouse pot experiment was conducted to evaluate the zinc (Zn) accumulation potential of Lupinus uncinatus Schldl. The effects of varying Zn concentrations on plant dry matter yield, metal tolerance, and Zn accumulation and distribution in roots, stems, and leaves were investigated. Zn was applied as ZnCl2 at rates of, 200, 400, and 600 mg/kg. One-way analysis of variance followed by Tukey’s multiple comparison test (p<0.05) revealed significant effects of Zn on root dry weight, Zn uptake in roots, stems, and leaves, and the shoot-to-root Zn ratio. Root dry weight was significantly reduced, with the highest Zn treatment (600 mg/kg) causing a 57% reduction compared to control plants. However, no significant differences were observed in overall plant dry matter yield. Metal tolerance declined with increasing Zn stress. Zn accumulation in leaves reached 9,632 mg/kg and 14,771 mg/kg at soil Zn application rates of 400 mg/kg and 600 mg/kg, respectively. The shoot-to-root Zn ratio exceeded one, and more than 64% of the total Zn absorbed by L. uncinatus was translocated to the shoots at 600 mg/kg. These results position L. uncinatus as a promising species for Zn phytoremediation, encouraging future studies under field conditions and with other toxic metals.

Keywords
Metal uptake
Zinc toxicity
Phytoremediation
Tolerance index
Lupin plants
Soil contamination
Funding
The principal author, Muhammad Ehsan, expresses his gratitude to the Governments of Pakistan and Mexico for awarding the doctoral scholarship, without which this research would not have been possible.
Conflict of interest
Muhammad Ehsan is an Editorial Board Member of this journal but was not involved in any way in the editorial and peer-review process conducted for this paper, either directly or indirectly. Separately, the other authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Bhattacharya P, Mukherjee AB, Jacks G, Nordqvist S. Metal contamination at a wood preservation site: Characterisation and experimental studies on remediation. Sci Total Environ. 2002;290(1-3):165-180. doi: 10.1016/s0048-9697(01)01073-7

 

  1. McGrath S. Long-term studies of metal transfers following application of sewage sludge. In: Pollutants Transport and Fate in Ecosystems. Oxford: Blackwell; 1987. p. 310-317.

 

  1. Mulligan CN, Yong RN, Gibbs BF. Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Eng Geol. 2001;60(1-4):193-207. doi: 10.1016/S0013-7952(00)00101-0

 

  1. Weissenhorn I, Leyval C, Berthelin J. Bioavailability of heavy metals and abundance of arbuscular mycorrhiza in a soil polluted by atmospheric deposition from a smelter. Biol Fertil Soils. 1995;19(1):22-28. doi: 10.1007/BF00336342

 

  1. Klang-Westin E, Eriksson J. Potential of Salix as phytoextractor for Cd on moderately contaminated soils. Plant Soil. 2003;249(1):127-137. doi: 10.1023/A:1022585404481

 

  1. Cieśliński G, Van Ree KC, Szmigielska AM, Krishnamurti GS, Huang PM. Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant Soil. 1998;203(1):109-117. doi: 10.1023/A:1004325817420

 

  1. Cui Y, Wang Q, Dong Y, Li H, Christie P. Enhanced uptake of soil Pb and Zn by Indian mustard and winter wheat following combined soil application of elemental sulphur and EDTA. Plant Soil. 2004;261(1-2):181-188.doi: 10.1023/B: PLSO.0000035551.22918.01

 

  1. Morton-Bermea O, Hernández-Álvare E, Gaso I, Segovia N. Heavy metal concentrations in surface soils from Mexico City. Bull Environ Contam Toxicol. 2002;68(3):383-388. doi: 10.1007/s001280265

 

  1. Nriagu JO, Pacyna JM. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature. 1988;333(6169):134-139. doi: 10.1038/333134a0

 

  1. Ahmad E, Zaidi A, Khan MS, Oves M. Heavy metal toxicity to symbiotic nitrogen-fixing microorganism and host legumes. In: Toxicity of Heavy Metals to Legumes and Bioremediation. U.S.A: Springer; 2012. p. 29-44.

 

  1. Lock K, Janssen CR. Ecotoxicity of zinc in spiked artificial soils versus contaminated field soils. Environ Sci Technol. 2001;35(21):4295-4300. doi: 10.1021/es0100219

 

  1. Kabata-Pendias A. Trace Elements in Soils and Plants. Boca Ratón, Florida: CRC Press; 2010.

 

  1. Kiesken L. Zinc Heavy Metals in Soils. London: Blackie Academic and Professional; 1995. p. 284-305.

 

  1. Chaney RL. Plant uptake of inorganic waste constituents. In: Land Treatment of Hazardous Wastes. New Jersey: Noyes Data Corp; 1983. 50-76.

 

  1. Chaney RL. Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: Approaches and progress. In: Phytoremediation of Contaminated Soil and Water. Boca Raton, Florida: Lewis, CRC Press; 1999. p. 129-158.

 

  1. McGrath S, Dunham S, Correll R. Potential for phytoextraction of zinc and cadmium from soils using hyperaccumulator plants. In: Phyoremediation of Contaminated Soil and Water. New York: Lewis; 2000. p. 129-158.

 

  1. Salt DE, Smith RD, Raski I. Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol. 1998;49(1):643-668. doi: 10.1146/annurev.arplant.49.1.643

 

  1. Zhao FJ, Lombi E, McGrath SP. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil. 2003;249(1):37-43. doi: 10.1023/A:1022530217289

 

  1. Long X, Yang X, Ni W. Advance and perspectives in technologies for remediation of heavy metal polluted soils. Ying Yong Sheng Tai Xue Bao. 2002;13:757-762.

 

  1. Oubohssaine M, Dahmani I. Phytoremediation: Harnessing plant power and innovative technologies for effective soil remediation. Plant Stress. 2024;14:100578. doi: 10.1016/j.stress.2024.100578

 

  1. Mocek-Płóciniak A, Mencel J, Zakrzewski W, Roszkowski S. Phytoremediation as an effective remedy for removing trace elements from ecosystems. Plants (Basel). 2023;12(8):1653. doi: 10.3390/plants12081653

 

  1. De Lorenzo C, Iannetta PP, Fernandez-Pascual M, et al. Oxygen diffusion in lupin nodules: II. Mechanisms of diffusion barrier operation. J Exp Bot. 1993;44(9):1469-1474. doi: 10.1093/jxb/44.9.1469

 

  1. Iannetta PP, De Lorenzo C, James EK, et al. Oxygen diffusion in lupin nodules: I. Visualization of diffusion barrier operation. J Exp Bot. 1993;44(9):1461-1467.

 

  1. Tang C, Robson AD. Lupinus species differ in their requirements for iron. Plant Soil. 1993;157(1):11-18. doi: 10.1007/BF02390222

 

  1. Fernández-Pascual M, De Lorenzo C, De Felipe M, et al. Possible reasons for relative salt stress tolerance in nodules of white lupin cv. Multolupa. J Exp Bot. 1996;47(11):1709-1716. doi: 10.1093/jxb/47.11.1709

 

  1. Hopmans JW, Qureshi AS, Kisekka I, et al. Critical knowledge gaps and research priorities in global soil salinity. Adv Agron. 2021;169:1-191. doi: 10.1016/bs.agron.2021.03.001

 

  1. Reay PF, Waugh C. Mineral-element composition of Lupinus albus and Lupinus angustifolius in relation to manganese accumulation. Plant Soil. 1981;60(3):435-444. doi: 10.1007/BF02149639

 

  1. Carpena R, Peñalosa J, Esteban E, et al. Effects of As and Cd on Lupinus albus L. potential use in phytoremediation. In: Phytoremediation of trace elements in contaminated soils and waters (with special emphasis on Zn, Cd, Pb and As). Cost Action 837 WG2 Workshop 2001. p. 55-57.

 

  1. Vera R, Millán R, Schmid T, Tallos A, Recreo F. Behaviour of mercury in the soil-plant system. Application to phytoremediation studies. In: Sustainable use and Management of Soils in Arid and Semi Arid Regions. Vol. 2. Cartegena, Spain: Quaderna; 2002. p. 482-483.

 

  1. Ximénez-Embún P, Madrid-Albarrán Y, Cámara C, Cuadrado C, Burbano C, Múzquiz M. Evaluation of Lupinus species to accumulate heavy metals from waste waters. Int J Phytoremediation. 2001;3(4):369-379. doi: 10.1080/15226510108500065

 

  1. Zornoza P, Vázquez S, Esteban E, Fernández-Pascual M, Carpena R. Cadmium-stress in nodulated white lupin: Strategies to avoid toxicity. Plant Physiol Biochem. 2002;40(12):1003-1009. doi: 10.1016/S0981-9428(02)01464-X

 

  1. Pastor J, Hernández AJ, Prieto N, Fernández-Pascual M. Accumulating behaviour of Lupinus albus L. Growing in a normal and a decalcified calcic luvisol polluted with Zn. J Plant Physiol. 2003;160(12):1457-1466. doi: 10.1078/0176-1617-01007

 

  1. Gutiérrez-Ginés MJ, Hernández AJ, Pérez-Leblic MI, Pastor J, Vangronsveld J. Phytoremediation of soils co-contaminated by organic compounds and heavy metals: Bioassays with Lupinus luteus L. And associated endophytic bacteria. J Environ Manage. 2014;143:197-207. doi: 10.1016/j.jenvman.2014.04.028

 

  1. Martínez-Alcala I, Hernández E, Esteban E, Walker DJ, Bernal MP. Responses of Noccaea caerulescens and Lupinus albus in trace elements-contaminated soils. Plant Physiol Biochem. 2013;66:47-55. doi: 10.1016/j.plaphy.2013.01.017

 

  1. Saladin G, Soubrand M, Joussein E, Benjelloun I. Efficiency of metal(loid) phytostabilization by white lupin (Lupinus albus L.), common vetch (Vicia sativa L.), and buckwheat (Fagopyrum esculentum Moench). Environ Sci Pollut Res. 2024:31(43):55822-55835. doi: 10.1007/s11356-024-34911-5

 

  1. SAS Institute. SAS Institute SAS Version 9.1. Cary, NC: SAS Institute; 2000.

 

  1. Ximénez-Embún P, Rodríguez-Sanz B, Madrid- Albarrán Y, Cámara C. Uptake of heavy metals by lupin plants in artificially contaminated sand: Preliminary results. Int J Environ Anal Chem. 2002;82(11-12):805-813. doi: 10.1080/0306731021000102275

 

  1. Luo ZB, He XJ, Chen L, Tang L, Gao S, Chen F. Effects of Zinc on growth and antioxidant responses in Jatropha curcas seedlings. Int J Agric Biol. 2010;12:119-124.

 

  1. Prasad KV Saradhi PP, Sharmila P. Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Environ Exp Bot. 1999;42(1):1-10. doi: 10.1016/S0098-8472(99)00013-1

 

  1. Barcelo J, Poschenrieder CH, Andreu I, Gunse B. Cadmium-induced decrease of water stress resistance in bush bean plants (Phaseolus vulgaris L. cv. Contender) I. Effects of Cd on water potential, relative water content, and cell wall elasticity. J Plant Physiol. 1986;125(1-2):17-25. doi: 10.1016/S0176-1617(86)80239-5

 

  1. Jara-Peña E, Gómez J, Montoya H, Chanco M, Mariano M, Cano N. Phytoremediation capacity of five high andean species from soils contaminated with heavy metals. Rev Peru Biol. 2014;21(2):145-154.

 

  1. Ahmed AHM, Latif HH. Phytoremediation of soil contaminated with zinc and lead by using Zea mays L. Bangladesh J Bot. 2015;44(2):293-298. doi: 10.3329/bjb.v44i2.38519

 

  1. Kidd PS Díez J, Martínez C. Tolerance and bioaccumulation of heavy metals in five populations of Cistus ladanifer L. Subsp. Ladanifer. Plant Soil. 2004;258(1):189-205. doi: 10.1023/B: PLSO.0000016550.49264.f3

 

  1. Vassilev A, Lidon FC, Ramalho JC, Matos MDC, Bareiro MG. Shoot cadmium accumulation and photosynthetic performance of barley plants exposed to high cadmium treatments. J Plant Nutr. 2004;27(5):775-795. doi: 10.1081/PLN-120030613

 

  1. Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil. 2004;259(1-2):181-189. doi: 10.1023/B: PLSO.0000020956.24027.f2

 

  1. Baker AJ. Accumulators and excluders strategies in response of plants to heavy metals. J Plant Nutr. 1981;3(1-4):643-654. doi: 10.1080/01904168109362867

 

  1. De Vos CH, Schat, De Waal MA, Vooijs R, Ernst WH. Increased resistance to copper‐induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus. Physiol Plant. 1991;82(4):523-528. doi: 10.1111/j.1399-3054.1991.tb02942.x

 

  1. Brune A, Urbach W, Dietz KJ. Compartmentation and transport of zinc in barley primary leaves as basic mechanisms involved in zinc tolerance. Plant Cell Environ. 1994;17(2):153-162. doi: 10.1111/j.1365-3040.1994.tb00278.x

 

  1. Ebbs SD, Kochian LV. Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environ Sci Technol. 1998;32(6):802-806. doi: 10.1021/es970698p

 

  1. Knight B, Zhao FJ, McGrath SP, Shen ZG. Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution. Plant Soil. 1997;197(1):71-78. doi: 10.1023/A:1004255323909

 

  1. Luo Y, Rimmer DL. Zinc-copper interaction affecting plant growth on a metal-contaminated soil. Environ Pollut. 1995;88(1):79-83. doi: 10.1016/0269-7491(95)91050-u

 

  1. Saison C, Schwartz C, Morel JL. Hyperaccumulation of metals by Thlaspi caerulescens as affected by root development and Cd-Zn/Ca-Mg interactions. Int J Phytorem. 2004;6:49-61. doi: 10.1080/16226510490439981

 

  1. Shen ZG, Zhao FJ, McGrath SP. Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ. 1997;20:898-906. doi: 10.1046/j.1365-3040.1997.d01-134.x

 

  1. Marschner H. Mineral Nutrition of Higher Plants. 2nd ed. San Diego: Elsevier Science; 1995.

 

  1. Lopez-Bellido L, Fuente M. Lupin crop as an alternative source of protein. Adv Agron. 1986;40:239-295. doi: 10.1016/S0065-2113(08)60284-9

 

  1. Ehsan M, Santamaría-Delgado K, Alderete-Chavez A, De La Cruz-Landero N, Jaén-Contreras D, Molumeli PA. Phytostabilization of cadmium contaminated soils by Lupinus uncinatus Schldl. Spanish J Agric Res. 2009;7(2):390-397. doi: 10.5424/sjar/2009072-430

 

  1. Ehsan M, Viveros FL, Hernandez V, et al. Zinc and cadmium accumulation by Lupinus uncinatus Schldl. grown in nutrient solution. Int J Environ Sci Technol. 2015;12(1):307-316. doi: 10.1007/s13762-013-0456-0

 

  1. Vázquez S, Esteban E, Carpena RO. Evolution of arsenate toxicity in nodulated white lupine in a long-term culture. J Agric Food Chem. 2008;56(18):8580-8587. doi: 10.1021/jf801673c

 

  1. Martínez-Alcalá I, Clemente R, Bernal MP. Metal availability and chemical properties in the rhizosphere of Lupinus albus L. Growing in a high-metal calcareous soil. Water Air Soil Pollut. 2009;201(1-4):283-293. doi: 10.1007/s11270-008-9944-0

 

  1. Kerley SJ. Changes in root morphology of white lupin (Lupinus albus L.) and its adaptation to soils with heterogeneous alkaline/acid profiles. Plant Soil. 2000;218(1-2):197-205. doi: 10.1023/A:1014967720952

 

  1. Castaldi P, Santona L, Melis P. Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Chemosphere. 2005;60(3):365-371. doi: 10.1016/j.chemosphere.2004.11.098

 

  1. Adriano DC. Zinc Trace Elements in Terrestrial Environments. New York: Springer; 2001. p. 219-261.

 

  1. Haslett B, Reid R, Rengel Z. Zinc mobility in wheat: Uptake and distribution of zinc applied to leaves or roots. Ann Bot. 2001;87(3):379-386. doi: 10.1006/anbo.2000.1349

 

  1. Herren T, Feller U. Transfer of zinc from xylem to phloem in the peduncle of wheat. J Plant Nutr. 1994;17(9):1587-1598. doi: 10.1080/01904169409364831

 

  1. Pearson JN, Rengel Z, Jenner CF, Graham RD. Transport of zinc and manganese to developing wheat grains. Physiol Plant. 1995;95(3):449-455. doi: 10.1111/j.1399-3054.1995.tb00862.x

 

  1. Herren T, Feller U. Effect of locally increased zinc contents on zinc transport from the flag leaf lamina to the maturing grains of wheat. J Plant Nutr. 1996;19(2):379-387. doi: 10.1080/01904169609365128
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing