AccScience Publishing / AJWEP / Online First / DOI: 10.36922/AJWEP025120083
ORIGINAL RESEARCH ARTICLE

Assessment of groundwater quality for drinking purposes near the industrial area of Bharatpur, Chitwan, Nepal: Physicochemical, microbiological, and statistical approaches

Shiv Narayan Yadav1 Asbin K. C.2 Dhruba Acharya2 Rabiraj Subedi2 Saugat Rizal1 Shishir Tamang1 Ajaya Bhattarai1*
Show Less
1 Department of Chemistry, Faculty/Institute of Science and Technology, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar, Koshi, Nepal
2 Department of Science, Faculty/Institute of Science and Technology, Saptagandaki Multiple Campus, Tribhuvan University, Chitwan, Bagmati, Nepal
Received: 21 March 2025 | Revised: 6 August 2025 | Accepted: 11 August 2025 | Published online: 8 September 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Groundwater quality in rapidly urbanizing Bharatpur areas with unregulated industries remains a critical, understudied challenge. This study addresses this knowledge gap by comprehensively assessing the physicochemical and microbiological contamination of drinking water near the Bharatpur industrial area, Nepal, using a statistical approach. Twelve physicochemical and microbiological parameters were analyzed based on the Nepal Drinking Water Quality Standard (NDWQS) and the World Health Organization (WHO) guidelines. Statistical methods (correlation and regression) and an index-based assessment (water quality index [WQI]) were used to interpret contamination patterns. The results showed that the mean values of pH, conductivity, total dissolved solids, hardness, alkalinity, and Cl were within the WHO/NDWQS guidelines. However, NO3, PO43− (4.3–9.8 mg/L), NH3 (7–19.5 mg/L), free Carbon dioxide (CO2), and Escherichia coli (0–9 colony-forming unit/100 mL) exceeded the limits, indicating industrial and fecal contamination. The WQI values ranged from 560 to 663, indicating that all groundwater samples were unsuitable for drinking without treatment. Statistical analysis revealed strong positive correlations among key parameters. Conductivity was strongly associated with total dissolved solid, hardness, alkalinity, CO2, NH3, Cl, PO43−, and E. coli. Hardness, alkalinity, and CO2 showed near-perfect intercorrelations, while additional strong associations were observed between Cl and E. coli, PO43− and NO3, and pH and NO3. Further validation was performed using regression analysis with a first-degree linear equation. The findings indicate that groundwater near Bharatpur’s industrial zone is critically contaminated, necessitating the urgent need for policy interventions, such as wastewater treatment to safeguard public health.

Keywords
Groundwater quality parameters
Statistical analysis
Correlation coefficient
Regression coefficient
Water quality index
Drinking water contamination
Industrial area
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Oluseyi T, Olayinka K, Adeleke I. Assessment of ground water pollution in the residential areas of Ewekoro and Shagamu due to cement production. Afr J Environ Sci Technol. 2011;5:786-794.

 

  1. Boateng TK, Opoku F, Acquaah SO, Akoto O. Groundwater quality assessment using statistical approach and water quality index in Ejisu-Juaben municipality, Ghana. Environ Earth Sci. 2016;75:489. doi: 10.1007/s12665-015-5105-0

 

  1. Milanović P, Stevanović Z. Fifty years of history of the karst commission of the international association of hydrogeologists. Hydrogeol J. 2021;29:7-19. doi: 10.1007/s10040-020-02261-4

 

  1. Li P, Tian R, Xue C, Wu J. Progress, opportunities, and key fields for groundwater quality research under the impacts of human activities in China with a special focus on Western China. Environ Sci Pollut Res. 2017;24:13224-13234. doi: 10.1007/s11356-017-8753-7

 

  1. Kassegne AB, Leta S. Assessment of physicochemical and bacteriological water quality of drinking water in Ankober District, Amhara Region, Ethiopia. Cogent Environ Sci. 2020;6:1791461. doi: 10.1080/23311843.2020.1791461

 

  1. Sitaram DU. Study of the physio-chemical parameters for testing water: A review. World J Adv Res Rev. 2022;14:570-575. doi: 10.30574/wjarr.2022.14.3.0600

 

  1. Reza R, Singh G. Physico-chemical analysis of ground water in Angul-Talcher region of Orissa, India. J Am Sci. 2009;5:53-58.

 

  1. Harter T. Groundwater Quality and Groundwater Pollution. California: University of California, Agriculture and Natural Resources; 2003. doi: 10.3733/ucanr.8084

 

  1. Qureshi SS, Channa A, Memon SA, et al. Assessment of physicochemical characteristics in groundwater quality parameters. Environ Technol Innov. 2021;24:101877. doi: 10.1016/j.eti.2021.101877

 

  1. Daud MK, Nafees M, Ali S, et al. Drinking water quality status and contamination in Pakistan. Biomed Res Int. 2017;2017:7908183. doi: 10.1155/2017/7908183

 

  1. Haile Reda A. Physico-chemical analysis of drinking water quality of Arbaminch Town. J Environ Anal Toxicol. 2016;6:2. doi: 10.4172/2161-0525.1000356

 

  1. Ottong DJ, Ekanem JO. Physicochemical and heavy metals analysis of Udo Awankwo River in Ikot Ekpene, South-South, Nigeria. World J Adv Res Rev. 2021;10:392-398. doi: 10.30574/wjarr.2021.10.3.0282

 

  1. Li P. To make the water safer. Expo Health. 2020;12:337-342. doi: 10.1007/s12403-020-00370-9

 

  1. Li P, Wu J. Sustainable living with risks: Meeting the challenges. Hum Ecol Risk Assess. 2019;25:1-10. doi: 10.1080/10807039.2019.1584030

 

  1. Subba Rao N, Ravindra B, Wu J. Geochemical and health risk evaluation of fluoride rich groundwater in Sattenapalle Region, Guntur District, Andhra Pradesh, India. Hum Ecol Risk Assess. 2020;26:2316-2348. doi: 10.1080/10807039.2020.1741338

 

  1. He X, Li P, Wu J, Wei M, Ren X, Wang D. Poor groundwater quality and high potential health risks in the Datong Basin, Northern China: Research from Published Data. Environ Geochem Health. 2021;43:791-812. doi: 10.1007/s10653-020-00520-7

 

  1. Chakraborti D, Rahman MM, Mukherjee A, et al. Groundwater arsenic contamination in Bangladesh-21 years of research. J Trace Elem Med Biol. 2015;31:237-248. doi: 10.1016/j.jtemb.2015.01.003

 

  1. He X, Li P, Ji Y, Wang Y, Su Z, Elumalai V. Groundwater arsenic and fluoride and associated arsenicosis and fluorosis in China: Occurrence, distribution and management. Expo Health. 2020;12:355-368. doi: 10.1007/s12403-020-00347-8

 

  1. Wang D, Wu J, Wang Y, Ji Y. Finding high-quality groundwater resources to reduce the hydatidosis incidence in the Shiqu County of Sichuan Province, China: Analysis, assessment, and management. Expo Health. 2020;12:307-322. doi: 10.1007/s12403-019-00314-y

 

  1. Su Z, Wu J, He X, Elumalai V. Temporal changes of groundwater quality within the groundwater depression cone and prediction of confined groundwater salinity using grey Markov model in Yinchuan Area of Northwest China. Expo Health. 2020;12:447-468. doi: 10.1007/s12403-020-00355-8

 

  1. Tatti F, Petrangeli Papini M, Torretta V, Mancini G, Boni MR, Viotti P. Experimental and numerical evaluation of groundwater circulation wells as a remediation technology for persistent, low permeability contaminant source zones. J Contam Hydrol. 2019;222:89-100. doi: 10.1016/j.jconhyd.2019.03.001

 

  1. Elumalai V, Nethononda VG, Manivannan V, Rajmohan N, Li P, Elango L. Groundwater quality assessment and application of multivariate statistical analysis in Luvuvhu Catchment, Limpopo, South Africa. J Afr Earth Sci. 2020;171:103967. doi: 10.1016/j.jafrearsci.2020.103967

 

  1. Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B. Remediation technologies for heavy metal contaminated groundwater. J Environ Manage. 2011;92:2355-2388. doi: 10.1016/j.jenvman.2011.06.009

 

  1. He X, Li P. Surface water pollution in the middle Chinese loess plateau with special focus on hexavalent chromium (Cr6+): Occurrence, sources and health risks. Expo Health. 2020;12:385-401. doi: 10.1007/s12403-020-00344-x

 

  1. Abbas G, Murtaza B, Bibi I, et al. Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. Int J Environ Res Public Health. 2018;15:29. doi: 10.3390/ijerph15010059

 

  1. Rebelo FM, Caldas ED. Arsenic, lead, mercury and cadmium: Toxicity, levels in breast milk and the risks for breastfed infants. Environ Res. 2016;151:671-688. doi: 10.1016/j.envres.2016.08.027

 

  1. Lesser LE, Mora A, Moreau C, et al. Survey of 218 organic contaminants in groundwater derived from the world’s largest untreated wastewater irrigation system: Mezquital valley, Mexico. Chemosphere. 2018;198:510-521. doi: 10.1016/j.chemosphere.2018.01.154

 

  1. Sorensen JPR, Lapworth DJ, Nkhuwa DCW, et al. Emerging contaminants in urban groundwater sources in Africa. Water Res. 2015;72:51-63. doi: 10.1016/j.watres.2014.08.002

 

  1. Lapworth DJ, Baran N, Stuart ME, Manamsa K, Talbot J. Persistent and emerging micro-organic contaminants in chalk groundwater of England and France. Environ Pollut. 2015;203:214-225. doi: 10.1016/j.envpol.2015.02.030

 

  1. Schulze S, Zahn D, Montes R, et al. Occurrence of emerging persistent and mobile organic contaminants in European water samples. Water Res. 2019;153:80-90. doi: 10.1016/j.watres.2019.01.008

 

  1. Wu J, Zhang Y, Zhou H. Groundwater chemistry and groundwater quality index incorporating health risk weighting in Dingbian County, Ordos Basin of Northwest China. Chem Erde. 2020;80:125607. doi: 10.1016/j.chemer.2020.125607

 

  1. Jenifer MA, Jha MK. Comprehensive risk assessment of groundwater contamination in a weathered hard-rock aquifer system of India. J Clean Prod. 2018;201:853-868. doi: 10.1016/j.jclepro.2018.08.005

 

  1. Jha MK, Shekhar A, Jenifer MA. Assessing groundwater quality for drinking water supply using hybrid fuzzy-GIS-based water quality index. Water Res. 2020;179:115867. doi: 10.1016/j.watres.2020.115867

 

  1. Yuan Y, Xiang M, Liu C, Theng BKG. Chronic impact of an accidental wastewater spill from a smelter, China: A study of health risk of heavy metal (Loid)s via vegetable intake. Ecotoxicol Environ Saf. 2019;182:109401. doi: 10.1016/j.ecoenv.2019.109401

 

  1. Njuguna SM, Makokha VA, Yan X, Gituru RW, Wang Q, Wang J. Health risk assessment by consumption of vegetables irrigated with reclaimed waste water: A case study in Thika (Kenya). J Environ Manage. 2019;231:576-581. doi: 10.1016/j.jenvman.2018.10.088

 

  1. Wu J, Li P, Qian H, Fang Y. Assessment of soil salinization based on a low-cost method and its influencing factors in a semi-arid agricultural area, Northwest China. Environ Earth Sci. 2014;71:3465-3475. doi: 10.1007/s12665-013-2736-x

 

  1. Schillinger J, Özerol G, Güven-Griemert Ş, Heldeweg M. Water in war: Understanding the impacts of armed conflict on water resources and their management. Wiley Interdiscipl Rev Water 2020;7:e1480. doi: 10.1002/wat2.1480

 

  1. Çiner F, Sunkari ED, Şenbaş BA. Geochemical and multivariate statistical evaluation of trace elements in groundwater of Niğde Municipality, South-Central Turkey: Implications for arsenic contamination and human health risks assessment. Arch Environ Contam Toxicol. 2021;80:164-182. doi: 10.1007/s00244-020-00759-2

 

  1. Yadav IC, Devi NL, Mohan D, Shihua Q, Singh S. Assessment of groundwater quality with special reference to arsenic in Nawalparasi District, Nepal using multivariate statistical techniques. Environ Earth Sci. 2014;72:259-273. doi: 10.1007/s12665-013-2952-4

 

  1. Raja V, Lakshmi RV, Sekar CP, Chidambaram S, Neelakantan MA. Health risk assessment of heavy metals in groundwater of industrial Township Virudhunagar, Tamil Nadu, India. Arch Environ Contam Toxicol. 2021;80:144-163. doi: 10.1007/s00244-020-00795-y

 

  1. Tiwari AK, Singh AK. Hydrogeochemical investigation and groundwater quality assessment of Pratapgarh District, Uttar Pradesh. J Geol Soc India. 2014;83:329-343. doi: 10.1007/s12594-014-0045-y

 

  1. Ali S, Verma S, Agarwal MB, et al. Groundwater quality assessment using water quality index and principal component analysis in the Achnera Block, Agra District, Uttar Pradesh, Northern India. Sci Rep. 2024;14:5381. doi: 10.1038/s41598-024-56056-8

 

  1. Mahato S, Mahato A, Karna PK, Balmiki N. Investigating aquifer contamination and groundwater quality in Eastern Terai Region of Nepal. BMC Res Notes. 2018;11:321. doi: 10.1186/s13104-018-3445-z

 

  1. National Drinking Quality Standards and Directives (NDWQS). Implementation directives for national drinking water quality standards. Government of Nepal, Ministry of Physical Planning and Works, Kathmandu. Tribhuvan Univ J Microbiol. 2023;5: 83-88.

 

  1. Andermann C, Longuevergne L, Bonnet S, Crave A, Davy P, Gloaguen R. Impact of transient groundwater storage on the discharge of Himalayan rivers. Nat Geosci. 2012;5:127-132. doi: 10.1038/ngeo1356

 

  1. Mukherjee A, Fryar AE, Shea BMO. Major Occurrences of Elevated Arsenic. Vol. 6. United States: John Wiley & Sons, Ltd. Inc.; 2008. p. 1-47. doi: 10.1002/9780470741122.ch6

 

  1. Diwakar J, Johnston SG, Burton ED, Shrestha S. Das arsenic mobilization in an alluvial aquifer of the Terai Region, Nepal. J Hydrol Reg Stud. 2015;4:59-79. doi: 10.1016/j.ejrh.2014.10.001

 

  1. WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda. Geneva: World Health Organization; 2022.

 

  1. Shrestha S, Bista S, Byanjankar N, Shrestha S, Joshi DR, Prasai Joshi T. Groundwater quality evaluation for drinking purpose using water quality index in Kathmandu Valley, Nepal. Water Sci. 2023;37:239-250. doi: 10.1080/23570008.2023.2237278

 

  1. Ghimire M, Regmi T, Kayastha SP, Bhuiyan C. Groundwater quality and community health risk in Lalitpur Metropolitan City, Nepal-a geospatial analysis. Geocarto Int. 2023;38:2168069. doi: 10.1080/10106049.2023.2168069

 

  1. Sarkar B, Mitchell E, Frisbie S, Grigg L, Adhikari S, Maskey Byanju R. Drinking water quality and public health in the Kathmandu Valley, Nepal: Coliform bacteria, chemical contaminants, and health status of consumers. J Environ Public Health. 2022;2022:3895859. doi: 10.1155/2022/3895859

 

  1. Trivedy RK, Goel PK. Chemical and biological methods for water pollution studies, Karad (India): Environmental publications. J Raman Spectrosc. 1986;6:10. doi: 10.1128/jcm.34.12.2914-2920.1996

 

  1. Wagner B. Resolution submitted to APHA protecting children from overexposure to lead in candy and protecting children by lowering the blood lead “level of concern” standard. J Nevada. 2005;1:8-13.

 

  1. Mumtaz M, Jahanzaib SH, Khan S, Ismail S, Hussain W, Khan FA. Implementation of water quality index for measuring groundwater quality. Migr Lett. 2024;21:273-287. doi: 10.59670/ml.v21is11.10691

 

  1. Hasan AA, Al-Obaidi I, Abed ZM. Using lime to remove chromium from tannery factory industrial wastewater in Baghdad. J Eng Sustain Dev. 2025;29:120-126. doi: 10.31272/jeasd.1220

 

  1. Xu Z. Dissolved Oxygen Dynamics and Modeling - a Case Study in a Subtropical Shallow Lake. Vol. 22. Netherlands: Elsevier Sci. Ltd.; 2014. p. 114.

 

  1. Sayato Y. WHO guidelines for drinking-water quality. Eisei Kagaku. 2022;35:307-312. doi: 10.1248/jhs1956.35.307

 

  1. Khatri N, Tyagi S, Rawtani D, Tharmavaram M, Kamboj RD. Analysis and assessment of ground water quality in Satlasana Taluka, Mehsana District, Gujarat, India through Application of Water Quality Indices. Groundw Sustain Dev. 2020;10:100321. doi: 10.1016/j.gsd.2019.100321

 

  1. Das BD, Mishra RK, Choudhary SK. Groundwater quality in Biratnagr of Morang District, Nepal. Int J Res GRANTHAALAYAH. 2021;9:368-377. doi: 10.29121/granthaalayah.v9.i5.2021.3961

 

  1. Das BD, Choudhary SK. Application of water quality index (WQI) for groundwater quality assessment of Biratnagar, Nepal. Our Nat. 2021;19:54-61. doi: 10.3126/on.v19i1.41260

 

  1. Pant BR. Ground water quality in the Kathmandu valley of Nepal. Environ Monit Assess. 2011;178:477-485. doi: 10.1007/s10661-010-1706-y

 

  1. Oinam JD, Ramanathan AL, Singh G. Geochemical and statistical evaluation of groundwater in Imphal and Thoubal District of Manipur, India. J Asian Earth Sci. 2012;48:136-149. doi: 10.1016/j.jseaes.2011.11.017

 

  1. Verma A, Pandey G. Study of some physico-chemical parameters of groundwater in Gorakhpur District. Int J Eng Res Technol. 2013;2:2967-2973.

 

  1. Budhathoki R. Analysis of the Physico-Chemical and Bacteriological Parameters of Bottled Water Available in Kathmandu Valley a Case Study on the Partial Fulfillment of the Requirements for M. Sc., First Year, Environment Science, T. U.; M.Sc. Thesis, Central Department of Microbiology, TU; 2010. p. 1-36.

 

  1. Paudyal R, Kang S, Sharma CM, Tripathee L, Sillanpaä M. Variations of the physicochemical parameters and metal levels and their risk assessment in urbanized Bagmati River, Kathmandu, Nepal. J Chem. 2016;2016:6025905. doi: 10.1155/2016/6025905

 

  1. Memon YI, Qureshi SS, Kandhar IA, et al. Statistical analysis and physicochemical characteristics of groundwater quality parameters: A case study. Int J Environ Anal Chem. 2023;103:2270-2291. doi: 10.1080/03067319.2021.1890064

 

  1. Laghari AN, Siyal ZA, Bangwar DK, Soomro MA, Walasai G, Shaikh FA. Groundwater quality analysis for human consumption. Technol Appl Sci Res. 2018;8:2616-2620.

 

  1. Walter N. A review of the principles of turbidity measurement. Prog Phys Geography Br J Haematol. 2009;8:2616-2622. doi: 10.1177/0309133317726540

 

  1. García-Ávila F, Zhindón-Arévalo C, Valdiviezo- Gonzales L, Cadme-Galabay M, Gutiérrez-Ortega H, del Pino LF. A comparative study of water quality using two quality indices and a risk index in a drinking water distribution network. Environ Technol Rev. 2022;11:49-61. doi: 10.1080/21622515.2021.2013955

 

  1. Ashfaq A, Ahmad F. Study on assessment of underground water quality. Int J Curr Microbiol Appl Sci. 2014;3:612-616.

 

  1. Khadka D, Khanal G. Assessment of physicochemical parameters of drinking water in the schools of Bagnashkali, Palpa, Nepal. Tribhuvan J. 2023;2:1-10. doi: 10.3126/tribj.v2i1.60215

 

  1. Wang BB. Research on drinking water purification technologies for household use by reducing total dissolved solids (TDS). PLoS One. 2021;16:e0257865. doi: 10.1371/journal.pone.0257865

 

  1. Wood WW. Guidelines for Collection and Field Analysis of Groundwater Samples for Selected Unstable Constituents. Techniques of Water-resources Investigations of the United States Geological Survey. Vol. 1. Reston, VA: U.S. Geological Survey; 1981. p. D2-11.

 

  1. Brown RM, McClelland NI, Deininger RA, O’Connor MF. A water quality index - crashing the psychological barrier. Indic Environ Qual. 1972;6:173-182. doi: 10.1007/978-1-4684-2856-8_15

 

  1. Tirkey P, Bhattacharya T, Chakraborty S. Water quality indices- important tools for water quality assessment. Int J Adv Chem. 2013;1:15-28.

 

  1. Ram A, Tiwari SK, Pandey HK, Chaurasia AK, Singh S, Singh YV. Groundwater quality assessment using water quality index (WQI) under GIS framework. Appl Water Sci. 2021;11:46. doi: 10.1007/s13201-021-01376-7

 

  1. Prest EI, Hammes F, van Loosdrecht MCM, Vrouwenvelder JS. Biological stability of drinking water: Controlling factors, methods, and challenges. Front Microbiol. 2016;7:1-24. doi: 10.3389/fmicb.2016.00045

 

  1. Riffat R, Husnain T. Fundamentals of Wastewater Treatment and Engineering. 2nd ed. London: Taylor & Francis; 2022.

 

  1. Li P, Karunanidhi D, Subramani T, Srinivasamoorthy K. Sources and consequences of groundwater contamination. Arch Environ Contam Toxicol. 2021;80:1-10. doi: 10.1007/s00244-020-00805-z

 

  1. Mohammadi AA, Morovati M, Najafi Saleh H, et al. Groundwater quality evaluation for drinking and industrial purposes. A case study in Northeastern Iran. Int J Environ Anal Chem. 2022;102:6094-6104. doi: 10.1080/03067319.2020.1807533

 

  1. Narayan S, Rai S, Behera M, Ranjan A. Dynamic assembly and stabilization of surfactant-dye-polyelectrolyte complexes: An overview. J Mol Liq. 2025;421:126897. doi: 10.1016/j.molliq.2025.126897

 

  1. Yadav SN, Rai S, Sinha B, Bhattarai A. Influence of polyelectrolyte (NaCMC) on surfactant (DTAB) in the absence and presence of methyl orange dye in ethanol - water mixed solvent at three different temperatures. ChemistrySelect. 2024;9:202404772. doi: 10.1002/slct.202404772

 

  1. Narayan S, Rai S, Bhattarai A, Sinha B. Impact of sodium polystyrene sulfonate on micellization behaviour of Cetyltrimethylammonium bromide in the presence of methyl red in ethanol - water mixture: A conductometric investigation. J Mol Liq. 2024;399:124387. doi: 10.1016/j.molliq.2024.124387

 

  1. Narayan S, Rai S, Shah P, Roy N, Bhattarai A. Spectrophotometric and conductometric studies on the interaction of surfactant with polyelectrolyte in the presence of dye in aqueous medium spectrophotometric and conductometric studies on the interaction of surfactant with polyelectrolyte in the presence. J Mol Liq. 2022;355:118949. doi: 10.1016/j.molliq.2022.118949

 

  1. Dohare D, Deshpande S, Kotiya A. Analysis of ground water quality parameters: A review. Res J Eng Sci. 2014;3:2278-9472.

 

  1. Devi S, Premkumar R. Physicochemical analysis of groundwater samples near industrial Area, Cuddalore District, Tamil Nadu, India. Int J ChemTech Res. 2012;4:29-34.

 

  1. Mengstie YA, Desta WM, Alemayehu E. Assessment of drinking water quality in urban water supply systems: The case of Hawassa City, Ethiopia. Int J Anal Chem. 2023;2023:8880601. doi: 10.1155/2023/8880601

 

  1. Susaiappan S, Somanathan A, Sulthan MT, Masilamani IP. Groundwater quality variation and regression analysis a case study around municipal dumpsite in India. Rev Chim. 2021;72:133-145. doi: 10.37358/rc.21.1.8410

 

  1. Kothari V, Vij S, Sharma SK, Gupta N. Correlation of various water quality parameters and water quality index of districts of Uttarakhand. Environ Sustain Indic. 2021;9:100093. doi: 10.1016/j.indic.2020.100093

 

  1. Porsan ZP, Zarei A, Alimohammadi M. Evaluation of corrosion and scaling potential of drinking groundwater in Gonbad-e Kavus. Desalin Water Treat. 2020;195:19-25. doi: 10.5004/dwt.2020.25895

 

  1. Al-Khashman OA, Jaradat AQ. Assessment of groundwater quality and its suitability for drinking and agricultural uses in arid environment. Stoch Environ Res Risk Assess. 2014;28:743-753. doi: 10.1007/s00477-013-0787-x

 

  1. Das CR, Das S, Panda S. Groundwater quality monitoring by correlation, regression and hierarchical clustering analyses using WQI and PAST tools. Groundw Sustain Dev. 2022;16:100708. doi: 10.1016/j.gsd.2021.100708

 

  1. Alemu CM, Aycheh YF, Angualie GS, Engidayehu SS. Modeling on comprehensive evaluation of groundwater quality status using geographic information system (GIS) and water quality index (WQI): A case study of Bahir Dar City, Amhara, Ethiopia. Water Pract Technol. 2024;19:1084-1098. doi: 10.2166/wpt.2024.076

 

  1. Abolli S, Nasab MA, Yaghmaeian K, Alimohammadi M. Determination the effects of physico-chemical parameters on groundwater status by water quality index (WQI). Desalin Water Treat. 2022;269:84-92. doi: 10.5004/dwt.2022.28755

 

  1. Ji Y, Wu J, Wang Y, Elumalai V, Subramani T. Seasonal variation of drinking water quality and human health risk assessment in Hancheng City of Guanzhong Plain, China. Expo Health. 2020;12:469-485. doi: 10.1007/s12403-020-00357-6

 

  1. Khan MK, Ayoub W, Saied S, et al. Statistical and geospatial assessment of groundwater quality in the megacity of Karachi. J Water Resour Prot. 2019;11:311-332. doi: 10.4236/jwarp.2019.113018

 

  1. Abbasnejad B, Abbasnejad A, Derakhshani R. Groundwater evaluation of Northern Jazmourian (South Iran) for drinking, agriculture, and associated health risks of nitrate and fluoride contamination. Hum Ecol Risk Assess. 2023;29:36-57. doi: 10.1080/10807039.2022.2140028

 

  1. Mohan U, Singh R. Water quality assessment and physicochemical parameters of groundwater in District Hapur, Uttar Pradesh, India. Environ Conserv J. 2013;14:143-149.

 

  1. Picetti R, Deeney M, Pastorino S, et al. Nitrate and nitrite contamination in drinking water and cancer risk: A systematic review with meta-analysis. Environ Res. 2022;210:112988. doi: 10.1016/j.envres.2022.112988

 

  1. Dahiya S, Singh B, Gaur S, Garg VK, Kushwaha HS. Analysis of groundwater quality using fuzzy synthetic evaluation. J Hazard Mater. 2007;147:938-946. doi: 10.1016/j.jhazmat.2007.01.119

 

  1. Ding F, Chen L, Sun C, Zhang W, Yue H, Na S. An upgraded groundwater quality evaluation based on hasse diagram technique & game theory. Ecol Indic. 2022;140:109024. doi: 10.1016/j.ecolind.2022.109024

 

  1. Subba Rao N. Groundwater quality from a part of Prakasam District, Andhra Pradesh, India. Appl Water Sci. 2018;8:1-18. doi: 10.1007/s13201-018-0665-2

 

  1. Thakur JK, Diwakar J, Singh SK. Hydrogeochemical evaluation of groundwater of Bhaktapur Municipality, Nepal. Environ Earth Sci. 2015;74:4973-4988. doi: 10.1007/s12665-015-4514-4

 

  1. Hanipha M, Hussain Z. Study of groundwater quality at Dindigul Town, Tamilnadu, India. Int Res J Environ Sci. 2019;2:68-73.

 

  1. Pei-Yue L, Hui Q, Jian-Hua W. Groundwater quality assessment based on improved water quality index in Pengyang County, Ningxia, Northwest China. E-J Chem. 2010;7:209-216. doi: 10.1155/2010/451304

 

  1. Olaolu TD. Pollution indicators and pathogenic microorganisms in wastewater treatment: Implication on receiving water bodies. Int J Environ Prot Policy. 2014;2:205. doi: 10.11648/j.ijepp.20140206.12

 

  1. Yu F, Okamto S, Nakasone K, et al. Molecular cloning and functional characterization of α-humulene synthase, a possible key enzyme of Zerumbone biosynthesis in shampoo ginger (Zingiber Zerumbet Smith). Planta. 2008;227:1291-1299. doi: 10.1007/s00425-008-0700-x

 

  1. Kar S. Determination of water quality index (WQI) during mass bathing in different Ghats of river ganga in Howrah and North 24 Parganas District, West Bengal, India. Int J Res Appl Sci Eng Technol. 2017;887:1097-1104. doi: 10.22214/ijraset.2017.9159

 

  1. Das Kangabam R, Bhoominathan SD, Kanagaraj S, Govindaraju M. Development of a water quality index (WQI) for the Loktak Lake in India. Appl Water Sci. 2017;7:2907-2918. doi: 10.1007/s13201-017-0579-4

 

  1. Lumb A, Sharma TC, Bibeault JF. A review of genesis and evolution of water quality index (WQI) and some future directions. Water Qual Expo Health. 2011;3:11-24. doi: 10.1007/s12403-011-0040-0

 

  1. Şener Ş, Şener E, Davraz A. Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Sci Total Environ. 2017;584-585:131-144. doi: 10.1016/j.scitotenv.2017.01.102

 

  1. Bora M, Goswami DC. Water quality assessment in terms of water quality index (WQI): Case study of the Kolong River, Assam, India. Appl Water Sci. 2017;7:3125-3135. doi: 10.1007/s13201-016-0451-y

 

  1. Das CR, Das S, Panda S. MLR index-based principal component analysis to investigate and monitor probable sources of groundwater pollution and quality in coastal areas: A case study in East India. Environ Monit Assess. 2023;195:1158. doi: 10.1007/s10661-023-11804-7

 

  1. Das CR, Das S. Assessment of surface water quality for drinking by combining three water quality indices with their usefulness: Case of Damodar River in India. Water Air Soil Pollut. 2023;234:327. doi: 10.1007/s11270-023-06342-4

 

  1. Olasehinde P, Amadi A, Dan-Hassan M, Jimoh M. Statistical assessment of groundwater quality in Ogbomosho, Southwest Nigeria. Am J Min Metall. 2015;3:21-28. doi: 10.12691/ajmm-3-1-4

 

  1. Jena V, Sinha D. Physicochemical analysis of ground water of selected areas of Raipur City. Indian J Sci Res. 2017;13:61-65.

 

  1. Gulgundi MS, Shetty A. Groundwater quality assessment of Urban Bengaluru using multivariate statistical techniques. Appl Water Sci. 2018;8:43. doi: 10.1007/s13201-018-0684-z

 

  1. Singh EJK, Gupta A, Singh NR. Groundwater quality in Imphal West District, Manipur, India, with multivariate statistical analysis of data. Environ Sci Pollut Res. 2013;20:2421-2434. doi: 10.1007/s11356-012-1127-2

 

  1. Trabelsi R, Zouari K. Coupled geochemical modeling and multivariate statistical analysis approach for the assessment of groundwater quality in irrigated areas: A study from North Eastern of Tunisia. Groundw Sustain Dev. 2019;8:413-427. doi: 10.1016/j.gsd.2019.01.006

 

  1. Singh CK, Shashtri S, Mukherjee S. Integrating multivariate statistical analysis with GIS for geochemical assessment of groundwater quality in Shiwaliks of Punjab, India. Environ Earth Sci. 2011;62:1387-1405. doi: 10.1007/s12665-010-0625-0

 

  1. Kim JH, Kim RH, Lee J, Cheong TJ, Yum BW, Chang HW. Multivariate statistical analysis to identify the major factors governing groundwater quality in the coastal area of Kimje, South Korea. Hydrol Process. 2005;19:1261-1276. doi: 10.1002/hyp.5565

 

  1. Molekoa MD, Avtar R, Kumar P, Minh HVT, Kurniawan TA. Hydrogeochemical assessment of groundwater quality of Mokopane Area, Limpopo, South Africa using statistical approach. Water (Switzerland). 2019;11:1891. doi: 10.3390/w11091891

 

  1. Dobaradaran S, Mahvi AH, Dehdashti S, Dobaradaran S, Shoara R. Correlation of fluoride with some inorganic constituents in groundwater of Dashtestan, Iran. Fluoride. 2009;42:50-53.
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing