AccScience Publishing / AJWEP / Volume 20 / Issue 3 / DOI: 10.3233/AJW230042
RESEARCH ARTICLE

Phytoremediation of Domestic Sewage in Constructed  Wetland Integrated with Cultivation of Chlorella sp.: A  Novel Technique for Remediation and Resource Recovery

A.K. Giri1* Vishal Kumar2 Kiran 1 Vijay Vyas1 Ashis Kumar1 Dinesh Gautam3
Show Less
1 IEDS, Bundelkhand University (BU), Jhansi – 284128, U.P., India
2 GSSS-BHULANA, Kangra – 176071, H.P., India
3 Department of Chemistry, BBC, Jhansi, U.P., India
AJWEP 2023, 20(3), 91–98; https://doi.org/10.3233/AJW230042
Received: 2 December 2021 | Revised: 3 January 2023 | Accepted: 3 January 2023 | Published online: 3 January 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Domestic sewage-based constructed wetland (CW) showed that the effluent from CW-system contain  enough plant nutrients and enhanced the growth of microalgae. Hence, a pilot CW system employing Typha latifolia in domestic sewage, integrated with the cultivation wild type Chlorella sp. was investigated. Phytoremediation  at 48 hours of detention time caused significant changes in its physicochemical properties and the generated  effluent was notably attractive for the cultivation of microalgae. The microalga was grown in 6 treatments:  treated-mixotrophic (T1), treated-heterotrophic (T2), treated-autotrophic (T3), control-mixotrophic (T4), controlheterotrophic (T5) and control-autotrophic (T6) conditions for 8 days inside an incubator. The results suggested  that phytoremediation effluents integrated with mixotrophic cultivation of microalgae, utilising both light and  carbon sources could be the most efficient, environmentally safe, sustainable and novel technique for synergistic  resource generation and bioremediation.

Keywords
CW-system
phytoremediated effluents
emergent macrophytes
wild-type Chlorella.
References

Allen, S.E. (1998). Chemical analysis of ecological materials,  Second (ed.) Blackwell Scientific Publication. Butler &  Tanner Ltd., Rome and London, 1998.

American Public Health Association (2006). Standard  methods for the examination of water and wastewater.  Water Environment Federation, Washington, DC.

Cheirslip, B. and S. Torpee (2012). Enhanced growth and  lipid production of microalgae under mixotrophic culture  condition: Effect of light intensity, glucose concentration  and fed-batch cultivation. Bioresource Technology, 102: 17-25.

Gao, K., Liu, Q., Gao, Z., Xue, C., Qian, P., Dong, J., Gao, Z.  and X. Deng (2021). A dilution strategy used to enhance  nutrient removal and biomass production of Chlorella  sorokiniana in frigon wastewater. Algal Research, 58: 102428. 

Garcia, O.P., de-Bashan, L.E., Hernandez, J. and Y. Bashan  (2010). Efficiency of growth and nutrient uptake from  wastewater by heterotrophic, autotrophic, and mixotrophic  cultivation of Chlorella vulgaris immobilized with  Azospirillum brasilense., J. Phycol., 46: 800-812.

Giri, A.K., Sacchan, P., Kushwaha, S., Singh, M.P. and  S.Verma (2012). Increasing nitrogen uptake and removal  efficiency of Eichhornia crassipes from domestic sewage  through dilution culture study. Asian Journal of Water,  Environment and Pollution, 9: 45-50..

Gomez, K.A. and A.A. Gomez (1984). Statistical procedure  for agricultural research, John Wiley, New York.

Gour, R.S., Kant, A. and R.S. Chouhan (2014). Screening of  microalgae for growth and lipid accumulation properties.  J. Algal. Biomass Utln., 5: 38-46.

Greenwell, H.C., Laurens, L.M.L., Shields, R.J., Lovitt, R.W.  and K.J. Flynn (2010). Placing microalgae on the biofuels  priority list: A review of the technological challenges. J.  R. Soc., Interface, 7: 703-726. 

Grobbelaar, J.U. (2004). Algal nutrition, mineral nutrition.  In: Richmond, A. (Ed.) Handbook of microalgal culture.  Biotechnology and Applied Phycology, Blackwell  Publishing, Oxford, UK, pp. 97-115.

Juwarker, A.S., Oke, B., Juwarker, A. and S.M. Pataink (1995).  Domestic wastewater treatment through constructed  wetland in India. Wat. Sci. Tech., 32: 291-294.

Kadlec, H.R. and R.L. Knight (1996). Treatment Wetlands,  Lewis, Boca Raton, New York, London, Tokyo.

Kivaisi, A.K. (2001). The potential for constructed wetlands  for wastewater treatment and reuse in developing  countries: A review. Ecological Engineering, 16: 545-560.

Lin, Q., Gu, N., Li, G., Lin, J., Huang, L. and L.Tan (2012).  Effects of inorganic carbon concentration on carbon  formation, nitrate utilization, biomass and oil accumulation  of Nannochloropsis oculata CS 179. Bioresource  Technology, 111: 353-359.

Mitra, D., van Leeuwen, J. and B. Lamsal (2012).  Heterotrophic/mixotrophic cultivation of oleaginous  Chlorella vulgaris on industrial co-products. Algal  Research, 1: 40-48.

Park, J.B.K., Craggs, R.J. and A.N. Shilton (2011).  Wastewater treatment high rate algal ponds for biofuel  production. Bioresource Technology, 102: 5-42.

Pittman, J.K., Dean, A.P. and O. Osundeko (2011). The  potential of sustainable algal biofuel production using  wastewater resources. Bioresource Technology, 102: 17- 25.

Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y.,  Wang, Y. and R. Ruan (2010). Cultivation of green algae  chlorella sp. in different wastewaters from municipal  wastewater treatment plant. Appl. Biochem. Biotechnol.,  162: 1174-1186.

Yang, C., Hua, Q. and K. Shimizu (2000). Energetics and  carbon metabolism during growth of microalgal cells  under photoautotrophic, mixotrophic and cyclic lightautotrophic⁄dark-heterotrophic conditions. Biochem. Eng.  J., 6: 87-102.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing