AccScience Publishing / AJWEP / Volume 20 / Issue 3 / DOI: 10.3233/AJW230041
RESEARCH ARTICLE

Microbial Simultaneous Eradication from Wastewater of Sulphate and Heavy Metals

Haider A.J. Almuslamawy1 Ahmed Hussein Ali Aldhrub2 Saad Ali Ahmed1 Raghad S. Mouhamad3*
Show Less
1 Chemistry Department, College of Education for Pure Science/Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq
2 Directorate General of Education in Baghdad (Karkh 3), Baghdad, Iraq
3 Ministry of Science and Technology, Baghdad, Iraq
AJWEP 2023, 20(3), 85–90; https://doi.org/10.3233/AJW230041
Received: 26 September 2022 | Revised: 4 October 2022 | Accepted: 4 October 2022 | Published online: 4 October 2022
© 2022 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Hazardous materials, heavy metals, and organic toxins released into the environment have caused  considerable harm to microbes, plants, animals, and humans. Wastewater is one of the most contaminated  ecosystems due to heavy metals emitted mostly by human activity. Bioremediation of wastewater is an ecologically  acceptable and cost-effective method of removing heavy metals from sewage; the general purpose of this study  is to analyse the dependability of anaerobic sludge biomass in removing sulfur compounds and heavy metals  from waste water. The anaerobic sludge biomass evaluated in this work was taken from a wastewater treatment  plant (WWTP) in Al-Rustumiya, Baghdad, and grown in the mineral medium for anaerobic growth. In serum  bottles, batch metal removal tests were conducted concurrently with sulphate reduction. The biomass increased  from the time of inoculation medium with 20 mg·L-1 (t = 0 day, MLVSS = 688 29 mg·L-1) to the 8th day, when  it reached the highest value (MLVSS = 980 48 mg·L-1); more than 90% removal was observed for copper and  nickel, almost 80% for lead and cadmium metals, and less than 80% removal for chrome and zinc. In addition,  in the case of lead, copper, and nickel, sulphate removal was greater than 50%. Except zinc, all metals have the  capacity to remove more than 60% of the COD.

Keywords
Heavy metal
wastewater
anaerobic growth
sulphate
bioremediation.
References

Atlas, A. and M. Ronald (1993). Handbook of Microbiology  Media (1st ed.). Ann Arbor: CRC Press Inc.

Ayangbenro, A.S., Olanrewaju, O.S. and O.O. Babalola  (2018). Sulfate-reducing bacteria as an effective tool  for sustainable acid mine bioremediation. Frontiers  in Microbiology, 9: 1986. https://doi.org/10.3389/ fmicb.2018.01986 

Azimi, A., Azari A., Rezakazemi M. and M. Ansarpour  (2017). Removal of heavy metals from industrial  wastewaters: A review. ChemBioEng Reviews, 4(1): 37-59.

Azizi, S., Kamika I. and M. Tekere (2016). Evaluation of  heavy metal removal from wastewater in a modified  packed bed biofilm reactor. PLoS ONE, 11(5): e0155462.  https://doi.org/10.1371/journal.pone.0155462 

Barnes, L.J., Sherren, J., Janssen, F.J., Scheeren, P.J.H.,  Versteegh, J.H. and R.O. Koch (1991). Simultaneous  microbial removal of sulphate and heavy metals from  waste water. In: EMC ’91: Non-Ferrous Metallurgy— Present and Future. Springer, Dordrecht, pp. 391-401.

Bhatt P., Zhang, W., Lin, Z., Pang, S., Huang, Y. and S.  Chen (2020). Biodegradation of allethrin by a novel  fungus Fusarium proliferatum strain CF2, isolated from  contaminated soils. Microorganisms, 8(4): 593.   

Budzyńska, S., Siwulski M., Budka A., Kalač P., Niedzielski  P., Gąsecka M. and M. Mleczek (2022). Mycoremediation  of flotation tailings with Agaricus bisporus. J. Fungi  (Basel), 8(8): 883. 

Corral-Bobadilla, M., González-Marcos, A., VergaraGonzález, E.P. and F. Alba-Elías (2019). Bioremediation  of waste water to remove heavy metals using the spent  mushroom substrate of Agaricus bisporus. Water, 11(3): 454. https://doi.org/10.3390/w11030454

Engwa, G.A., Ferdinand, P.U., Nwalo, F.N. and M.N.  Unachukwu (2019). Mechanism and Health Effects  of Heavy Metal Toxicity in Humans. In: Karcioglu,  O. and B. Arslan (Eds.), Poisoning in the Modern  World - New Tricks for an Old Dog?. IntechOpen.  DOI: 10.5772/intechopen.82511.https://doi.org/10.5772/ intechopen.82511 

García-Delgado, C., Yunta, F. and E. Eymar (2015).  Bioremediation of multi-polluted soil by spent mushroom  (Agaricus bisporus) substrate: Polycyclic aromatic  hydrocarbons degradation and Pb availability. Journal of  Hazardous Materials, 300: 281-288. 

Geets, J., Vanbroekhoven, K., Borremans, B., Vangronsveld,  J., Diels, L. and D. van der Lelie (2006). Column  experiments to assess the effects of electron donors on the  efficiency of in situ precipitation of Zn, Cd, Co and Ni in  contaminated groundwater applying the biological sulfate  removal technology. Environmental Science and Pollution  Research International, 13(6): 362-378. 

Hasan, Z.I. and A.H. Taleb (2020). Assessment of the quality  of drinking water for plants in the Al-Karkh, Baghdad,Iraq. Ibn AL-Haitham Journal For Pure and Applied  Sciences, 33(1): 1-10. https://doi.org/10.30526/33.1.2385   

Jameel, A.N. (2022). Radiological risk assessment and  radioactivity concentration in sediment of Tigris River  of the Medical City/Bab Al Muadham. Ibn AL-Haitham  Journal For Pure and Applied Sciences, 35(1): 28-38.  https://doi.org/10.30526/35.1.2796 

Kelly, D.P. and A.P. Wood (2000). Confirmation of  Thiobacillus denitrificans as a species of the genus  Thiobacillus, in the beta-subclass of the Proteobacteria,  with strain NCIMB 9548 as the type strain. International  Journal of Systematic and Evolutionary Microbiology, 50(Pt 2): 547-550. https://doi.org/10.1099/00207713-50- 2-547 

Kiran, M.G., Pakshirajan, K. and G. Das (2017). Heavy metal  removal from multicomponent system by sulfate reducing  bacteria: Mechanism and cell surface characterization.  Journal of Hazardous Materials, 324(Pt A): 62-70. https:// doi.org/10.1016/j.jhazmat.2015.12.042 

Kumar M. and K. Pakshirajan (2020). Novel insights into  mechanism of biometal recovery from wastewater by  sulfate reduction and its application in pollutant removal  . Environmental Technology & Innovation, 17: 100542 .

Kumar, M., Nandi, M. and K. Pakshirajan (2021). Recent  advances in heavy metal recovery from wastewater by  biogenic sulfide precipitation. Journal of Environmental  Management, 278(Pt 2): 111555. 

Latif, M.H.A and Y.F. Mahmood (2018). Isolation and  characterization of microcrystalline cellulose and  preparation of nano-crystalline cellulose from tropical  water hyacinth. Ibn AL-Haitham Journal For Pure  and Applied Sciences, 31(1): 180-188. https://doi. org/10.30526/31.1.1865

Liu, Z., Zhimin, Z. and X. Lu (2021) Advanced treatment  of pharmaceutical wastewater with a combined Fe-C  micro-electrolysis/EGSB system assisted by microalgae,  Separation Science and Technology, 56(16): 2826-2837.

Coelho L.M., Rezende H.C., Coelho L.M., de Sousa, P.,  Melo D.F. and N.M. Coelho (2015). Bioremediation  of Polluted Waters Using Microorganisms. In: (Ed.),  Advances in Bioremediation of Wastewater and Polluted  Soil. IntechOpen. https://doi.org/10.5772/60770 DOI:  10.5772/60770

Mouhamad, R.S., Hussein, A.A., Alsaedi, S.A., Nasif, N.S.  and S.O. Joda (2017). Detect of human fecal contamination  in water and soil of multiple sanitary landfills in Baghdad  city. Microbiol. Res. Int., 5(4): 43-50.

Mouhamad, R.S., Khalel, S., Ali, M.Q., Joda, S.O., Nazir, A.,  Iqbal, M. and N.S. Nasif (2017). Geochemical properties  and agricultural suitability of groundwater at landfill site,  Baghdad, Iraq. Int. J. Ecol. Ecosolution, 4(2): 17-22.

Mouhamad, R.S., Munawar, I. and N. Arif (2018).  Physicochemical characteristics and irrigation suitability  of groundwater in the landfill site, Baghdad, Iraq. Waste  Management, 76: III-IV.

Ngodhe O. and E. Odhiambo (2018). Effects of sludge on the  concentration of heavy metals in soil and plants in Obunga  Slum, Kisumu County, Kenya. International Journal of  Environmental Sciences and Natural Resources, 15(2):  40-44. IJESNR.MS. 

Salman, S., Almuslamawy, H., Sulaiman, A. and R.  Mouhamad (2022). Atomic Absorption spectrophotometry  for determination of heavy metals concentration in the  Hornwort and water hyacinth plants growing in Tigris  River. International Journal of Special Education, 3(37): 10224-10235.

Selvi, A., Rajasekar, A., Theerthagiri, J., Ananthaselvam, A.,  Sathishkumar, K., Madhavan, J. and P.K.S.M. Rahman  (2019). Integrated remediation processes toward heavy  metal removal/recovery from various environments-A  review. Front. Environ. Sci., 7: 66. 

Shao, M.F., Zhang, T. and H.H. Fang (2010). Sulfur-driven  autotrophic denitrification: diversity, biochemistry, and  engineering applications. Appl. Microbiol. Biotechnol.,  88(5): 1027-1042.

Springthorpe, S.K., Dundas, C.M. and B.K. Keitz (2019).  Microbial reduction of metal-organic frameworks enables  synergistic chromium removal. Nat. Commun., 10: 5212.  https://doi.org/10.1038/s41467-019-13219-w 

Sun, R., Zhang, L., Zhang, Z., Chen, G.H. and F. Jiang (2018).  Realizing high-rate sulfur reduction under sulfate-rich  conditions in a biological sulfide production system to treat  metal-laden wastewater deficient in organic matter. Water  Research, 131: 239-245. https://doi.org/10.1016/j. watres.2017.12.039 

Tu, C., Liu, Y., Wei, J., Li, L., Scheckel, K.G. and Y. Luo  (2018). Characterization and mechanism of copper  biosorption by a highly copper-resistant fungal strain  isolated from copper-polluted acidic orchard soil. Environ. Sci. Pollut. Res. Int., (25): 24965-24974. 

van den Brand, T.P., Roest, K., Chen, G.H., Brdjanovic,  D. and van Loosdrecht, M. C. (2015). Potential for  beneficial application of sulfate reducing bacteria in sulfate  containing domestic wastewater treatment. World Journal  of Microbiology & Biotechnology, 31(11): 1675-1681. https://doi.org/10.1007/s11274-015-1935-x

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing