AccScience Publishing / AJWEP / Volume 20 / Issue 2 / DOI: 10.3233/AJW230025
RESEARCH ARTICLE

A Combined Approach for the Treatment of Textile Dye Bath Effluent Using CO2 Gas

Venkatesan Govindaraj1* Kalpana Manoharan1 Sakthivel S.1 Guruchandran K.1 Mathew W.1
Show Less
1 Department of Civil Engineering, Saveetha Engineering College, Chennai – 602 105, India
AJWEP 2023, 20(2), 59–65; https://doi.org/10.3233/AJW230025
Received: 26 December 2022 | Revised: 15 March 2023 | Accepted: 15 March 2023 | Published online: 15 March 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

In this study, baking soda extraction from textile dye bath effluent has been investigated. The novel notion  of employing amino acid additions to improve the standard Solvay method and thereby boost the efficiency of Na+ recovery has been investigated. Glycine, L-arginine, and L-alanine are three amino acid additions examined for  their effect on enhancing Na+  recovery, and the best-suited additive is chosen. The dumping of brackish dye bath  effluent, which has a high percentage of sodium chloride, causes textile dye baths from the textile industry. The  primary goal was to remove Na+  (sodium) from the effluent using carbon dioxide gas, which has environmental  benefits. Carbon dioxide (CO2) is the most common greenhouse gas, trapping heat and raising global temperatures,  therefore contributing to climate change. The Solvay process is used to transform Na+ in salty wastewater into a  valuable product. The effect of different operating variables such as NH4OH (ammonium hydroxide) concentration,  reaction temperature, carbonation time, and carbon dioxide gas flow rate on bicarbonate production was investigated.  Maximum sodium recovery of about 68 percent is attained under optimal circumstances. When compared with the  regular Solvay process, the modified Solvay method has a greater recovery efficiency (33 percent). Amino acid  addition (arginine) improved conversion efficiency while also lowering the process’s ammonia need.

Keywords
Arginine
carbon dioxide utilisation
baking soda recovery
modified Solvay process.
References

Aishwarya, R., Venkatesan, G, Regupathi, R. and R.G. Jenith  (2010a). Effect of copper slag and recycled aggregate in  the behavior of concrete composite. International Journal  of Applied Engineering Research, 10a(53): 117-121

Aishwarya, R., Venkatesan G., Rukesh, A.R. and Kirubanandan  (2010b). An experimental study on the behaviour of  concrete by addition of bamboo as fibre and comparing  it with the conventional concrete. International Journal of  Applied Engineering Research, 10b(53): 207-212

Aronu, U.E., Hessen, E.T., Haug- Warberg, T., Hoff, K.A. and H.F. Svendsen (2011). Equilibrium absorption of  carbon dioxide by amino acid salt and amine amino acid  salt solutions. Energy Procedia, 4: 109-116.

Dugas, R.E. and G.T. Rochelle (2011). CO₂ absorption rate into concentrated aqueous mono ethanolamine and piperazine. Journal of Chemical and Engineering Data,  56: 2187- 2195.

Erga, O., Juliussen, O. and H. Lidal (1995). Carbon dioxide  recovery by means of aqueous amines. Energy Convers.  Mgmt., 36: 387-392.

El-Naas, M.H. (2011). Reject Brine Management, in  Desalination, Trends, and Technologies. In Tech., Croatia,  pp. 237- 252.

Hoff, K.A., Juliussen, O., Falk-Pedersen, O. and H . F.  Svendsen (2004). Modeling and experimental study of  carbon dioxide absorption in aqueous alkanol amine  solutions using a membrane contactor. Ind Eng Chem  Res, 43: 4908- 4921.

Jibril, B.E. and A. Ibrahim (2001). Chemical conversions  of salt concentrate from desalination plants. Desalination,  139: 287-295.

Karunanidhi, D., Aravinthasamy, P, Subramani, T, Kumar,  D. and G. Venkatesan (2021). Chromium contamination  in groundwater and Sobol sensitivity model-based human  health risk evaluation from leather tanning industrial  region of South India. Environ. Res., 199: 111238.

Kilic, O. and A.M. Kilic (2005). Recovery of salt co-products  during the salt production from brine. Desalination Science  and Technology, 186: 11-19.

Krishnaveni, V. and K. Palanivelu (2013). Recovery of  sodium bicarbonate from textile dye bath effluent using  carbon dioxide gas. Ind. Eng. Chem. Res, 52: 16922-16928.

Kumar, P.S., Hogendoorn, J.A., Feron, P.H.M. and  G.F. Versteeg (2002a). New absorption liquids for the  removal of CO₂ from dilute gas streams using membrane contactors. Chemical Engineering Science, 57: 1639-1651.

Kumar, R., Campbell, S., Sonnenthal, E. and J. Cunningham  (2020). Effect of brine salinity on the geological  sequestration of CO2 in a deep saline carbonate formation.  Greenhouse Gas Science and Technology, 10: 296-312.

Lauwhoff, B.P.M., Versteeg, G.F. and W.P.M. van Swaaij  (1984). A study on the reaction between CO₂ and alkanol amines in aqueous solutions. Chemical Engineering Science, 39: 207-225.

Lepaumier, H., Picq, D. and P.L. Carrette (2009). New amines  for CO2 capture. I. Mechanisms of amine degradation in  the presence of CO2. Ind. Eng. Chem. Res, 48: 9061-9067.

MacDowell, N., Florin, N., Buchard, A., Hallett, J., Galindo,  A., Jackson, G., et al., (2010). An overview of CO₂ capture technologies. Energy Environmental Science, 3: 1645-1669.

Majchrowicz, M.E., Brilman, D.W.F. and M.J. Groeneveld  (2009). Precipitation regime for selected amino acid salts  for CO₂ capture from flue gases. Energy Procedia, 1: 979-984.

Martinetti, C.R., Childress, A.E. and T.Y. Cath (2009). High  recovery of concentrated RO brines using forward osmosis  and membrane distillation. J. Membrane. Sci., 331: 31-39.

Mohammad, A.F., El-Naas, M.H., Suleiman, M.I. and  M.A.L. Musharfy (2016). Optimization of a Solvay-Based  Approach for CO₂ Capture. Desalination 7: 230-234.

Munoz, D.M., Portugal, A.F., Lozano, A.E., Campa, J.G. and  J. De Abajo (2019). New liquid absorbents for the removal  of CO₂ from gas mixtures. Energy & Environmental  Science, 2: 883-891.

Ning, R.Y. and A.J. Tarquin (2010). Crystallization of salts  from super- concentrate produced by tandem RO process.  Desalination. Water Treat. 16: 238-242.

Portugal, A.F., Sousa, J.M., Magalhaes, F.D. and A. Mendes  (2009). Solubility of carbon dioxide in aqueous solutions  of amino acid salts. Chemical Engineering Science, 64:  1993-2002.

Puxty, G., Rowland, R. and M. Attalla (2010). Comparison  of the rate of CO₂ absorption into aqueous ammonia and monoethanolamine. Chemical Engineering Science, 65:  915-922.

Ren, S., Hou, Y., Wu, W., Tian, S. and W. Liu (2012). CO₂ capture from flue gas at high temperatures by new ionic  liquids with high capacity. RSC Adv., 2: 2504-2507.

Roberts, D.A., Johnston, E.L. and N . A . Knott (2010).  Impacts of desalination plant discharges on the marine  environment: A critical review of published studies, Water  Res., 44: 5117-5128.

Sachin, E.D., Ramachran, A,, Palanivelu, K,, Syrtsova, D,A.,  Teplyakov V V & Sci Technol, 10 (2020) 296. Sci Technol,  9 (2019) 1096.

Sivakumar, Balasundaram, V., Venkatesan, G. and S.P.  Saravanan (2014a). Effect of tamarind kernel powder  for treating dairy industry wastewater. Pollut. Res., 33: 519-523.

Sivakumar, Balasundaram. V., Venkatesan, G. and S.P.  Saravanan (2014b). Effect of tamarind kernel powder  for treating dairy industry wastewater. Pollut. Res., 33: 519-523.

Venkatesan, G. and P. Raj Chandar (2012). Possibility studies  and parameter finding for interlinking of Thamirabarani  and Vaigai Rivers in Tamil Nadu, India. Int. J. Earth Sci.  Eng., 1: 16-26.

Venkatesan, G. and T. Subramani (2016a). Case study on  environmental impact due to industrial wastewater in  Vellore District, Tamil Nadu, India using geospatial  techniques. Middle East J. Sci.Res., 24: 152-159.

Venkatesan, G. and T. Subramani (2018). Environmental  degradation due to the industrial wastewater discharge in  Vellore District, Tamil Nadu, India. Indian J. Geo- Mar.  Sci., 47: 2255-2259.

Venkatesan, G., Subramani, T., Sathya, U. and P.D. Roy (2021). Seasonal changes in groundwater composition in  an industrial center of south India and quality evaluation  for consumption and health risk using geospatial methods.  Geochemistry, 80(4): 125651. doi:10.1016/j.chemer.2020.1  25651

Venkatesan, G. and T. Subramani (2019). Reduction of  hexavalent chromium to trivalent chromium from tannery  effluent using bacterial biomass. Indian J. Geo-Mar. Sci.,  48(4): 528-534.

Venketasan, G., Thirumalasamy, S., Sankarc, J.I., Gopid  (2022). Groundwater potential mapping and natural remediation through artificial recharge structures in Vellore District, Tamil Nadu, India using geospatial https://scholar. google.co.in/citations?view_op=view_citation&hl=en&use r=xbxjAwwAAAAJ&citation_for_view=xbxjAwwAAAAJ %3A2KloaMYe4IUC. Desalination and Water Treatment,  254: 229-237.

Venkatesan, G., Aishwarya, R., Renjinny, A.S. and M.  Pavithra (2014). Surface & groundwater management  remote sensing and GIS-based. Int. J. Sci. Res. Dev., 1: 158-162.

Venkatesan, G. and T. Subramani (2016b). Parameter finding  for case study of environmental degradation due to  industrial pollution in Vellore, Tamil Nadu, India using  remote sensing and GIS Techniques. In: International  Conference on Science and Innovative Engineering  (ICSIE 2016), Jawahar Engineering College, Chennai,  India, pp. 1-7.

Venkatesan, G., Subramani, T., Karunanidhi, D., Sathya,  U. and P. Li (2021). Impact of precipitation disparity on groundwater fluctuation in a semi-arid region (Vellore  district) of southern India using geospatial techniques.  Environmental Science and Pollution Research, 28(15): 18539-18551

Venkatesan, G., Sankarb, J.I., Gnanamanickkam, J.N.G. and  Sd. Amala (2022). Demarcation of non-carcinogenic risk  zones based on the intake of contaminated groundwater  in an industrial area of southern India using geospatial  techniques. Desalination and Water Treatment, 274: 140- 149. doi: 10.5004/dwt.2022.28901

Woodall, G.M., McQueen, N., Pilorgé, H. and J. Wilcox  (2019). Utilization of mineral carbonation products: Current state and potential. Greenhouse Gas Science and  Technology, 9: 1096-1113.

Zhao, B., Su, Y., Tao, W., Li, L, and Y. Peng (2012). Post– combustion CO2 capture by aqueous ammonia: A state-ofthe-art review. International Journal of Greenhouse Gas  Control, 9: 355-371.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing