AccScience Publishing / AJWEP / Volume 19 / Issue 4 / DOI: 10.3233/AJW220053
RESEARCH ARTICLE

Influence of Copper Amendments on Soil Properties, Growth and Metal Accumulation by Mentha arvensis L.

Mamta Bisht1,2* Chitra Pande2 Geeta Tewari2 Sonal Tripathi3
Show Less
1 Department of Chemistry, School of Applied and Life Sciences, Uttaranchal University, Dehradun – 248007, India
2 D.S.B. Campus, Kumaun University, Nainital, Uttarakhand, India
3 Department of Agricultural Chemistry and Soil Science, Navsari Agriculture University, Gujarat – 396450, India
AJWEP 2022, 19(4), 33–39; https://doi.org/10.3233/AJW220053
Received: 19 March 2021 | Revised: 25 October 2021 | Accepted: 25 October 2021 | Published online: 25 October 2021
© 2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

A polyhouse study was conducted to assess the influence of copper amendments on the soil properties, plant growth parameters (fresh weight and plant height) and metal accumulation in Mentha arvensis L. The amendments of copper were 270, 500, 700 and 900 mg kg-1 in triplicate along with an unamended control. After 90 days of plant growth, the aerial parts of the plant were harvested and the physicochemical properties of the soil such as pH, EC, %OC, %OM and metal content in plant and soil were recorded. The pH and EC values were higher for the amendments as compared to the control. The pH (8.22) and EC (0.80 dS m-1) values were the highest for Cu270 mg kg-1 and Cu500 mg kg-1 amendments, respectively. The percentage of OC and OM was the highest (1.16%, 2.00%) for Cu500 mg kg-1. The plant height was maximum (36.30 cm) for the control plant while the fresh weight was maximum for Cu700 mg kg-1 amendment. The copper accumulation was observed to be the highest (19.3 mg kg-1) for the Cu500 mg kg-1 amendment and least (13.7 mg kg-1) for the higher amendment (Cu900 mg kg-1) showing that for all the amendments along with control, copper accumulation was within the permissible limit. Thus, growing medicinal and aromatic plants in the metal-rich soils can be a sustainable and environment-friendly approach to obtaining metal-free commercially important end products.

Keywords
Mentha arvensis L.
pH
electrical conductivity
organic carbon
organic matter
growth
copper
atomic absorption spectroscopy
References
  1. Ali, Z., Kazi, A.G., Malik, R.N., Naz, M., Khan, T., Hayat,  A. and A.M. Kazi (2015). Heavy Metal Built-Up in  Agricultural Soils of Pakistan: Sources, Ecological  Consequences and Possible Remediation Measures. In: Sherameti I., Varma A. (eds) Heavy Metal Contamination  of Soils. Soil Biology, (Vol. 44). Springer, Cham. https:// doi.org/10.1007/978-3-319-14526-6_2
  2. Alva, A.K., Huang, B., Prakashand, O. and S.  Paramasivam (1999). Effects of copper rates and soil  pH on growth and nutrient uptake by citrus seedlings.  Journal of Plant Nutrition, 22(11): 1687-1699. doi. org/10.1080/01904169909365747
  3. Anjum, S.A., Ashrf, U., Khan, I., Tanveer, M., Saleem,  M.F. and L. Wang (2016). Aluminum and chromium  toxicity in maize implications for agronomic attributes,  net photosynthesis, physicochemical oscillations and  metal accumulation in different plant parts. Water Air Soil  Pollution, 227(9): 326-340. 
  4. Arshad, M. and S. Marin (2002). Identifying critical limits  for soil quality indicators in agrosystem. Agriculture  Ecosystem and Environment, 88(2): 153-160.
  5. Atanassova, B. and N. Zapryanova (2009). Influence of heavy  metal stress on growth and flowering of Salvia splendens  Ker.-Gawl. Biotechnology Biotechnological Equipment,  23(1): 173-176.
  6. Bisht, M., Pande, C. and G. Tewari (2021). Effect of copper  amendments on the quality of essential oils extracted from  the aerial parts of Mentha arvensis L. J. Essent. Oil-Bear.  Pl., 24(2): 193-200.
  7. Broadley, M.R., White, P.J., Hammond, J.P., Zelko, I. and A.  Lux (2007). Zinc in plants. New Phytologist, 173: 677-702.
  8. Butterly, C.R., Baldock, J.A. and C. Tang (2013). The  contribution of crop residues to changes in soil pH under  field conditions. Plant and Soil, 366(1): 185-198.
  9. Cetin, M. and C. Kirda (2003). Spatial and temporal changes  of soil salinity in a cotton field irrigated with low-quality  water. Journal of Hydrology, 272(1-4): 238-249.
  10. Chang, H.B, Lin, C.W. and H.J. Huang (2005). Zinc induced  cell death in rice (Oryza sativa L.) roots. Plant Growth  Regulation, 46(3): 261-266.
  11. Divan, A.M., Jrde-Oliveira, P.L., Perry, C.T., Atz, V.L.,  Azzarini-Rostirola, L.N. and M.T. Raya-Rodriguez (2009).  Using wild plant species as indicators for the accumulation  of emissions from a thermal power plant, Candiota, South  Brazil. Ecol. Indic., 9: 1156-1162.
  12. Doran, J.W. and M.R. Zeiss (2000). Soil health and  sustainability managing the biotic component of soil  quality. Applied Soil Ecology, 15(1): 3-11.
  13. Garbisu, C. and I. Alkorata (2003). Basic concepts on heavy  metal soil bioremediation. The European Journal of  Mineral Processing and Environmental Protection, 3(1): 58-66.
  14. Halecki, W. and M. Ga-Siorek (2015). Seasonal variability of  microbial biomass phosphorus in urban soils. The Science  of the Total Environment, 502: 42-47.
  15. Hossain, M.A., Piyatida, P., da Silva, J.A.T. and M. Fujita  (2012). Molecular mechanism of heavy metal toxicity  and tolerance in plants: Central role of glutathione in  detoxification of reactive oxygen species and methyl  glyoxal and in heavy metal chelation. The American  Journal of Botany, 872875: 1-37.
  16. Hu, J., Deng, Z., Wang, B., Zhi, Y., Pei, B., Zhang, G., Luo,  M., Huang, B., Wu, W. and B. Huang (2015). Influence  of heavy metals on seed germination and early seedling  growth in Crambe abyssinica: A potential industrial oil  crop for phytoremediation. American Journal of Plant  Science, 6(1): 150-156.
  17. Kajaer, C. and N. Elmegaard (1996). Effect of copper  sulphate on black bindweed (Polygonum convolvulus L.).  Ecotoxicology and Environmental Safety, 33(2): 110-117.
  18. Kaur, T., Brar, B.S. and N.S. Dhillon (2008). Soil organic  matter dynamics as affected by long-term use of organic  and inorganic fertilizers under maize-wheat cropping  system. Nutrient Cycling in Agroecosystems, 81(1): 59-69. 
  19. Komal, T., Mustafa, M., Ali, Z. and A. Gul (2015). Heavy  metal uptake and transport in plants. In: Heavy Metal  Contamination of Soils. Vol.44, Springer, Cham. Kononova, M.M. (1996). Soil Organic Matter its Nature its  Role in Soil Formation and in Soil Fertility. Oxford U.K  Pergamon Press. pp, 544.
  20. Kumpiene, J., Lagerkvist, A. and C. Maurice (2008).  Stabilization of As, Cr, Cu, Pb and Zn in soil using  amendments-A review. Journal of Waste Management,  28: 215-225.
  21. Lindsay, W.L. and W.A. Norvell (1978). Development of a  DTPA micronutrient soil test for zinc, iron, manganese,  and copper. Journal of Soil Science Society of America,  42(3): 421-428.
  22. Lokeshwari, H. and G.T. Chandrappa (2006). Impact of  heavy metal contamination of Bellandur lake on soil and  cultivated vegetation. Current Science, 91(9): 622-627.
  23. Narula, A., Kumar, S. and P.S. Srivastava (2005). Abiotic  metal stress enhances diosgenin yield in Dioscorea  bulbifera L. cultures. Plant Cell Reports, 24(4): 250-254.
  24. Natsheh, B. and S. Mousa (2014). Effect of organic and  inorganic fertilizers application on soil and Cucumber  (Cucumis Sativa L.) plant productivity. International  Journal of Agriculture and Foresty, 4(3): 166-170. 
  25. Piper, C.S. (1942). Soil and Plant Analyses: A laboratory  manual of methods for examination of soils and the determination of inorganic constituents of plants. The  University of Adelaide, Adelaide, Australia. pp. 368.
  26. Radic, S., Babic, M., Skobic, D. and V. Roje (2010).  Ecotoxicological effects of aluminium and zinc on growth  and antioxidants in Lemna minor L. Ecotoxicology and  Environmental Saftey, 73(3): 336-342.
  27. Scora, R.W. and A.C. Chang (1997). Essential oil quality  and heavy metal concentrations of peppermint grown on a  municipal sludge-amended soil. Journal of Environmental  Quality, 26: 975-979.
  28. Sheldon, A.R. and N.W. Menzies (2005). The effect of copper  toxicity on the growth and root morphology of Rhodes  grass (Chloris gayana Kunth) in resin buffered solution  culture. Plant and Soil, 278(1, 2): 341-349.
  29. Solgi, E. (2016).Contamination of two heavy metals in  topsoils of the Urban Parks Asadabad. Archives of hygiene  sciences, 5: 92-101. 
  30. Walkey, A. and I.A. Black (1934). An examination of the  digestion method for determining organic carbon in  soils: Effect of variations in digestion conditions and of  inorganic soil constituents. Soil Science, 63: 251-263.
  31. Wang, K., Ma, J., Li, M., Qin, Y., Bao, X., Wang, C., Cui,  D., Xiang, O. and L.Q. Ma (2021). Mechanisms of Cd  and Cu induced toxicity in human gastric epithelial cells:  Oxidative stress, cell cycle arrest and apoptosis. The  Science of the Total Environment, 756: 143951.
  32. Weber, J., Dradrach, A., Karczewska, A. and A. Kocowicz  (2018). The distribution of sequentially extracted Cu,Pb, and Zn fractions in Podzol profiles under dwarf  pine of different stages of degradation in subalpine zone  of Karkonosze Mts (central Europe). Journal of Soil  Sediments, 18: 2387-2398.
  33. World Health Organisation (WHO) (1998). Environment  Health Copper. 
  34. Woo, S., Yum, S., Park, H.S., Lee, T.K. and J.C. Ryu (2009).  Effects of heavy metals on antioxidants and stressresponsive gene expression in Javanese medaka (Oryzias  javanicus). Comparative Biochemistry and Physiology,  Part C, 149: 289-299.
  35. Yruela, I. (2005). Copper in plants. Brazilian Journal of  Plant Physiology, 17(1): 145-156. https://doi.org/10.1590/ S167704202005000100012
  36. Zheljazkov, V.D., Cracker, L., Xing, B., Nielson, N.E. and  A. Wilcox (2008). Aromatic plant production in metal  contamination soils. The Science of the Total Environment,  395: 51-62.
  37. Zheljazkov, V.D. and N.E. Neilson (1996a). Effect of heavy  metals on peppermint and cornmint. Plant and Soil,  178(1): 59-66. doi.org/10.1007/BF00011163
  38. Zheljazkov, V.D. and P.R. Warman (2003). Application of  high copper compost to swiss chard and basil. Science  of the Total Environment, 302(1,3): 13-26. doi: 10.1016/ s0048-9697(02)00390
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing