AccScience Publishing / AJWEP / Volume 19 / Issue 4 / DOI: 10.3233/AJW220051
RESEARCH ARTICLE

Thermal and Biological Degradation of Herbicides to Treat Wastewater and Soil Pollution

Inas J. Al-Nuaemi1* Kafaa F. Abbas1 Ramy M. Jebir Al-Alawy2 Hussam N. Al Ani2
Show Less
1 Petroleum and Gas Refining Engineering Department, Al Farabi University College, Baghdad, Iraq
2 Middle Technical University, Institute of Technology, Baghdad, Iraq
AJWEP 2022, 19(4), 17–23; https://doi.org/10.3233/AJW220051
Received: 7 March 2022 | Revised: 15 April 2022 | Accepted: 15 April 2022 | Published online: 15 April 2022
© 2022 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Since their discovery in 1958, atrazine and other members of s-triazine family have been extensively applied in order to control grassy and broadleaf weeds in crops. Although, it was proved by many researchers that atrazine was slow and partially degradable material. These pesticides were widely used to enhance crop quality and yield. Atrazine degradation can be achieved by the effects of air, sun, water, microorganisms and temperature. Thermal degradation plays an important role in agrochemicals elimination; so a better understanding of the role of thermal degradation of atrazine is essential. Quantitative determination of pesticide residues was studied by calculating the amount of herbicide residues left after decomposition using a simple thermo analytical technique (TG, DSC). In this study, we found that all samples undergo the process of melting, evaporation, decomposition and oxidation at a temperature higher than the maximum registered climate temperature which made us conclude that 80–90%wt) of the pesticides stay in the environment without change under 100 °C on different parts of plants like fruits, leaves, and some penetrate into the ground to reach the roots or continue to the groundwater causes toxic problems to their consumers and environmental pollution. This result gave the motivation to find a more effective approach to reduce the harmful effect of these pollutants. In this regard, biological degradation of atrazine by using two legumes roots rhizobium bacteria was investigated. It is found that both rhizobium are able to treat atrazine at moderate temperature (30 °C). In comparison to chickpea rhizobia, bean rhizobia showed a higher performance with a removal efficiency of 43.21% and 57.42% at mild and high atrazine concentrations (5 mg/L and 10 mg/L) respectively. The results from this research offer an elegant way to remove the harmful effect of herbicides through degradation and to bring the safe use of herbicides a step closer to applications.

Keywords
Atrazine
biological degradation
herbicides
pesticides toxicity
thermal decomposition.
References
  1. Aelion, C.M. and P.P. Mathur (2001). Atrazine biodegradation  to deisopropylatrazine and deethylatrazine in coastal  sediments of different land uses. Environmental Toxicology  and Chemistry: An International Journal, 20(11): 2411- 2419.
  2. Cheng, Y., He, H., Yang, C., Zeng, G., Li, X., Chen, H. and  G. Yu (2016). Challenges and solutions for biofiltration of  hydrophobic volatile organic compounds. Biotechnology  Advances, 34(6): 1091-1102.
  3. Claver, A., Ormad, P., Rodríguez, L. and J.L. Ovelleiro  (2006). Study of the presence of pesticides in surface  waters in the Ebro river basin (Spain). Chemosphere,  64(9): 1437-1443.
  4. Cook, A.M. (1987). Biodegration of s-triazine xenobiotics.  FEMS Microbiology Reviews, 3(2): 93-116.
  5. Desitti, C., Cheruti, U., Beliavski, M., Tarre, S. and M. Green  (2016). Long-term atrazine degradation with microtubeencapsulated Pseudomonas sp. strain ADP. Environmental  Engineering Science, 33(3): 167-175.
  6. Fang, H., Lian, J., Wang, H., Cai, L. and Y. Yu (2015).  Exploring bacterial community structure and function  associated with atrazine biodegradation in repeatedly  treated soils. Journal of hazardous materials, 286: 457- 465.
  7. Fernandes, A.F.T., Braz, V.S., Bauermeister, A., Paschoal,  J.A.R., Lopes, N.P. and E.G. Stehling (2018). Degradation  of atrazine by Pseudomonas sp. and Achromobacter sp.  isolated from Brazilian agricultural soil. International  Biodeterioration & Biodegradation, 130: 17-22.
  8. Hamed, S.M., Hassan, S.H., Selim, S., Wadaan, M.A.M.,  Mohany, M., Hozzein, W.N. and H. AbdElgawad.  (2020). Differential responses of two cyanobacterial  species to R-metalaxyl toxicity: Growth, photosynthesis  and antioxidant analyses. Environmental Pollution, 258:  113681.
  9. Hamed, S.M., Hozzein, W.N., Selim, S., Mohamed, H.S. and  H. AbdElgawad (2021). Dissipation of pyridaphenthion  by cyanobacteria: Insights into cellular degradation,  detoxification and metabolic regulation. Journal of  Hazardous Materials, 402: 123787.
  10. Hess and Warren (2002). The herbicide handbook of the  weed science society of America. Weed Science Society  of America, Westminster, USA, pp. 159-161.
  11. IARC Working Group on the Evaluation of Carcinogenic  Risks to Humans (1991). Occupational exposures in  insecticide application, and some pesticides (Vol. 53):  World Health Organization.
  12. Iriel, A., Novo, J.M., Cordon, G.B. and M.G. Lagorio (2014).  Atrazine and methyl viologen effects on chlorophyll‐a  fluorescence revisited—Implications in photosystems  emission and ecotoxicity assessment. Photochemistry and  Photobiology, 90(1): 107-112.
  13. Ji, Y., Dong, C., Kong, D., Lu, J. and Q. Zhou (2015). Heatactivated persulfate oxidation of atrazine: Implications for  remediation of groundwater contaminated by herbicides.  Chemical Engineering Journal, 263: 45-54.
  14. Kiss, A. and D. Virág (2009). Photostability and  photodegradation pathways of distinctive pesticides.  Journal of Environmental Quality, 38(1): 157-163.
  15. Kumar & Singh (2016). Atrazine and its metabolites  degradation in mineral salts medium and soil using  an enrichment culture. Environmental Monitoring and  Assessment, 188(3): 142.
  16. Lian, Jiang, Xing & Zhang (2021). Identification of  photodegradation product of organophosphorus pesticides  and elucidation of transformation mechanism under  simulated sunlight irradiation. Ecotoxicology and  Environmental Safety, 224: 112655.
  17. Loos, Locoro, Comero, Contini, Schwesig, Werres, Balsaa,  Gans, Weiss & Blaha (2010). Pan-European survey on the  occurrence of selected polar organic persistent pollutants  in ground water. Water Research, 44(14): 4115-4126.
  18. Luo, L., He, H., Yang, C., Wen, S., Zeng, G., Wu, M., Zhou, Z.  and W. Lou (2016). Nutrient removal and lipid production  by Coelastrella sp. in anaerobically and aerobically treated  swine wastewater. Bioresource Technology, 216: 135-141.
  19. Luo, W., Yang, C., He, H., Zeng, G., Yan, S. and Y. Cheng  (2014). Novel two-stage vertical flow biofilter system for  efficient treatment of decentralized domestic wastewater.  Ecological Engineering, 64: 415-423.
  20. Luo, S., Zhen, Z., Zhu, X., Ren, L., Wu, W., Zhang, W., Chen,  Y., Zhang, D., Song, Z. and Z. Lin (2021). Accelerated  atrazine degradation and altered metabolic pathways in  goat manure assisted soil bioremediation. Ecotoxicology  and Environmental Safety, 221: 112432.
  21. Ma, L., Chen, S., Yuan, J., Yang, P., Liu, Y. and K. Stewart  (2017). Rapid biodegradation of atrazine by Ensifer  sp. strain and its degradation genes. International  Biodeterioration & Biodegradation, 116: 133-140.
  22. Mandelbaum, R.T., Allan, D.L. and L.P. Wackett (1995).  Isolation and characterization of a Pseudomonas sp. that  mineralizes the s-triazine herbicide atrazine. Applied and  Environmental Microbiology, 61(4): 1451-1457.
  23. Mudhoo, A. and V.K. Garg (2011). Sorption, transport and  transformation of atrazine in soils, minerals and composts:  A review. Pedosphere, 21(1): 11-25.
  24. Nagananda, G.S., Das, A., Bhattacharya, S. and T. Kalpana  (2010). In vitro studies on the effects of biofertilizers  (Azotobacter and Rhizobium) on seed germination  and development of Trigonella foenum-graecum L.  using a novel glass marble containing liquid medium.  International Journal of Botany, 6(4): 394-403.
  25. Pugh, K.C. (1994). Toxicity and physical properties of  atrazine and its degradation products: A literature survey.  Tennessee Valley Authority, Muscle Shoals, AL (United  States).
  26. Rashid, F.H., Taha, A.A. and N.J. Hameed (2019). Study of  toxic heavy metal removal by diffrent chitosan/hyacinths  plant composite. The Iraqi Journal of Agricultural Science,  50(4): 1416-1424.
  27. Remucal, C.K. (2014). The role of indirect photochemical  degradation in the environmental fate of pesticides: A  review. Environmental Science: Processes & Impacts,  16(4): 628-653.
  28. Santos, R.S. (2020). Isolamento, caracterização e identificação  de rizobactérias com habilidades para promover o  crescimento de plantas (Doctoral Thesis).
  29. Sene, L., Converti, A., Secchi, G.A.R. and R.C.G. Simão  (2010). New aspects on atrazine biodegradation. Brazilian  Archives of Biology and Technology, 53(2): 487-496.
  30. Shaker and Alhameed (2016). Effect of application treaeed  water and dry sludge on sill contamination with pathogenic  bactreia. The Iraqi Journal of Agricultural Science, 47(2): 627-634.
  31. Singh, S., Kumar, V., Chauhan, A., Datta, S., Wani, A.B.  Singh, N. and J. Singh (2018). Toxicity, degradation  and analysis of the herbicide atrazine. Environmental  Chemistry Letters, 16(1): 211-237.
  32. Singh, B. and K. Singh (2016). Microbial degradation of  herbicides. Critical Reviews in Microbiology, 42(2): 245-261.
  33. Siripattanakul, S., Wirojanagud, W., McEvoy, J.M., Casey,  F.X.M. and E. Khan (2008). Atrazine remediation in  agricultural infiltrate by bioaugmented polyvinyl alcohol  immobilized and free Agrobacterium radiobacter J14a.  Water Science and Technology, 58(11): 2155-2163.
  34. Sultan, M.S., Thani, M.Z., Khalaf, H.S. and A.J. Salim  (2018). Determination of some heavy metals in solid waste  from heavy water treatment station in Baghdad. The Iraqi  Journal of Agricultural Science, 49(3): 500-505.
  35. Topp, E., Mulbry, W.M., Zhu, H., Nour, S.M. and D. Cuppels  (2000). Characterization of s-triazine herbicide metabolism  by a Nocardioides sp. isolated from agricultural soils.  Applied and Environmental Microbiology, 66(8): 3134- 3141.
  36. Udiković-Kolić, N., Scott, C. and F. Martin-Laurent (2012).  Evolution of atrazine-degrading capabilities in the  environment. Applied Microbiology and Biotechnology,  96(5): 1175-1189.
  37. Vargha, M., Takáts, Z. and K. Márialigeti (2005). Degradation  of atrazine in a laboratory scale model system with Danube  river sediment. Water Research, 39(8): 1560-1568.
  38. Wackett, L., Sadowsky, M., Martinez, B. and N. Shapir  (2002). Biodegradation of atrazine and related s-triazine  compounds: From enzymes to field studies. Applied  Microbiology and Biotechnology, 58(1): 39-45.
  39. Wang, J., Zhu, L., Wang, Q., Wang, J. and H. Xie (2014).  Isolation and characterization of atrazine mineralizing  Bacillus subtilis strain HB-6. PLoS One, 9(9): e107270.
  40. Wu, S., He, H., Inthapanya, X., Yang, C., Lu, L., Zeng, G.  and Z. Han (2017). Role of biochar on composting of  organic wastes and remediation of contaminated soils—A  review. Environmental Science and Pollution Research,  24(20): 16560-16577.
  41. Wu, S., He, H., Li, X., Yang, C., Zeng, G., Wu, B., He, S.  and L. Lu (2018). Insights into atrazine degradation by  persulfate activation using composite of nanoscale zerovalent iron and graphene: Performances and mechanisms.  Chemical Engineering Journal, 341: 126-136.
  42. Yang, C., Chen, H., Zeng, G., Yu, G. and S. Luo (2010).  Biomass accumulation and control strategies in gas  biofiltration. Biotechnology Advances, 28(4): 531-540.
  43. Ye, T., Wei, Z., Spinney, R., Tang, C.-J., Luo, S., Xiao, R. and  D. Dionysiou (2017). Chemical structure-based predictive  model for the oxidation of trace organic contaminants by  sulfate radical. Water Research, 116: 106-115.
  44. Zhai, Y., Monikh, F.A., Wu, J., Grillo, R., Arenas-Lago, D.,  Darbha, G.K., Vijver, M.G. and W.J.G.M. Peijnenburg  (2020). Interaction between a nano-formulation of  atrazine and rhizosphere bacterial communities: Atrazine  degradation and bacterial community alterations.  Environmental Science: Nano, 7(11): 3372-3384.
  45. Zhang, Y., Cheng, Y., Yang, C., Luo, W., Zeng, G. and L.  Lu (2015). Performance of system consisting of vertical  flow trickling filter and horizontal flow multi-soil-layering  reactor for treatment of rural wastewater. Bioresource  Technology, 193: 424-432.
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing