AccScience Publishing / AJWEP / Volume 19 / Issue 2 / DOI: 10.3233/AJW220028
RESEARCH ARTICLE

Appraisal of Flood Prone Area Management Using Artificial Intelligence Methods in Jakarta Basin, Indonesia

Tito Latif Indra1* Yusya Reinof Razzaqi2 Septyandy Muhammad Rizqy2
Show Less
1 Department of Geography, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
2 Program Study of Geology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
AJWEP 2022, 19(2), 89–99; https://doi.org/10.3233/AJW220028
Received: 16 June 2021 | Revised: 8 September 2021 | Accepted: 8 September 2021 | Published online: 8 September 2021
© 2021 by the 10.3233/AJW220028. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Jakarta often experiences floods every rainy season. Some major floods that crippled human activities  have occurred in 2002, 2007, 2013, and 2020. The factors affecting the floods are the lowland basin and land  subsidence of Jakarta. The analysis used in this study is geographic information systems (GIS) tools with artificial  intelligence (AI) methods to produce flood distribution models. Also, hydrogeochemical analysis is conducted  to determine seawater intrusion and its correlation with land subsidence that causes floods in Jakarta. The AI  methods show that the Genetic Algorithm Rule-set Production, GARP (AUC-ROC = 0.90) has a greater value  than the Quick Unbiased Statistical Tree, QUEST (AUC-ROC = 0,79). The results show that GARP is the best  method to produce the model distribution of flood hazard points which has been dominating in Northern Jakarta.  The correlation between the results of the flood distribution model and the seawater intrusion shows that the  condition of land subsidence rate in Jakarta is very massive. The output of this research serves as the basis for  determining a better spatial plan for Jakarta in the future.

Keywords
GIS
artificial intelligence
Jakarta
flood prone area
seawater intrusion.
References

Abidin, H.Z., Andreas, H., Gumilar, I., Gamal, M., Fukuda,  Y. and T. Deguchi (2011). Land subsidence of Jakarta  (Indonesia) and its relation with urban development.  Natural Hazards, 59: 1753.

Aldrian, E. (2008). Dominant factors of jakartas three largest  floods. J. Hidrosfir Indonesia, 33: 105-112.

Alex, H.N., Linlin, G., Xiaojing, L., Hasanuddin, Z.A., Heri,  A. and Z. Kui (2012). Mapping land subsidence in Jakarta,  Indonesia using persistent scatterer interferometry (PSI)  technique with ALOS PALSAR. International Journal  of Applied Earth Observation and Geoinformation, 18:  232-242.

Bemmelen, R.V. (1970). The geology of Indonesia. General  Geology of Indonesia and Adjacent Archipelagoes,  Government Printing, The Hague 1949, 1a.

Bott, M.L., Schone, T., Illigner, J., Haghighi, M.H., Gisevius,  K. and B. Braun (2021). Land subsidence in Jakarta  and Semarang Bay – The relationship between physical  processes, risk perception, and household adaptation.  Ocean & Coastal Management, 211: 105775.

Darabi, H., Choubin, B., Rahmati, O., Haghighi, A.T.,  Pradhan, B. and B. Klove (2018). Urban flood risk  mapping using the GARP and QUEST models: A  comparative study of machine learning techniques. Journal  of Hydrology, 569: 142-154.

Falah, F. (2019). Spatial Modeling in GIS and R for Earth  and Environmental Sciences. Artificial Neural Networks  for Flood Susceptibility Mapping in Data-Scarce Urban  Areas, pp. 323-336.

Fernandez, D.S. and MA. Lutz (2010). Urban flood hazard  zoning in Tucumán Province, Argentina, using GIS and  multicriteria decision analysis. Eng. Geol., 111(1-4): 90-98.

Jasechko, S., Perrone, D., Seybold. H., Fan, Y. and J.W.  Kirchner (2021). Widespread potential loss of streamflow  into underlying aquifers across the USA. Nature,  591(7850): 391-395.

Luo, P., Kang, S., Apip, Z.M., Lyu, J., Siti, A., Mishra, B.,  Ram, K.R. and N. Daniel (2019). Water quality trend  assessment in Jakarta: A rapidly growing Asian megacity.  PLOS ONE, 14(7): e0219009.

Marfai, M.A., Yulianto, F., Hizabron, D.R., Ward, P. and J. Aerts (2009). Preliminary Assessment Modeling the  Effects of Climate Change on Potential Coastal Flood  Damage in Jakarta, VU University Amsterdam and Gadjah  Mada University Yogyakarta, 2009.

Moghaddam, D.D., Rahmati, O., Haghizadeh, A. and Z.  Kalantari (2020). A Modeling comparison of groundwater  potential mapping in a mountain bedrock aquifer: QUEST,  GARP, and RF Models. Water, 12(3): 679.

Murdohardono, D. and U. Sudarsono (1998). Land  subsidence monitoring system in Jakarta. In: Proceedings  of the symposium on Japan– Indonesia IDNDR project:  Volcanology, tectonics, flood and sediment hazards, pp.  243-256.

Ngoc-Thach, N., Ngo, D.B.T., Xuan-Canh, P., Hong-Thi,  N., Thi, B.H., NhatDuc, H. and T.B. Dieu (2018). Spatial  pattern assessment of tropical forest fire danger at Thuan  Chau area (Vietnam) using GIS-based advanced machine  learning algorithms: A comparative study. Ecological  Informatics, 46: 74-85.

Stockwell, D. (1999). The GARP modeling system: Problems  and solutions to automated spatial prediction. International  Journal of Geographical Information Science, 13(2): 143-158.

Verstappen, H.Th. (2000). Outline of the Geomorphology of  Indonesia: A Case Study on Tropical Geomorphology of  a Techtogene Region. ITC Publication, 79.

Vroost, R.V. (2015). Applying the risk society thesis within  the context of flood risk and poverty in Jakarta, Indonesia.  Health, Risk & Society, 17(3-4): 246-262.

Yusya, R.R, Septyandi, M.R. and T.L. Indra (2019). Flood  risk mapping of Jakarta using genetic algorithm rule set  production (GARP) and quick unbiased efficient statistical  tree (QUEST) methods. IOP Conference Series Materials,  Science and Engineering, pp. 875.

Zuidam, V. (1983). Guide to Geomorphologic-Aerial  Photographic Interpretation and Mapping. International  Institute for Geo-Information Science and Earth  Observation, ITC: Enschede The Netherlands.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing