AccScience Publishing / AIH / Online First / DOI: 10.36922/AIH025350070
MINI-REVIEW

Challenges in incorporating artificial intelligence into daily healthcare practice

Aref Zribi1* Omar Ayaad1
Show Less
1 Sultan Qaboos Comprehensive Cancer Care and Research Centre, University Medical City, Muscat, Oman
Received: 25 August 2025 | Revised: 28 September 2025 | Accepted: 9 October 2025 | Published online: 3 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Artificial intelligence (AI) holds huge potential in improving diagnosis and streamlining workflows in health care. However, several challenges remain, hampering the widespread adoption in clinical settings, such as for assessing data quality, bias, interoperability, and privacy, as well as for use in regulation and clinician training. Potent data channels are vital for assuring the exactness and trustworthiness of diagnostic performance. They boost the transmission of high-quality information, which is essential for expert annotations. Interoperable electronic health record integration and federated or privacy‑enhancing training approaches allow real‑time analytics while guarding patient data. Regulatory indecision and the comprehensive and continuous supervision of the process require transparent, explainable AI and shared accountability among developers, doctors, and institutions. In addition, prospective clinical validation, physician education, and governance are paramount to building trust and guaranteeing safe AI deployment in health care. This review outlines the difficulties faced when integrating these technological advancements into everyday clinical practice.

Graphical abstract
Keywords
Artificial intelligence
Health care
Data quality
Data security
Ethics
Regulatory compliance
Clinical validation
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Noorbakhsh-Sabet N, Zand R, Zhang Y, Abedi V. Artificial intelligence transforms the future of health care. Am J Med. 2019;132(7):795-801. doi: 10.1016/j.amjmed.2019.01.017

 

  1. Bhattamisra SK, Banerjee P, Gupta P, Mayuren J, Patra S, Candasamy M. Artificial Intelligence in Pharmaceutical and Healthcare Research. Big Data Cogn Comput. 2023;7:10. doi: 10.3390/bdcc7010010

 

  1. Ozaki Y, Broughton P, Abdollahi H, Valafar H, Blenda AV. Integrating omics data and AI for cancer diagnosis and prognosis. Cancers (Basel). 2024;16(13):2448. doi: 10.3390/cancers16132448

 

  1. Miller DD, Brown EW. Artificial intelligence in medical practice: The question to the answer? Am J Med. 2018;131(2):129-133. doi: 10.1016/j.amjmed.2017.10.035

 

  1. Zhang C, Xu J, Tang R, et al. Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment. J Hematol Oncol. 2023;16(1):114. doi: 10.1186/s13045-023-01514-5

 

  1. Hasei J, Nakahara R, Otsuka Y, et al. High‐quality expert annotations enhance artificial intelligence model accuracy for osteosarcoma X‐ray diagnosis. Cancer Sci. 2024;115(11):3695-3704. doi: 10.1111/cas.16330

 

  1. Budach L, Feuerpfeil M, Ihde N, et al. The effects of data quality on machine learning performance on tabular data. Inform Syst. 2025;132:102549. doi: 10.1016/j.is.2025.102549

 

  1. Wal D, Jhun I, Laklouk I, et al. Biological data annotation via a human-augmenting AI-based labeling system. NPJ Digit Med. 2021;4:145. doi: 10.1038/s41746-021-00520-6.1

 

  1. Wang Y, Stevens D, Shah P, et al. Model-in-the-Loop (MILO): Accelerating Multimodal AI Data Annotation with LLMs. [Preprint]; 2024. doi: 10.48550/arXiv.2409.10702.2

 

  1. Gupta N, Mujumdar S, Patel H, et al. Data Quality for Machine Learning Tasks. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. Virtual Event Singapore: ACM; 2021. p. 4040-1. Available from: https://www.com/dl.acm.org/doi/10.1145/3447548.3470817 [Last accessed on 2025 Aug 22].

 

  1. Teh HY, Kempa-Liehr AW, Wang KIK. Sensor data quality: A systematic review. J Big Data. 2020;7(1):11. doi: 10.1186/s40537-020-0285-1

 

  1. Fan W, Geerts F. Foundations of Data Quality Management. In: Synthesis Lectures on Data Management. Cham: Springer International Publishing; 2012. Available from: https://www. com/link.springer.com/10.1007/978-3-031-01892-3 [Last accessed on 2025 Aug 22].

 

  1. Cai L, Zhu Y. The challenges of data quality and data quality assessment in the big data Era. Data Sci J. 2015;14:2. doi: 10.5334/dsj-2015-002

 

  1. Batini C, Rula A, Scannapieco M, Viscusi G. From data quality to big data quality. J Database Manag. 2015;26(1):60-82. doi: 10.4018/JDM.2015010103

 

  1. Whang S, Roh Y, Song H, Lee J. Data collection and quality challenges in deep learning: A data centric AI perspective. VLDB J. 2021;32:791-813. doi: 10.1007/s00778-022-00775-9

 

  1. Gong Y, Liu G, Xue Y, Li R, Meng L. A survey on dataset quality in machine learning. Inf Softw Technol. 2023;162:107268. doi: 10.1016/j.infsof.2023.107268

 

  1. Rao D, Gudivada V, Raghavan V. Data quality issues in big data. In: 2015 IEEE International Conference on Big Data. 2015. p. 2654-60. doi: 10.1109/BigData.2015.7364065

 

  1. Schelter S, Lange D, Schmidt P, Celikel M, Biessmann F, Grafberger A. Automating large scale data quality verification. Proc VLDB Endow. 2018;11:1781. doi: 10.14778/3229863.3229867

 

  1. Ferrara E. Fairness and bias in artificial intelligence: A brief survey of sources, impacts, and mitigation strategies. Science. 2024;6(1):3. doi: 10.3390/sci6010003

 

  1. Nishant R, Schneckenberg D, Ravishankar M. The formal rationality of artificial intelligence-based algorithms and the problem of bias. J Inf Technol. 2023;39:19-40. doi: 10.1177/02683962231176842

 

  1. Bleeker S, Moll H, Steyerberg E, et al. External validation is necessary in prediction research: A clinical example. J Clin Epidemiol. 2003;56:826-832. doi: 10.1016/s0895-4356(03)00207-5

 

  1. Castaldi P, Dahabreh I, Ioannidis J. An empirical assessment of validation practices for molecular classifiers. Brief Bioinform. 2011;12(3):189-202. doi: 10.1093/bib/bbq073

 

  1. Ho S, Phua K, Wong L, Goh W. Extensions of the external validation for checking learned model interpretability and generalizability. Patterns (N Y). 2020;1(8):100129. doi: 10.1016/j.patter.2020.100129

 

  1. Ballantyne A. How should we think about clinical data ownership? J Med Ethics. 2020;46:289-294. doi: 10.1136/medethics-2018-105340

 

  1. Galvin HK, DeMuro PR. Developments in privacy and data ownership in mobile health technologies, 2016-2019. Yearb Med Inform. 2020;29:32-43. doi: 10.1055/s-0040-1701987

 

  1. Tucker K, Branson J, Dilleen M, et al. Protecting patient privacy when sharing patient-level data from clinical trials. BMC Med Res Methodol. 2016;16(Suppl 1):77. doi: 10.1186/s12874-016-0169-4

 

  1. Shin P, Ahn J, Yin W, Sampson J, Vijaykrishnan N. Can Prompt Modifiers Control Bias? A Comparative Analysis of Text-to-Image Generative Models. [Preprint]; 2024. doi: 10.48550/arXiv.2406.05602

 

  1. Ahn H. AI-Powered E-Learning for Lifelong Learners: Impact on Performance and Knowledge Application. [Preprint]; 2024. doi: 10.3390/su16209066

 

  1. Park S, Kim H, Park J, Lee Y. Designing and evaluating user experience of an AI-based defense system. IEEE Access. 2023;11:122045-122056. doi: 10.1109/ACCESS.2023.3329257

 

  1. Sunitha M, B., Gunavardhan E. Artificial Intelligence-based smart education system. In: 2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC). United States: IEEE; 2023. p. 1346-1350.

 

  1. Asan O, Choi E, Wang X. Artificial intelligence-based consumer health informatics application: Scoping review. J Med Internet Res. 2023;25:e47260. doi: 10.2196/47260

 

  1. Choudhury A, Asan O. Role of artificial intelligence in patient safety outcomes: Systematic literature review. JMIR Med Inform. 2020;8(7):e18599. doi: 10.2196/18599

 

  1. Gance-Cleveland B, Ozkaynak M. Multidisciplinary teams are essential for developing clinical decision support to improve pediatric health outcomes: An exemplar. J Pediatr Nurs. 2021;58:104-106. doi: 10.1016/j.pedn.2020.08.012

 

  1. Hallgren K, Bauer A, Atkins D. Digital technology and clinical decision making in depression treatment: Current findings and future opportunities. Depress Anxiety. 2017;34:494-501. doi: 10.1002/da.22640

 

  1. Singer S, Kellogg K, Galper A, Viola D. Enhancing the value to users of machine learning-based clinical decision support tools: A framework for iterative, collaborative development and implementation. Health Care Manage Rev. 2022;47(2):E21-E31. doi: 10.1097/HMR.0000000000000324

 

  1. Barmer H, Dzombak R, Gaston M, et al. Human-centered AI. IEEE Pervasive Comput. 2021;22:7-8.

 

  1. Hovenga E, Atalag K. Optimizing electronic health records to support artificial intelligence. AIH. 2024;1:10-25. doi: 10.36922/aih.3056

 

  1. McMurry A, Gottlieb D, Miller T, et al. Cumulus: A federated electronic health record-based learning system powered by fast healthcare interoperability resources and artificial intelligence. J Am Med Inform Assoc JAMIA. 2024;31(8):1638-1647. doi: 10.1093/jamia/ocae130

 

  1. Fogleman B, Goldman M, Holland A, Dyess G, Patel A. Charting tomorrow’s healthcare: A traditional literature review for an artificial intelligence-driven future. Cureus. 2024;16(4):e58032. doi: 10.7759/cureus.58032

 

  1. Nashwan A, Abujaber A. Harnessing the power of large language models (LLMs) for electronic health records (EHRs) optimization. Cureus. 2023;15(7):e42634. doi: 10.7759/cureus.42634

 

  1. Ye J, Hai J, Song J, Wang Z. The Role of Artificial Intelligence in the Application of the Integrated Electronic Health Records and Patient-Generated Health Data. [Preprint]; 2024. doi: 10.1101/2024.05.01.24306690

 

  1. Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning with electronic health records. NPJ Digit Med. 2018;1:18. doi: 10.1038/s41746-018-0029-1

 

  1. Dixon D, Sattar H, Moros N, et al. Unveiling the influence of AI predictive analytics on patient outcomes: A comprehensive narrative review. Cureus. 2024;16(5):e59954. doi: 10.7759/cureus.59954

 

  1. Chowdhury R. Intelligent systems for healthcare diagnostics and treatment. World J Adv Res Rev. 2024;23:7-15. doi: 10.30574/wjarr.2024.23.1.2015

 

  1. Keizer R, Dvergsten E, Kolacevski A, et al. Get real: Integration of real‐world data to improve patient care. Clin Pharmacol Ther. 2020;107(4):722-725. doi: 10.1002/cpt.1784

 

  1. Rashid M, Askari M, Chen C, Liang Y, Shu K, Cinar A. Artificial intelligence algorithms for treatment of diabetes. Algorithms. 2022;15(9):299. doi: 10.3390/a15090299

 

  1. Vyas P, Brandon K, Gephart S. A scoping review of studies using artificial intelligence identifying optimal practice patterns for inpatients with type 2 diabetes that lead to positive healthcare outcomes. Comput Inform Nurs. 2024;42(5):396-402. doi: 10.1097/CIN.0000000000001143

 

  1. Igwama GT, Nwankwo EI, Emeihe EV, Ajegbile MD. The role of AI in optimizing drug dosage and reducing medication errors. Int J Biol Pharm Res Updat. 2024;4(1):18-34. doi: 10.53430/ijbpru.2024.4.1.0027

 

  1. Falak P. A survey on healthcare virtual assistant using generative AI. Int J Res Appl Sci Eng Technol. 2023;11:130-134. doi: 10.22214/ijraset.2023.56449

 

  1. Gebreab S, Salah K, Jayaraman R, Rehman M, Ellaham S. LLM-Based Framework for Administrative Task Automation in Healthcare. In: 2024 12th International Symposium on Digital Forensics and Security (ISDFS); 2024. p. 1-7.

 

  1. Marques L, Costa B, Pereira M, et al. Advancing precision medicine: A review of innovative in silico approaches for drug development, clinical pharmacology, and personalized healthcare. Pharmaceutics. 2024;16(3):332. doi: 10.3390/pharmaceutics16030332

 

  1. Vadapalli S, Abdelhalim H, Zeeshan S, Ahmed Z. Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine. Brief Bioinform. 2022;23(5):bbac191. doi: 10.1093/bib/bbac191

 

  1. Riad A, Barek A, Rahman M, et al. Enhancing HIPAA compliance in AI-driven mHealth devices security and privacy. In: 2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC. United States: IEEE; 2024. p. 2430-2435. doi: 10.1109/COMPSAC61105.2024.00390

 

  1. Yekaterina K. Challenges and opportunities for AI in healthcare. Int J Law Policy. 2024;2:11-15. doi: 10.59022/ijlp.203

 

  1. Alruwaili F. Artificial intelligence and multi agent based distributed ledger system for better privacy and security of electronic healthcare records. PeerJ Comput Sci. 2020;6:e323. doi: 10.7717/peerj-cs.323

 

  1. Nankya M, Mugisa A, Usman Y, Upadhyay A, Chataut R. Security and privacy in E-health systems: A review of AI and machine learning techniques. IEEE Access. 2024;12:148796-148816. doi: 10.1109/ACCESS.2024.3469215

 

  1. Baric-Parker J, Anderson E. Patient data-sharing for AI: Ethical challenges, Catholic solutions. Linacre Q. 2020;87:471-481. doi: 10.1177/0024363920922690

 

  1. Murdoch B. Privacy and artificial intelligence: Challenges for protecting health information in a new era. BMC Med Ethics. 2021;22:122. doi: 10.1186/s12910-021-00687-3

 

  1. Chang K, Singh P, Vepakomma P, et al. Privacy-preserving collaborative deep learning methods for multiinstitutional training without sharing patient data. In: Artificial Intelligence in Medicine. Berlin: Springer; 2021. doi: 10.1016/B978-0-12-821259-2.00006-5

 

  1. Huang Y, Bert C, Gomaa A, Fietkau R, Maier A, Putz F. An experimental survey of incremental transfer learning for multicenter collaboration. IEEE Access. 2024;12(101210):15. doi: 10.48550/arXiv.2309.17192

 

  1. Bonawitz K, Kairouz P, McMahan B, & Ramage D. Federated learning and privacy: Building privacy-preserving systems for machine learning and data science on decentralized data. Queue. 2021;19(5):87-114.

 

  1. Zhang C, Xie Y, Bai H, Yu B, Li W, Gao Y. A survey on federated learning. Knowl Based Syst. 2021;216:106775. doi: 10.1016/j.knosys.2021.106775

 

  1. Hernandez J, Sadilek A, Liu L, Nguyen D, Kamruzzaman M, Rader B. Privacy first health research with federated learning. NPJ Digit Med. 2021;4(1):132. doi: 10.1038/s41746-021-00489-2

 

  1. Nguyen T, Thai M. Preserving privacy and security in federated learning. IEEEACM Trans Netw. 2024;32:833. doi: 10.1109/TNET.2023.3302016

 

  1. Zhou C, Fu A, Yu S, Yang W, Wang H, Zhang Y. Privacy preserving federated learning in fog computing. IEEE Int Things J. 2020;7:10782.

 

  1. Ouadrhiri A, Abdelhadi A. Differential privacy for deep and federated learning: A survey. IEEE Access. 2022;10:22359. doi: 10.1109/ACCESS.2022.3151670

 

  1. Mothukuri V, Parizi R, Pouriyeh S, Huang Y, Dehghantanha A, Srivastava G. A survey on security and privacy of federated learning. Fut Gener Comput Syst. 2021;115:619. doi: 10.1016/j.future.2020.10.00

 

  1. Chen J, Yan H, Liu Z, Zhang M, Xiong H, Yu S. When federated learning meets privacy preserving computation. ACM Comput Surv. 2024;56:1-36. doi: 10.1145/36790

 

  1. Akinola O. Intelligent threat detection and response systems for safeguarding cloud-hosted electronic health records from cyber attacks. IOSR J VLSI Signal Process. 2024;14(4):1-10. doi: 10.9790/4200-14040110

 

  1. Saraswat B, Varshney N, Vashist P. Machine learning-driven assessment and security enhancement for electronic health record systems. Int J Exp Res Rev. 2024;43:160-175. doi: 10.52756/ijerr.2024.v43spl.012

 

  1. Larson D, Harvey H, Rubin D, Irani N, Tse J, Langlotz C. Regulatory frameworks for development and evaluation of artificial intelligence-based diagnostic imaging algorithms: Summary and recommendations. J Am Coll Radiol. 2020;18:413-424. doi: 10.1016/j.jacr.2020.09.060

 

  1. Parikh R, Obermeyer Z, Navathe A. Regulation of predictive analytics in medicine. Science. 2019;363:810-812. doi: 10.1126/science.aaw0029

 

  1. Koshechkin K. Regulation of artificial intelligence in medicine. Patient Oriented Med Pharm. 2023;1:32-40. doi: 10.37489/2949-1924-0005

 

  1. Labkoff S, Oladimeji B, Kannry J, et al. Toward a responsible future: Recommendations for AI-enabled clinical decision support. J Am Med Inform Assoc. 2024;31:2730-2739. doi: 10.1093/jamia/ocae209

 

  1. Benjamens S, Dhunnoo P, Meskó B. The state of artificial intelligence based FDA approved medical devices and algorithms: An online database. NPJ Digit Med Internet. 2020;3:118. doi: 10.1038/s41746-020-00324-0

 

  1. Wu E, Wu K, Daneshjou R, Ouyang D, Ho D, Zou J. How medical AI devices are evaluated: Limitations and recommendations from an analysis of FDA approvals. Nat Med. 2021;27:582-584. doi: 10.1038/s41591-021-01312-x

 

  1. Petrick N, Chen W, Delfino J, et al. Regulatory considerations for medical imaging AI/ML devices in the United States: Concepts and challenges. J Med Imaging. 2023;10(5):051804. doi: 10.1117/1.JMI.10.5.051804

 

  1. Potnis K, Ross J, Aneja S, Gross C, Richman I. Artificial intelligence in breast cancer screening: Evaluation of FDA device regulation and future recommendations. JAMA Intern Med. 2022;182:1306-1312. doi: 10.1001/jamainternmed.2022.4969

 

  1. Bhogawar S, Nuthakki S, Venugopal S, Mullankandy S. The ethical and social implications of using AI in healthcare -a literature review. Int J Sci Res. 2023;12:1472-1477. doi: 10.21275/sr231116135559

 

  1. Dhawan S, Kumar K. Ethical implications of AI in healthcare. Int J Sci Res Eng Manag. 2024;50:1-4. doi: 10.55041/ijsrem29006

 

  1. Lysaght T, Lim H, Xafis V, Ngiam K. AI-assisted decision-making in healthcare: The application of an ethics framework for big data in health and research. Asian Bioeth Rev. 2019;11:299-314. doi: 10.1007/s41649-019-00096-0

 

  1. Reddy S, Allan S, Coghlan S, Cooper P. A governance model for the application of AI in health care. J Am Med Inform Assoc. 2019;27:491-497. doi: 10.1093/jamia/ocz192

 

  1. Ijiga A, Peace E, Idoko I, et al. Ethical considerations in implementing generative AI for healthcare supply chain optimization: A cross-country analysis across India, the United Kingdom, and the United States of America. Int J Biol Pharm Sci Arch. 2024;7(1):48-63. doi: 10.53771/ijbpsa.2024.7.1.0015

 

  1. Baig M, Almuhaizea M, Alshehri J, Bazarbashi M, Al-Shagathrh F. Urgent need for developing a framework for the governance of AI in healthcare. Stud Health Technol Inform. 2020;272:253-256. doi: 10.3233/SHTI200542

 

  1. Palaniappan K, Lin E, Vogel S, Lim J. Gaps in the global regulatory frameworks for the use of artificial intelligence (AI) in the healthcare services sector and key recommendations. Healthcare (Basel). 2024;12(17):1730. doi: 10.3390/healthcare12171730

 

  1. Arigbabu A, Olaniyi O, Adigwe C, Adebiyi O, Ajayi S. Data governance in AI -enabled healthcare systems: A case of the project nightingale. Asian J Res Comput Sci. 2024;17:85-107. doi: 10.9734/ajrcos/2024/v17i5441

 

  1. Morley J, Machado C, Burr C, et al. The ethics of AI in health care: A mapping review. Soc Sci Med. 2020;260:113172. doi: 10.1016/j.socscimed.2020.113172

 

  1. Upadhyay U, Gradišek A, Iqbal U, Dhar E, Li Y, Syed Abdul S. Call for the responsible artificial intelligence in the healthcare. BMJ Health Care Inf. 2023;30:e100920. doi: 10.1136/bmjhci-2023-100920

 

  1. Sadeghi Z, Alizadehsani R, Cifci M, Kausar S, Rehman R, Mahanta P. A review of explainable artificial intelligence in healthcare. Comput Electr Eng. 2024;118:109370. doi: 10.1016/j.compeleceng.2024.1093

 

  1. Sun Q, Akman A, Schuller B. Explainable artificial intelligence for medical applications: A review. ACM Trans Comput Heal. 2024;6(2):17. doi: 10.1145/37093

 

  1. Loh H, Ooi C, Seoni S, Barua P, Molinari F, Acharya U. Application of explainable artificial intelligence for healthcare: A systematic review of the last decade. Comput Methods Programs Biomed. 2011;226:107161. doi: 10.1016/j.cmpb.2022.107161

 

  1. Habli I, Lawton T, Porter Z. Artificial intelligence in health care: Accountability and safety. Bull World Health Organ. 2020;98(4):251-256. doi: 10.2471/BLT.19.237487

 

  1. Naik N, Hameed B, Shetty D, Swain D, Shah M, Paul R. Legal and ethical consideration in artificial intelligence in healthcare: Who takes responsibility? Front Surg. 2022;9:862322. doi: 10.3389/fsurg.2022.86232

 

  1. Ueda D, Kakinuma T, Fujita S, Kamagata K, Fushimi Y, Ito R. Fairness of artificial intelligence in healthcare: Review and recommendations. Jpn J Radiol. 2024;42(1):3-15. doi: 10.1007/s11604-023-01474

 

  1. Kuwaiti A, Nazer K, Al Reedy A, Al Shehri S, Al Muhanna A, Subbarayalu A. A review of the role of artificial intelligence in healthcare. J Pers Med. 2023;13:951. doi: 10.3390/jpm13060951

 

  1. Bernal J, Mazo C. Transparency of artificial intelligence in healthcare: Insights from professionals in computing and healthcare worldwide. Appl Sci. 2022l;12(20):10228. doi: 10.3390/app122010228

 

  1. Tsopra R, Fernández X, Luchinat C, et al. A framework for validating AI in precision medicine: Considerations from the European ITFoC consortium. BMC Med Inform Decis Mak. 2021;21(1):274. doi: 10.1186/s12911-021-01634-3

 

  1. Yin J, Ngiam KY, Teo HH. Role of artificial intelligence applications in real life clinical practice: Systematic review. J Med Internet Res. 2021;23(4):e25759. doi: 10.2196/25759

 

  1. Yala A, Mikhael P, Strand F, et al. Multi-institutional validation of a mammography-based breast cancer risk model. J Clin Oncol. 2021;40:1732-1740. doi: 10.1200/JCO.21.01337

 

  1. Kelly C, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17(1):195. doi: 10.1186/s12916-019-1426-2

 

  1. Bobak C, Svoboda M, Giffin K, Wall D, Moore J. Raising the stakeholders: Improving patient outcomes through interprofessional collaborations in AI for healthcare. Pac Symp Biocomput. 2020;26:351-355.

 

  1. Zondag A, Rozestraten R, Grimmelikhuijsen S, et al. The effect of artificial intelligence on patient-physician trust: Cross-sectional vignette study. J Med Internet Res. 2024;26:e50853. doi: 10.2196/50853

 

  1. Chandio S, Rehman A, Bano S, Hammed A, Hussain A. Enhancing trust in healthcare: The role of AI explainability and professional familiarity. Asian Bull Big Data Manag. 2024;4(1):12-21. doi: 10.62019/abbdm.v4i1.100

 

  1. Patil S, Shankar H. Transforming healthcare: Harnessing the power of AI in the modern Era. Int J Multidiscip Sci Arts. 2023;2(1):60-70. doi: 10.47709/ijmdsa.v2i1.2513

 

  1. Knop M, Weber S, Mueller M, Niehaves B. Human factors and technological characteristics influencing the interaction of medical professionals with artificial intelligence-enabled clinical decision support systems: Literature review. JMIR Hum Factors. 2022;9(1):e28639. doi: 10.2196/28639

 

  1. Sezgin E. Artificial intelligence in healthcare: Complementing, not replacing, doctors and healthcare providers. Digit Health. 2023;9:20552076231186520. doi: 10.1177/20552076231186520

 

  1. Charow R, Jeyakumar T, Younus S, et al. Artificial intelligence education programs for health care professionals: Scoping review. JMIR Med Educ. 2021;7(4):e31043. doi: 10.2196/31043

 

  1. Garvey K, Craig K, Russell R, Novak L, Moore D, Miller B. Considering clinician competencies for the implementation of artificial intelligence-based tools in health care: Findings from a scoping review. JMIR Med Inform. 2022;10(11):e37478. doi: 10.2196/37478

 

  1. Liaw W, Kueper J, Lin S, Bazemore A, Kakadiaris I. Competencies for the use of artificial intelligence in primary care. Ann Fam Med. 2022;20(6):559-563. doi: 10.1370/afm.2887

 

  1. Russell R, Novak L, Patel M, et al. Competencies for the use of artificial intelligence-based tools by health care professionals. Acad Med. 2023;98(3):348-356. doi: 10.1097/ACM.0000000000004963

 

  1. Smith H, Downer J, Ives J. Clinicians and AI use: Where is the professional guidance? J Med Ethics. 2024;50(7):437-441. doi: 10.1136/jme-2022-108831

 

  1. Sapci A, Sapci H. Artificial intelligence education and tools for medical and health informatics students: Systematic review. JMIR Med Educ. 2020;6(1):e19285. doi: 10.2196/19285

 

  1. Paranjape K, Schinkel M, Panday R, Car J, Nanayakkara P. Introducing artificial intelligence training in medical education. JMIR Med Educ. 2019;5(2):e16048. doi: 10.2196/16048

 

  1. Boillat T, Nawaz F, Rivas H. Readiness to embrace artificial intelligence among medical doctors and students: Questionnaire based study. JMIR Med Educ. 2022;8(2):e34973. doi: 10.2196/34973

 

  1. Mirchi N, Bissonnette V, Yilmaz R, Ledwos N, Winkler Schwartz A, Del Maestro R. The virtual operative assistant: An explainable artificial intelligence tool for simulation based training in surgery and medicine. PLoS One. 2020;15(2):e0229596. doi: 10.1371/journal.pone.0229596

 

  1. Sardesai N, Russo P, Martin J, Sardesai A. Utilizing generative conversational artificial intelligence to create simulated patient encounters: A pilot study for anaesthesia training. Postgrad Med J. 2024;100(1182):237-241. doi: 10.1093/postmj/qgad137

 

  1. Banerjee M, Chiew D, Patel K, Johns I, Chappell D, Linton N. The impact of artificial intelligence on clinical education: Perceptions of postgraduate trainee doctors in London (UK) and recommendations for trainers. BMC Med Educ. 2021;21(1):429. doi: 10.1186/s12909-021-02870

 

  1. Adeniyi I, Abimbola C, Adeleye O. A review of AI-driven pedagogical strategies for equitable access to science education. Magna Sci Adv Res Rev. 2024;10:44-54. doi: 10.30574/msarr.2024.10.2.0043

 

  1. Bulathwela S, Pérez-Ortiz M, Holloway C, Cukurova M, Shawe-Taylor J. Artificial intelligence alone will not democratize education: On educational inequality, techno-solutionism, and inclusive tools. Sustainability. 2024;16:781. doi: 10.3390/su16020781

 

  1. Wahl B, Cossy-Gantner A, Germann S, Schwalbe N. Artificial intelligence (AI) and global health: How can AI contribute to health in resource-poor settings? BMJ Glob Health. 2018;3:e000798. doi: 10.1136/bmjgh-2018-000798

 

  1. Kwong J, Nickel G, Wang S, Kvedar J. Integrating artificial intelligence into healthcare systems: More than just the algorithm. NPJ Digit Med. 2024;7:52. doi: 10.1038/s41746-024-01066-z

 

  1. Strohm L, Hehakaya C, Ranschaert E, Boon W, Moors E. Implementation of artificial intelligence (AI) applications in radiology: Hindering and facilitating factors. Eur Radiol. 2020;30:5525-5532. doi: 10.1007/s00330-020-06946-y

 

  1. Kim B, Romeijn S, Van Buchem M, Mehrizi M, Grootjans W. A holistic approach to implementing artificial intelligence in radiology. Insights Imaging. 2024;15:22. doi: 10.1186/s13244-023-01586-4

 

  1. Severinsen G, Pedersen R, Ellingsen G, et al. Implementing and scaling commercial AI in public healthcare settings: Experiences from Norway. Stud Health Technol Inform. 2025;326:7-11. doi: 10.3233/SHTI250226

 

  1. Dicuonzo G, Donofrio F, Fusco A, Shini M. Healthcare system: Moving forward with artificial intelligence. Technovation. 2022;120:102510. doi: 10.1016/j.technovation.2022.102510

 

  1. Klumpp M, Hintze M, Immonen M, et al. Artificial intelligence for hospital health care: Application cases and answers to challenges in European hospitals. Healthcare (Basel). 2021;9:961. doi: 10.3390/healthcare9080961

 

  1. Poon E, Lemak C, Rojas J, Guptill J, Classen D. Adoption of artificial intelligence in healthcare: Survey of health system priorities, successes, and challenges. J Am Med Inform Assoc. 2025;32:1093-1100. doi: 10.1093/jamia/ocaf065

 

  1. Chen J, Liu Y, Liu P, Zhao Y, Zuo Y, Duan H. Adoption of large language model AI tools in everyday tasks: Multisite cross-sectional qualitative study of Chinese hospital administrators. J Med Internet Res. 2025;27:e70789. doi: 10.2196/70789

 

  1. Ozmen B. Navigating FDA regulations for development of artificial intelligence technologies in plastic surgery. Aesthet Surg J. 2025;45:865-868. doi: 10.1093/asj/sjaf051

 

  1. Warraich H, Tazbaz T, Califf R. FDA perspective on the regulation of artificial intelligence in health care and biomedicine. JAMA. 2024;333:241-247. doi: 10.1001/jama.2024.21451

 

  1. Beckers R, Kwade Z, Zanca F, Medica P. The EU medical device regulation: Implications for artificial intelligence-based medical device software in medical physics. Phys Med. 2021;83:1-8. doi: 10.1016/j.ejmp.2021.02.011

 

  1. Wang C, Zhang J, Lassi N, Zhang X. Privacy protection in using artificial intelligence for healthcare: Chinese regulation in comparative perspective. Healthcare (Basel). 2022;10:1878. doi: 10.3390/healthcare10101878
Share
Back to top
Artificial Intelligence in Health, Electronic ISSN: 3029-2387 Print ISSN: 3041-0894, Published by AccScience Publishing