AccScience Publishing / MSAM / Volume 5 / Issue 2 / DOI: 10.36922/MSAM025440103
ORIGINAL RESEARCH ARTICLE

Topology optimization for negative Poisson’s ratio metamaterials with geometric curvature control

Kaixian Liang1 Chengxiang Liu1 Jikai Liu1*
Show Less
1 Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Jinan, Shandong, China
MSAM 2026, 5(2), 025440103 https://doi.org/10.36922/MSAM025440103
Received: 27 October 2025 | Accepted: 3 December 2025 | Published online: 13 February 2026
© 2026 by the Author(s).. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Metamaterials with a negative Poisson’s ratio (NPR) exhibit unique auxetic deformation mechanism that enables superior energy absorption and mechanical resilience. Topology optimization (TO) can effectively generate microstructures with NPR characteristics, but conventional optimized designs often suffer from sharp corners and stress concentrations, which compromise durability and limit multicycle energy absorption. To address this issue, we introduced a boundary-fitting derivable geodesics-coupled TO (B-DGTO) framework to construct explicit curvature constraints into the optimization process, ensuring smooth boundaries and more uniform stress distribution with optimal NPR properties. In numerical example and experiment, we provided different types of 2D/3D NPR microstructures under curvature control to demonstrate the versatility of the proposed approach. These results confirm that the curvature constraint significantly improves the stress distribution of NPR microstructures and enhances their robustness and reliability under repeated loading. This study highlights curvature-constrained TO as a general and practical strategy for developing durable NPR metamaterials with superior energy dissipation performance.

Graphical abstract
Keywords
NPR metamaterials
Topology optimization
Curvature constraint
Energy absorption
Funding
The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (grant number 52475290).
Conflict of interest
Jikai Liu serves as the Editorial Board Member of the journal, but did not in any way involve in the editorial and peer-review process conducted for this paper, directly or indirectly. Other authors declare they have no competing interests.
References
  1. Lakes R. Foam structures with a negative Poisson’s ratio. Science. 1987;235(4792):1038-1040. doi: 10.1126/science.235.4792.1038
  2. Kolken HM, Zadpoor A. Auxetic mechanical metamaterials. RSC Adv. 2017;7(9):5111-5129. doi: 10.1039/c6ra27333e
  3. Saxena KK, Das R, Calius EP. Three decades of auxetics research- materials with negative Poisson’s ratio: A review. Adv Eng Mater. 2016;18(11):1847-1870. doi: 10.1002/adem.201600053
  4. Li F, Zhang Q, Wang Z, Zhu D. A new three-dimensional re-entrant negative Poisson’s ratio metamaterial with tunable stiffness. Eng Struct. 2024;306:117793. doi: 10.1016/j.engstruct.2024.117793
  5. Choi J, Lakes R. Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: Experiment and analysis. Int J Fract. 1996;80(1):73-83. doi: 10.1007/bf00036481
  6. Li F, Chen Y, Zhu D. Revealing the sound transmission loss capacities of sandwich metamaterials with re-entrant negative Poisson’s ratio configuration. Materials. 2023;16(17):5928. doi: 10.3390/ma16175928
  7. Wen G, Zhang S, Wang H, et al. Origami-based acoustic metamaterial for tunable and broadband sound attenuation. Int J Mech Sci. 2023;239:107872. doi: 10.1016/j.ijmecsci.2022.107872
  8. Liu W, Wang N, Luo T, Lin Z. In-plane dynamic crushing of re-entrant auxetic cellular structure. Mater Design. 2016;100:84-91. doi: 10.1016/j.matdes.2016.03.086
  9. Tian J, Yang J, Zhao Y. Metamaterial with synergistically controllable Poisson’s ratio and thermal expansion coefficient. Int J Mech Sci. 2023;256:108488. doi: 10.1016/j.ijmecsci.2023.108488
  10. He H, Niu X, Xu Z, et al. Interdigitated structure-derived scalable all-solid-state electrocaloric cooling device using lead-free BaSrTiO3-based multilayer ceramics. Joule. 2025;9(10):102128. doi: 10.1016/j.joule.2025.102128
  11. Wei K, Peng Y, Qu Z, Pei Y, Fang D. A cellular metastructure incorporating coupled negative thermal expansion and negative Poisson’s ratio. Int J Solids Struct. 2018;150:255-267. doi: 10.1016/j.ijsolstr.2018.06.018
  12. Zhang Q, Li F, Zhu D, Zhang T, Chen L. Quasi-static and impact performance study of a three-dimensional negative Poisson’s ratio structure with adjustable mechanical properties. Int J Impact Eng. 2024;193:105057. doi: 10.1016/j.ijimpeng.2024.105057
  13. Kun Y, Fei T, Bo WY, He HY. Study on impact energy absorption performance and optimization of negative Poisson’s ratio structure. J Braz Soc Mech Sci Eng. 2023;45(6):328. doi: 10.1007/s40430-023-04253-3
  14. Qin S, Deng X, Yang F, Lu Q. Energy absorption characteristics and negative Poisson’s ratio effect of axisymmetric tetrachiral honeycombs under in-plane impact. Compos Struct. 2023;323:117493. doi: 10.1016/j.compstruct.2023.117493
  15. Bertoldi K, Vitelli V, Christensen J, Van Hecke M. Flexible mechanical metamaterials. Nat Rev Mater. 2017;2(11):17066. doi: 10.1038/natrevmats.2017.66
  16. Surjadi JU, Gao L, Du H, et al. Mechanical metamaterials and their engineering applications. Adv Eng Mater. 2019;21(3):1800864. doi: 10.1002/adem.201800864
  17. Zhai Z, Wu L, Jiang H. Mechanical metamaterials based on origami and kirigami. Appl Phys Rev. 2021;8(4):041319. doi: 10.1063/5.0051088
  18. Bendsøe MP, Sigmund O. Topology Optimization: Theory, Methods, and Applications. Germany: Springer Science and Business Media; 2003.
  19. Allaire G, Jouve F, Toader AM. A level-set method for shape optimization. C R Mathématique. 2002;334(12):1125-1130. doi: 10.1016/s1631-073x(02)02412-3
  20. Wang MY, Wang X, Guo D. A level set method for structural topology optimization. Comput Methods Appl Mech Eng. 2003;(192):227-246. doi: 10.1016/s0045-7825(02)00559-5
  21. Huang X, Xie M. Evolutionary Topology Optimization of Continuum Structures: Methods and Applications. New Jersey, U.S: John Wiley and Sons; 2010.
  22. Guo X, Zhang W, Zhong W. Doing Topology Optimization Explicitly and Geometrically-A New Moving Morphable Components Based Framework. J Appl Mech. 2014;81(8):081009. doi: 10.1115/1.4027609
  23. Sigmund O. Materials with prescribed constitutive parameters: An inverse homogenization problem. Int J Solids Struct. 1994;31(17):2313-2329. doi: 10.1016/0020-7683(94)90154-6
  24. Schwerdtfeger J, Wein F, Leugering G, et al. Design of auxetic structures via mathematical optimization. Adv Mater. 2011;23(22):2650. doi: 10.1002/adma.201004090
  25. Han Z, Wei K. Multi-material topology optimization and additive manufacturing for metamaterials incorporating double negative indexes of Poisson’s ratio and thermal expansion. Addit Manuf. 2022;54:102742. doi: 10.1016/j.addma.2022.102742
  26. Bao Y, Wei Z, Jia Z, et al. Mechanical metamaterial design with the customized low-frequency bandgap and negative Poisson’s ratio via topology optimization. Extreme Mech Lett. 2024;67:102124. doi: 10.1016/j.eml.2024.102124
  27. Andreassen E, Lazarov BS, Sigmund O. Design of manufacturable 3D extremal elastic microstructure. Mech Mater. 2014;69(1):1-10. doi: 10.1016/j.mechmat.2013.09.018
  28. Li H, Luo Z, Gao L, Walker P. Topology optimization for functionally graded cellular composites with metamaterials by level sets. Comput Methods Appl Mech Eng. 2018;328:340-364. doi: 10.1016/j.cma.2017.09.008
  29. Zhang H, Luo Y, Kang Z. Bi-material microstructural design of chiral auxetic metamaterials using topology optimization. Compos Struct. 2018;195:232-248. doi: 10.1016/j.compstruct.2018.04.058
  30. Wang C, Zhao H, Wang Y, et al. Topology optimization of chiral metamaterials with application to underwater sound insulation. Appl Math Mech. 2024;45(7):1119-1138. doi: 10.1007/s10483-024-3162-8
  31. Chen W, Huang X. Topological design of 3D chiral metamaterials based on couple-stress homogenization. J Mech Phys Solids. 2019;131:372-386. doi: 10.1016/j.jmps.2019.07.014
  32. Zhou Y, Gao L, Li H. Topology optimization design of graded infills for 3D curved volume by a conformal sweeping method. Comput Methods Appl Mech Eng. 2023;412:116009. doi: 10.1016/j.cma.2023.116009
  33. Zhou Y, Gao L, Li H. A ready-to-manufacture optimization design of 3D chiral auxetics for additive manufacturing. Eng Comput Germany. 2024;40(3):1517-1538. doi: 10.1007/s00366-023-01880-1
  34. Bernard AR, Yalcin MM, Elsayed MSA. Shape transformers for crashworthiness of additively manufactured engineering resin lattice structures: Experimental and numerical investigations. Mech Mater. 2024;190:104925. doi: 10.1016/j.mechmat.2024.104925
  35. Ni Z, Cheng W, Wang Y, et al. Topology optimization of two-scale hierarchical structures with high-cycle fatigue resistance. Comput Methods Appl Mech Eng. 2024;430:117213. doi: 10.1016/j.cma.2024.117213
  36. Xu S, Liu J, He D, Tang K, Yaji K. Self-support structure topology optimization for multi-axis additive manufacturing incorporated with curved layer slicing. Comput Methods Appl Mech Eng. 2025;438:117841. doi: 10.1016/j.cma.2025.117841
  37. Guo Y, Xu S, Wang Y, et al. DGTO: Derivable geodesics-coupled topology optimization for multi-axis hybrid additive and subtractive manufacturing with curved layer generation. Addit Manuf. 2025;105:104786. doi: 10.1016/j.addma.2025.104786
  38. Liang K, Liu J, Xu S, Guo Y. DGTO: Derivable geodesics-coupled topology optimization for multi-axis 3D printing of continuous fiber-reinforced spatial structures. Comput Methods Appl Mech Eng. 2026;448:118419. doi: 10.1016/j.cma.2025.118419
  39. Osher S, Fedkiw RP. Level Set Methods and Dynamic Implicit Surfaces. Vol 1. New York: Springer; 2005.
  40. Crane K, Weischedel C, Wardetzky M. Geodesics in heat: A new approach to computing distance based on heat flow. ACM Trans Graph (TOG). 2013;32(5):1-11. doi: 10.1145/2516971.2516977
  41. Huang J, Liu J. Derivable skeletons in topology optimization for length scale control. Comput Methods Appl Mech Eng. 2024;421:116778. doi: 10.1016/j.cma.2024.116778
  42. Wang FW, Lazarov BS, Sigmund O. On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip O. 2011;43(6):767-784. doi: 10.1007/s00158-010-0602-y
  43. Bartz R, Franke T, Fiebig S, Vietor T. Density-based shape optimization of 3D structures with mean curvature constraints. Struct Multidiscip O. 2022;65:5. doi: 10.1007/s00158-021-03089-6
  44. Xia L, Breitkopf P. Design of materials using topology optimization and energy-based homogenization approach in Matlab. Struct Multidiscip O. 2015;52(6):1229-1241. doi: 10.1007/s00158-015-1294-0
  45. Svanberg K. The method of moving asymptotes-a new method for structural optimization. Int J Numer Meth Eng. 1987;24(2):359-373.
  46. Lazarov BS, Sigmund O. Filters in topology optimization based on Helmholtz‐type differential equations. Int J Numer Meth Eng. 2011;86(6):765-781. doi: 10.1002/nme.3072
  47. Zhu B, Zhang X, Zhang H, et al. Design of compliant mechanisms using continuum topology optimization: A review. Mech Mach Theory. 2020;143:103622. doi: 10.1016/j.mechmachtheory.2019.103622
  48. Jin M, Zhang X, Zhu B, Wang N. Spring-joint method for topology optimization of planar passive compliant mechanisms. Chin J Mech Eng. 2013;26(6):1063-1072. doi: 10.3901/cjme.2013.06.1063
  49. Jin M, Zhang X, Zhu B. A numerical method for static analysis of pseudo-rigid-body model of compliant mechanisms. Proc Inst Mech Eng Part C J Mech Eng Sci. 2014;228(17):3170-3177. doi: 10.1177/0954406214525951
  50. Zhu B, Zhang X, Fatikow S. Level set-based topology optimization of hinge-free compliant mechanisms using a two-step elastic modeling method. J Mech Design. 2014;136(3):031007. doi: 10.1115/1.4026097
  51. Liang K, Zhu D, Liu J. Topology optimization of a spatial compliant parallel mechanism based on constant motion transmission characteristic matrix. Mech Mach Theory. 2023;180:180105125. doi: 10.1016/j.mechmachtheory.2022.105125
  52. Jin M, Zhang X. A new topology optimization method for planar compliant parallel mechanisms. Mech Mach Theory. 2016;95:42-58. doi: 10.1016/j.mechmachtheory.2015.08.016

 

 

 

Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing