Laser powder bed fusion of atomized industrial waste-derived Inconel 725 alloy powders: A machine learning-assisted process optimization
Among nickel-based superalloys, Inconel® 725 (IN725) stands out for its excellent strength and corrosion resistance. Despite this, its application in additive manufacturing remains largely unexplored. This study investigates laser powder bed fusion of metals (PBF-LB/M) applied to IN725 powder derived from recycled industrial waste, addressing sustainability and process optimization goals. Using the design of experiments approach, the laser power–scan speed process parameter space was explored. Gaussian process regression models were developed to predict surface roughness, relative density, and microhardness. Both direct process parameters and volumetric energy density were evaluated as model inputs to assess predictive performance. The findings established a broad optimal process window for manufacturing high-quality IN725 parts using PBF-LB/M. Specifically, an optimal combination of 99.99% relative density, 7.3 μm roughness, and 311 HV microhardness was achieved by processing the powder at 250 W and 1,500 mm/s. By demonstrating the feasibility of using recycled IN725 powder, this study contributes to the development of sustainable manufacturing practices and supports wider adoption of PBF-LB/M in oil and gas, marine, and chemical processing industries, where IN725 is widely employed.

- Reed RC. The Superalloys. Cambridge: Cambridge University Press; 2006. doi: 10.1017/CBO9780511541285
- Smith RJ, Lewi GJ, Yates DH. Development and application of nickel alloys in aerospace engineering. Aircr Eng Aerosp Tech. 2001;73(2):138-147. doi: 10.1108/00022660110694995
- Pollock TM, Tin S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties. J Propuls Power. 2006;22(2):361-374. doi: 10.2514/1.18239
- Mali HS, Unune DR. Machinability of nickel-based superalloys: An overview. In: Reference Module in Materials Science and Materials Engineering. Netherlands: Elsevier; 2017. doi: 10.1016/B978-0-12-803581-8.09817-9
- Tian Z, Zhang C, Wang D, et al. A review on laser powder bed fusion of inconel 625 nickel-based alloy. Appl Sci. 2020;10(1):81. doi: 10.3390/app10010081
- Yu H, Zhao Q, Fu J, et al. The design of oxidation resistant Ni superalloys for additive manufacturing. Addit Manuf. 2025;97:104616. doi: 10.1016/j.addma.2024.104616
- Chowdhury S, Yadaiah N, Prakash C, et al. Laser powder bed fusion: A state-of-the-art review of the technology, materials, properties & defects, and numerical modelling. J Mater Res Technol. 2022;20:2109-2172. doi: 10.1016/j.jmrt.2022.07.121
- Zhao X, Wang T. Laser powder bed fusion of powder material: A review. 3D Print Addit Manuf. 2023;10(6):1439-1454. doi: 10.1089/3dp.2021.0297
- Sanchez S, Smith P, Xu Z, et al. Powder bed fusion of nickel-based superalloys: A review. Int J Mach Tools Manuf. 2021;165:103729. doi: 10.1016/j.ijmachtools.2021.103729
- Kuntoğlu M, Salur E, Gupta MK, et al. A review on microstructure, mechanical behavior and post processing of additively manufactured Ni-based superalloys. Rapid Prototyp J. 2024;30(9):1890-1910. doi: 10.1108/RPJ-10-2023-0380
- Volpato GM, Tetzlaff U, Fredel MC. A comprehensive literature review on laser powder bed fusion of Inconel superalloys. Addit Manuf. 2022;55:102871. doi: 10.1016/j.addma.2022.102871
- Kim KS, Kang TH, Kassner ME, Son KT, Lee KA. High-temperature tensile and high cycle fatigue properties of inconel 625 alloy manufactured by laser powder bed fusion. Addit Manuf. 2020;35:101377. doi: 10.1016/j.addma.2020.101377
- Serrano-Munoz I, Fritsch T, Mishurova T, et al. On the interplay of microstructure and residual stress in LPBF IN718. J Mater Sci. 2021;56(9):5845-5867. doi: 10.1007/s10853-020-05553-y
- Song W, Yang J, Liang J, et al. A new approach to design advanced superalloys for additive manufacturing. Addit Manuf. 2024;84:104098. doi: 10.1016/j.addma.2024.104098
- Enrique PD, Minasyan T, Toyserkani E. Laser powder bed fusion of difficult-to-print γ’ Ni-based superalloys: A review of processing approaches, properties, and remaining challenges. Addit Manuf. 2025;106:104811. doi: 10.1016/j.addma.2025.104811
- Jena A, Atabay SE, Brochu M. Microstructure and mechanical properties of crack-free Inconel 738 fabricated by laser powder bed fusion. Mater Sci Eng A. 2022;850:143524. doi: 10.1016/j.msea.2022.143524
- Hu P, Liu Z, Zhang H, Li Y, Zhou Q, Xie J. Effect of remelting on cracking of Inconel 939 fabricated via laser powder bed fusion. Mater Charact. 2024;214:114087. doi: 10.1016/J.MATCHAR.2024.114087
- Wang Y, Li S, Ma R, et al. The effect of laser power on the microstructure and mechanical properties of LPBF Hastelloy X in as-built and heat-treated states. Mater Charact. 2025;227:115320. doi: 10.1016/J.MATCHAR.2025.115320
- Kenevisi MS, Martelli PA, Titonel I, Bassini E, Marchese G, Ugues D. The effect of solution annealing on additively manufactured and hot isostatically pressed René 80 Ni-based superalloy. J Mater Res Technol. 2024;33:6591-6600. doi: 10.1016/j.jmrt.2024.11.003
- Xi X, Lin D, Song X, et al. In-situ remelting induced healing of cracks and strength-ductility synergy in additively manufactured Haynes 230 alloy. Addit Manuf. 2025;98:104638. doi: 10.1016/j.addma.2025.104638
- Vilaro T, Colin C, Bartout JD, Nazé L, Sennour M. Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy. Mater Sci Eng A. 2012;534:446-451. doi: 10.1016/j.msea.2011.11.092
- Shoemaker LE. Alloys 625 and 725: Trends in properties and applications. In: Conference. Superalloys 718, 625, 706 and Various Derivatives (2005). TMS; 2005. p. 409-418. doi: 10.7449/2005/Superalloys_2005_409_418
- Sriwongsa K, Sirimongkolchaikul J, Sukrasorn C, et al. Radiation and fast neutron shielding properties of nickel-based superalloys: Inconel 600, 718 and 725 superalloys. Integr Ferroelectr. 2022;224(1):120-133. doi: 10.1080/10584587.2022.2035602
- Todaro CJ, Rashidi M, Liu RL, et al. Laser powder bed fusion of high-strength and corrosion-resistant Inconel alloy 725. Mater Charact. 2022;194:112454. doi: 10.1016/j.matchar.2022.112454
- Chia HY, Wu J, Wang X, Yan W. Process parameter optimization of metal additive manufacturing: A review and outlook. J Mater Inform. 2022;2(3):16. doi: 10.20517/jmi.2022.18
- Liu Q, Chen W, Yakubov V, Kruzic JJ, Wang CH, Li X. Interpretable machine learning approach for exploring process-structure-property relationships in metal additive manufacturing. Addit Manuf. 2024;85:104187. doi: 10.1016/j.addma.2024.104187
- Benedetti M, Perini M, Vanazzi M, Giorgini A, Macoretta G, Menapace C. Atomized scrap powder feedstock for sustainable Inconel 718 additive manufacturing via LPBF: A study of static and fatigue properties. Prog Addit Manuf. 2024;9(6):1843-1856. doi: 10.1007/s40964-023-00547-z
- Jelinski LW, Graedel TE, Laudise RA, McCall DW, Patel CK. Industrial ecology: Concepts and approaches. Proc Natl Acad Sci USA. 1992;89(3):793-797. doi: 10.1073/pnas.89.3.793
- Li J, Wang H. Gaussian processes regression for uncertainty quantification: An introductory tutorial. 2025. doi: 10.48550/arXiv.2502.03090
- Manfredi P, Trinchero R. A probabilistic machine learning approach for the uncertainty quantification of electronic circuits based on gaussian process regression. IEEE Trans Comput Aided Des Integr Circ Syst. 2022;41(8):2638-2651. doi: 10.1109/TCAD.2021.3112138
- Moges T, Ameta G, Witherell P. A review of model inaccuracy and parameter uncertainty in laser powder bed fusion models and simulations. J Manuf Sci Eng. 2019;141(4):040801. doi: 10.1115/1.4042789
- Lee SH. Optimization of cold metal transfer-based wire arc additive manufacturing processes using gaussian process regression. Metals. 2020;10(4):461. doi: 10.3390/met10040461
- Li H, Song B, Wang Y, Zhang J, Zhao W, Fang X. Laser powder bed fusion process optimization of CoCrMo alloy assisted by machine-learning. J Mater Res Technol. 2024;33:3901-3910. doi: 10.1016/j.jmrt.2024.10.075
- Maitra V, Shi J, Lu C. Robust prediction and validation of as-built density of Ti-6Al-4V parts manufactured via selective laser melting using a machine learning approach. J Manuf Process. 2022;78:183-201. doi: 10.1016/j.jmapro.2022.04.020
- El Hassanin A, Silvestri AT, Napolitano F, Borrelli D, Caraviello A, Astarita A. Investigation of the laser-related parameters in laser-powder bed fusion of inconel 718-Cu blends at fixed volumetric energy density. J Manuf Process. 2023;99:456-468. doi: 10.1016/j.jmapro.2023.05.068
- Gobber FS, Priarone PC, Pennacchio A, Actis Grande M. Effect of inert gas pressure on the properties and carbon footprint of UNS S32760 powders made from waste materials by gas atomization. J Mater Res Technol. 2024;33:8814-8828. doi: 10.1016/j.jmrt.2024.11.195
- ASTM Standard B805-17 2017. Specification for Precipitation Hardening Nickel Alloys Bar and Wire. United States: ASTM International. Preprint posted online; 2017. doi: 10.1520/B0805-06R17E01
- ASTM Standard F3055-14a 2021. Specification for Additive Manufacturing Nickel Alloy (UNS N07718) with Powder Bed Fusion. United States: ASTM International. Preprint posted online; 2021. doi: 10.1520/F3055-14AR21
- ASTM Standard B212-25 2025. Test Method for Apparent Density of Free-Flowing Metal Powders Using the Hall Flowmeter Funnel. United States: ASTM International. Preprint posted online; 2025. doi: 10.1520/B0212-25
- ASTM Standard B213-25 2025. Test Methods for Flow Rate of Metal Powders Using the Hall Flowmeter Funnel. United States: ASTM International. Preprint posted online; 2025. doi: 10.1520/B0213-25
- King WE, Anderson AT, Ferencz RM, et al. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl Phys Rev. 2015;2(4):041304. doi: 10.1063/1.4937809
- Yadroitsev I, Bertrand P, Smurov I. Parametric analysis of the selective laser melting process. Appl Surf Sci. 2007;253(19):8064-8069. doi: 10.1016/J.APSUSC.2007.02.088
- Kamath C, El-Dasher B, Gallegos GF, King WE, Sisto A. Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W. Int J Adv Manuf Technol. 2014;74(1-4):65-78. doi: 10.1007/S00170-014-5954-9/METRICS
- Chen Z, Wie Z, Wie P, et al. Experimental research on selective laser melting AlSi10Mg alloys: Process, densification and performance. J Mater Eng Perform. 2017;26(12):5897-5905. doi: 10.1007/s11665-017-3044-5
- Tian Y, Tomus D, Rometsch P, Wu X. Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting. Addit Manuf. 2017;13:103-112. doi: 10.1016/j.addma.2016.10.010
- Baldi N, Giorgetti A, Palladino M, Giovannetti I, Arcidiacono G, Citti P. Study on the effect of preheating temperatures on melt pool stability in inconel 718 components processed by laser powder bed fusion. Metals. 2023;13(10):1792. doi: 10.3390/met13101792
- ASTM Standard E384-22 2022. Test Method for Microindentation Hardness of Materials. United States: ASTM International. Preprint posted online; 2022. doi: 10.1520/E0384-22
- Locatelli G, Quarto M, D’Urso G, Giardini C. Addressing positional and laser source variability in laser powder bed fusion: A mapping method for quality optimization. Int J Adv Manuf Technol. 2025;139:4673-4686. doi: 10.1007/s00170-025-16196-1
- Williams CKI. Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In: Learning in Graphical Models. Berlin: Springer Netherlands; 1998. p. 599-621. doi: 10.1007/978-94-011-5014-9_23
- Yang K, Lu J, Wan W, Zhang G, Hou L. Transfer learning based on sparse Gaussian process for regression. Inform Sci. 2022;605:286-300. doi: 10.1016/j.ins.2022.05.028
- Aggarwal CC. Neural Networks and Deep Learning. Berlin: Springer International Publishing; 2023. doi: 10.1007/978-3-031-29642-0
- De Oliveira V, Han Z. On information about covariance parameters in gaussian matérn random fields. J Agric Biol Environ Stat. 2022;27(4):690-712. doi: 10.1007/s13253-022-00510-5
- Neal RM. Bayesian Learning for Neural Networks. Vol. 118. Berlin: Springer New York; 1996. doi: 10.1007/978-1-4612-0745-0
- Pan R, Gu M, Wu J. Physics-informed Gaussian process regression of in operando capacitance for carbon supercapacitors. Energy Adv. 2023;2(6):843-853. doi: 10.1039/D3YA00071K
- Hashemi SH, Torabi F, Tontiwachwuthikul P. Machine learning-driven prediction of CO2 solubility in brine: A hybrid grey wolf optimizer (GWO)-assisted gaussian process regression (GPR) Approach Energies. 2025;18(15):4205. doi: 10.3390/en18154205
- Hair JF, Black WC, Babin BJ, Anderson RE. Multivariate Data Analysis. London: Pearson Education Limited; 2014.
- Willmott C, Matsuura K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res. 2005;30:79-82. doi: 10.3354/cr030079
- Piriz AR, Cortázar OD, López Cela JJ, Tahir NA. The Rayleigh- Taylor instability. Am J Phys. 2006;74(12):1095-1098. doi: 10.1119/1.2358158
- Chivel Y. Optical in-process temperature monitoring of selective laser melting. Phys Procedia. 2013;41:904-910. doi: 10.1016/j.phpro.2013.03.165
- Mannan S, Veltry F. Time-temperature-transformation diagram of alloy 725. In: Superalloys 718, 625, 706 and Various Derivatives (2001). Warrendale: TMS; 2001. p. 345-356.
- Javidrad HR, Salemi S. Effect of the volume energy density and heat treatment on the defect, microstructure, and hardness of L-PBF inconel 625. Metall Mater Trans A. 2020;51(11):5880-5891. doi: 10.1007/s11661-020-05992-x
- Capelli A, Cacace S, Semeraro Q. XCT characterization and mechanical properties of Ti6Al4V produced by L-PBF using the same volumetric energy density. Progress in Additive Manufacturing. Prog Addit Manuf. 2025;10:4787-4802. doi: 10.1007/s40964-024-00862-z
- Wang S, Ning J, Zhu L, et al. Role of porosity defects in metal 3D printing: Formation mechanisms, impacts on properties and mitigation strategies. Mater Today. 2022;59:133-160. doi: 10.1016/j.mattod.2022.08.014
