AccScience Publishing / MSAM / Volume 4 / Issue 3 / DOI: 10.36922/MSAM025220048
ORIGINAL RESEARCH ARTICLE

Sunflower-inspired composite metastructure for broadband microwave absorption fabricated via fused deposition modeling

Pengfei Fang1,2 Fei Wang1,2* Zhe Zhang1,2 Kaiyong Jiang1,2 Peifeng Li3*
Show Less
1 Fujian Key Laboratory of Special Energy Manufacturing, Huaqiao University, Xiamen, Fujian, China
2 Xiamen Key Laboratory of Digital Vision Measurement, Huaqiao University, Xiamen, Fujian, China
3 James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
MSAM 2025, 4(3), 025220048 https://doi.org/10.36922/MSAM025220048
Received: 31 May 2025 | Accepted: 23 June 2025 | Published online: 1 August 2025
© 2025 by the Author(s).. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Microwave-absorbing structures are increasingly vital for applications such as electromagnetic protection, stealth technology, and wireless communications. However, their broader adoption is often limited by drawbacks such as excessive thickness, narrow absorption bandwidth, and high manufacturing costs. This study presents the design, fabrication, and evaluation of a sunflower-inspired metastructure for broadband microwave absorption, achieved via fused deposition modeling three-dimensional printing. The metastructure, inspired by the spiral geometry of sunflower seed arrangements, integrates multi-layered, gradient spiral elements composed of carbon black-carbonyl iron powder/polylactic acid (CB-CIP/PLA) composites. Electromagnetic simulations were employed to systematically optimize key structural parameters, including the gradient impedance increment and individual layer thicknesses, to maximize absorption efficiency. Both simulated and experimental results demonstrate that the absorber achieves an effective absorption bandwidth of 12.13 GHz (5.87 – 18.00 GHz) with reflection loss below 10 dB, covering the C, X, and Ku frequency bands. The performance is attributed to the synergistic effects of interfacial polarization and natural magnetic resonance within the CB-CIP/PLA composite. The metastructure also exhibits stable, wide-angle absorption properties, maintaining bandwidths exceeding 10 GHz for incident angles up to 50° under both transverse electric and transverse magnetic polarizations. The proposed sunflower-inspired design demonstrates significant advantages in bandwidth-to-thickness ratio, fabrication efficiency, and polarization insensitivity compared to conventional biomimetic absorbers. These findings highlight the promise of bio-inspired design strategies for developing lightweight, efficient, broadband microwave absorbers, providing valuable reference for future advancements in the field.

Graphical abstract
Keywords
Sunflower-inspired metastructure
Broadband microwave absorption
Composite metamaterial
3D printing
Gradient impedance
Wide-angle absorption
Bio-inspired design
Funding
This study was funded by the Fuzhou–Xiamen–Quanzhou National Independent Innovation Demonstration Zone Collaborative Innovation Platform Project (3502ZCQXT2024003) and the Fujian Province Industry– University Cooperation Plan (2023H6015).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Abdalla I, Cai JY, Lu W, Yu JY, Li ZL, Ding B. Recent progress on electromagnetic wave absorption materials enabled by electrospun carbon nanofibers. Carbon. 2023;213:118300. doi: 10.1016/j.carbon.2023.118300
  2. Chen XT, Wu Y, Gu WH, et al. Research progress on nanostructure design and composition regulation of carbon spheres for the microwave absorption. Carbon. 2022;189:617-633. doi: 10.1016/j.carbon.2021.12.100
  3. Li B, Liu M, Zhong W, et al. Partially contacted NixSy@N, S-codoped carbon yolk-shelled structures for efficient microwave absorption. Carbon. 2021;182:276-286. doi: 10.1016/j.carbon.2021.05.057
  4. Guan X, Yang Z, Zhou M, et al. 2D MXene nanomaterials: Synthesis, mechanism, and multifunctional applications in microwave absorption. Small Struct. 2022;3(10):2200102. doi: 10.1002/sstr.202200102
  5. Zhou W, Long L, Bu G, Li Y. Mechanical and microwave-absorption properties of Si3N4 ceramic with SiCNFs fillers. Adv Eng Mater. 2019;21(5):1800665. doi: 10.1002/adem.201800665
  6. Houbi A, Aldashevich ZA, Atassi Y, Telmanovna ZB, Saule M, Kubanych K. Microwave absorbing properties of ferrites and their composites: A review. J Magn Magn Mater. 2021;529:167839. doi: 10.1016/j.jmmm.2021.167839
  7. Jang W, Mallesh S, Lee S, Kim KH. Microwave absorption properties of core-shell structured FeCoNi@PMMA filled in composites. Curr Appl Phys. 2020;20(4):525-530. doi: 10.1016/j.cap.2020.01.019
  8. Wang F, Zhou Q, Zhang Z, He P, Zhang J, Jiang K. Microwave absorption performance of carbon black/polylactic acid composite for fused filament fabrication. Appl Sci Basel. 2022;12(24):12747. doi: 10.3390/app122412747
  9. Wang F, Zhou Q, Liu H, Fang P, Jiang K, Li P. Wide-angle broadband metamaterial absorber with carbon black-carbonyl iron/polylactic acid composites fabricated by fused filament fabrication. Mater Sci Addit Manuf. 2024;3(3):4158. doi: 10.36922/msam.4158
  10. Ding GX, Chen CX, Tai HX, et al. Structural characterization and microwave absorbing performance of CuFe2O4/RGO composites. J Solid State Chem. 2021;297:22051. doi: 10.1016/j.jssc.2021.122051
  11. Zhang K, Gao X, Zhang Q, Chen H, Chen X. Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites and their enhanced microwave absorption properties. J Magn Magn Mater. 2018;452:55-63. doi: 10.1016/j.jmmm.2017.12.039
  12. Ding DH, Luo F, Zhou WC, Shi YM, Zhou L. Research status and outlook of high temperature radar absorbing materials. J Inorg Mater. 2014;29(5):461-469. doi: 10.3724/sp.J.1077.2014.13471
  13. Tang XJ, Li XB, Sun HG. Preparation and Properties of an Anti-Friction and Anti-Corrosive Radar Absorbing Material with Periodic Intermediate Coating. In: Paper Presented at: 6th Annual International Conference on Material Science and Environmental Engineering (MSEE), Chongqing, PR China; 2018. doi: 10.1088/1757-899x/472/1/012012
  14. Wang YM, Pan M, Liang XY, Li BJ, Zhang S. Electromagnetic wave absorption coating material with self-healing properties. Macromol Rapid Commun. 2017;38(23):1700447. doi: 10.1002/marc.201700447
  15. Li AB, Zhao XG, Duan GW, Anderson S, Zhang X. Diatom frustule-inspired metamaterial absorbers: The effect of hierarchical pattern arrays. Adv Funct Mater. 2019;29(22):1809029. doi: 10.1002/adfm.201809029
  16. Lopez-Garcia M, Masters N, O’Brien HE, et al. Light-induced dynamic structural color by intracellular 3D photonic crystals in brown algae. Sci Adv. 2018;4(4):eaan8917. doi: 10.1126/sciadv.aan8917
  17. Duan Y, Liang Q, Yang Z, et al. Bamboo-inspired composite metastructure for broadband microwave absorption and load bearing. Mater Res Bull. 2023;166:112368. doi: 10.1016/j.materresbull.2023.112368
  18. Huang L, Duan Y, Dai X, et al. Bioinspired metamaterials: Multibands electromagnetic wave adaptability and hydrophobic characteristics. Small. 2019;15(40):1902730. doi: 10.1002/smll.201902730
  19. Jiang W, Yan LL, Ma H, et al. Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb. Sci Rep. 2018;8:4817. doi: 10.1038/s41598-018-23286-6
  20. Huang L, Duan Y, Liu J, et al. Bionic composite metamaterials for harvesting of microwave and integration of multifunctionality. Compos Sci Technol. 2021;204:108640. doi: 10.1016/j.compscitech.2020.108640
  21. Wu W, Xu R, Zhou Y, et al. Biomimetic 3D coral reef-like GO@TiO2 composite framework inlaid with TiO2-C for low-frequency electromagnetic wave absorption. Carbon. 2021;178:144-156. doi: 10.1016/j.carbon.2020.11.085
  22. An Q, Li DW, Liao WH, et al. A novel ultra-wideband electromagnetic-wave-absorbing metastructure inspired by bionic gyroid structures. Adv Mater. 2023;35(26):2300659. doi: 10.1002/adma.202300659
  23. Chen ZM, Zhang Y, Wang ZD, et al. Bioinspired moth-eye multi-mechanism composite ultra-wideband microwave absorber based on the graphite powder. Carbon. 2023;201:542-548. doi: 10.1016/j.carbon.2022.09.035
  24. Chen X, Li YL, Cheng SY, et al. Liquid metal-MXene-based hierarchical aerogel with radar-infrared compatible camouflage. Adv Funct Mater. 2024;34(10):2308274. doi: 10.1002/adfm.202308274
  25. Chen Y, He YQ, Zhu XQ. Flower-type pulsating heat pipe for a solar collector. Int J Energy Res. 2020;44(9):7734-7745. doi: 10.1002/er.5505
  26. Xu YC, Huang YZ, Yan H, et al. Sunflower-pith-inspired anisotropic auxetic mechanics from dual-gradient cellular structures. Matter. 2023;6(5):1569-1584. doi: 10.1016/j.matt.2023.03.010
  27. Yu SQ, Liu JG, Zhao PY, Tang YY. A flat-foldable equiangular spiral folding pattern inspired by sunflowers for deployable structures. Chin J Aeronaut. 2024;37(6):425-438. doi: 10.1016/j.cja.2023.10.004
  28. Wang F, Zhou QF, Zhang Z, Gu YH, Zhang JL, Jiang KY. Microwave absorption properties of carbon black-carbonyl iron/polylactic acid composite filament for fused deposition modeling. Materials. 2022;15(15):5455. doi: 10.3390/ma15155455
  29. Feng MF, Zhang KF, Xiao JJ, et al. Material-structure collaborative design for broadband microwave absorption metamaterial with low density and thin thickness. Compos Pt B-Eng. 2023;263:110862. doi: 10.1016/j.compositesb.2023.110862
  30. Lei L, Yao ZJ, Zhou JT, Wei B, Fan HY. 3D printing of carbon black/polypropylene composites with excellent microwave absorption performance. Compos Sci Technol. 2020;200:108479. doi: 10.1016/j.compscitech.2020.108479
  31. Ye XC, Yang C, He EY, et al. Electromagnetic wave absorption properties of the FeSiAl/PLA and FeSiAl-MoS2-Graphene/ PLA double-layer absorber formed by fused deposition modeling. J Magn Magn Mater. 2023;565:170280. doi: 10.1016/j.jmmm.2022.170280
  32. Baqir MA, Latif H, Altintas O, et al. Fractal metamaterial based multiband absorber operating in 5G regime. Optik. 2022;266:169626. doi: 10.1016/j.ijleo.2022.169626
  33. Zhang Z, Wang F, Zhang JL, Li PF, Jiang KY. Ultra-broadband and wide-angle metamaterial absorber with carbon black/ carbonyl iron composites fabricated by direct-ink-write 3D printing. Adv Eng Mater. 2023;25(6):2201236. doi: 10.1002/adem.202201236
  34. Min DD, Zhou WC, Qing YC, Luo F, Zhu DM. Single-layer and double-layer microwave absorbers based on graphene nanosheets/epoxy resin composite. Nano. 2017;12(7):1750089. doi: 10.1142/s1793292017500898
  35. Zhou Q, Yin XW, Ye F, Liu XF, Cheng LF, Zhang LT. A novel two-layer periodic stepped structure for effective broadband radar electromagnetic absorption. Mater Des. 2017;123:46-53. doi: 10.1016/j.matdes.2017.03.044
  36. Duan YB, Liang QX, Yang Z, et al. A wide-angle broadband electromagnetic absorbing metastructure using 3D printing technology. Mater Des. 2021;208:109900. doi: 10.1016/j. matdes.2021.109900
  37. Huang YX, Song WL, Wang CX, et al. Multi-scale design of electromagnetic composite metamaterials for broadband microwave absorption. Compos Sci Technol. 2018;162:206-214. doi: 10.1016/j.compscitech.2018.04.028
  38. Wang BC, Wei JQ, Yang Y, Wang T, Li FS. Investigation on peak frequency of the microwave absorption for carbonyl iron/epoxy resin composite. J Magn Magn Mater. 2011;323(8):1101-1103.doi: 10.1016/j.jmmm.2010.12.028
  39. Fan QF, Huang YX, Chen MJ, Li Y, Song WL, Fang DN. Integrated design of component and configuration for a flexible and ultrabroadband radar absorbing composite. Compos Sci Technol. 2019;176:81-89. doi: 10.1016/j.compscitech.2019.04.008
  40. Ning J, Dong SF, Luo XY, et al. Ultra-broadband microwave absorption by ultra-thin metamaterial with stepped structure induced multi-resonances. Results Phys. 2020;18:103320. doi: 10.1016/j.rinp.2020.103320

 

 

 

 

Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing