Sustainable manufacturing of FDM-manufactured composite impellers using hybrid machine learning and simulation-based optimization

Conventional optimization of fused deposition modeling (FDM) often relies on trial-and-error or heuristic approaches, which lack scalability and precision, especially for complex geometries such as impellers. While prior studies have integrated artificial intelligence (AI) or multi-criteria decision-making (MCDM) techniques for process optimization, their combined application remains limited, particularly in scenarios that prioritize energy-efficient and sustainable manufacturing. This study introduces a novel hybrid AI-MCDM framework for the multi-objective optimization of FDM-printed composite impellers, integrating mechanical performance, energy consumption, and material utilization within a unified decision-making model. A key feature of the approach is the real-time tracking of energy usage, enabling dynamic evaluation of process efficiency. Experimental validation demonstrates a 7% enhancement in tensile strength, a 25% reduction in energy consumption, and a 30% decrease in material wastage compared to baseline configurations. These results underscore the potential of AI-driven simulation and optimization frameworks to support sustainable additive manufacturing, with significant implications for aerospace, biomedical, and energy sector applications.

- Roozkhosh P, Pooya A, Soleimani Fard O, Bagheri R. Revolutionizing supply chain sustainability: An additive manufacturing-enabled optimization model for minimizing waste and costs. Process Integr Optim Sustain. 2024;8(1):285-300. doi: 10.1007/s41660-023-00368-1
- Subramani R. Optimizing process parameters for enhanced mechanical performance in 3D printed impellers using graphene-reinforced polylactic acid (G-PLA) filament. J Mech Sci Technol. 2025;39:1387-1397. doi: 10.1007/s12206-025-0231-4
- Panesar A, Brackett D, Ashcroft I, Wildman R, Hague R. Design Optimization Strategy for Multifunctional 3D Printing; 2014. Available from: https://www.com hdl.handle. net/2152/89261 [Last accessed on 2025 Jul 22].
- Hussain S, Lee CKM, Tsang YP, Waqar S. A machine learning-based recommendation framework for material extrusion fabricated triply periodic minimal surface lattice structures. J Mater Sci Mater Eng. 2025;20(1);27. doi: 10.1186/s40712-025-00229-4
- Goh GD, Sing SL, Lim YF, et al. Machine learning for 3D printed multi-materials tissue-mimicking anatomical models. Mater Design. 2021;211:110125. doi: 10.1016/j.matdes.2021.110125
- Yadav R. Analytic hierarchy process‐technique for order preference by similarity to ideal solution: A multi criteria decision‐making technique to select the best dental restorative composite materials. Polym Compos. 2021;42(12):6867-6877. doi: 10.1002/pc.26346
- Gyani J, Ahmed A, Haq MA. MCDM and various prioritization methods in AHP for CSS: A comprehensive review. IEEE Access. 2022;10:33492-33511. doi: 10.1109/ACCESS.2022.3161742
- Tran NT, Trinh VL, Chung CK. An integrated approach of fuzzy AHP-TOPSIS for multi-criteria decision-making in industrial robot selection. Processes. 2024;12(8):1723. doi: 10.3390/pr12081723
- Kantaros A, Katsantoni M, Ganetsos T, Petrescu N. The evolution of thermoplastic raw materials in high-speed FFF/FDM 3D printing Era: Challenges and opportunities. Materials (Basel). 2025;18(6):1220. doi: 10.3390/ma18061220
- Achite M, Nasiri H, Katipoğlu OM, Abdallah M, Moazenzadeh R, Mohammadi B. A coupled extreme gradient boosting-MPA approach for estimating daily reference evapotranspiration. Theor Appl Climatol. 2025;156(2):113. doi: 10.1007/s00704-024-05313-x
- Nandipati M, Fatoki O, Desai S. Bridging nanomanufacturing and artificial intelligence-a comprehensive review. Materials (Basel). 2024;17(7):1621. doi: 10.3390/ma17071621
- Batu T, Lemu HG, Shimels H. Application of artificial intelligence for surface roughness prediction of additively manufactured components. Materials (Basel). 2023;16(18):6266. doi: 10.3390/ma16186266
- Elahi M, Afolaranmi SO, Lastra JLM, Garcia JAP. A comprehensive literature review of the applications of AI techniques through the lifecycle of industrial equipment. Discov Artif Intell. 2023;3:43. doi: 10.1007/s44163-023-00089-x
- Zhou L, Miller J, Vezza J, et al. Additive manufacturing: A comprehensive review. Sensors (Basel). 2024;24(9):2668. doi: 10.3390/s24092668
- Liu S, Yang C. Machine learning design for high-entropy alloys: Models and algorithms. Metals. 2024;14(2):235. doi: 10.3390/met14020235
- Ng WL, Goh GL, Goh GD, Ten JSJ, Yeong WY. Progress and opportunities for machine learning in materials and processes of additive manufacturing. Adv Mater. 2024;36(34):2310006. doi: 10.1002/adma.202310006
- Fahimi K, Amirabadi M. Constructing the organizational excellence model using technique for order of preference by similarity to ideal solution and Analytic hierarchy process. Int J Hum Capital Urban Manag. 2024;9:157-176. doi: 10.22034/IJHCUM.2024.01.11
- Galal A, Elawady H, Mostafa NA. An integrated framework for third party logistic evaluation by using fuzzy analytical hierarchy process and technique for order preference by similarity to ideal solution. Int J Logist Syst Manag. 2025;50(3):361-385. doi: 10.1504/IJLSM.2025.144680
- Prasetyo DE, Nurfaizal H, Effendi A. Comparative analysis of the analytical hierarchy process (ahp) and technique for order preference by similarity to ideal solution (topsis) methods in selecting majors for new students: A case study at smks binong permai an-nurmaniyah. J Inform Utama. 2024;2(1):43-49.
- Hanafi AM, Moawed MA, Abdellatif OE. Advancing sustainable energy management: A comprehensive review of artificial intelligence techniques in building. Eng Res J (Shoubra). 2024;53(2):26-46. doi: 10.21608/erjsh.2023.226854.1196
- Ukoba K, Olatunji KO, Adeoye E, Jen TC, Madyira DM. Optimizing renewable energy systems through artificial intelligence: Review and future prospects. Energy Environ. 2024;35(7):3833-3879. doi: 10.1177/0958305X241256293
- Rojek I, Mikołajewski D, Mroziński A, Macko M. Green energy management in manufacturing based on demand prediction by artificial intelligence-a review. Electronics. 2024;13(16):3338. doi: 10.3390/electronics13163338
- Sarkar C, Das B, Rawat VS, et al. Artificial intelligence and machine learning technology driven modern drug discovery and development. Int J Mol Sci. 2023;24(3):2026. doi: 10.3390/ijms24032026
- Babu SS, Mourad AHI, Harib KH, Vijayavenkataraman S. Recent developments in the application of machine-learning towards accelerated predictive multiscale design and additive manufacturing. Virtual Phys Prototy. 2023;18(1):e2141653. doi: 10.1080/17452759.2022.2141653
- Yousuf M, Alsuwian T, Amin AA, Fareed S, Hamza M. IoT-based health monitoring and fault detection of industrial AC induction motor for efficient predictive maintenance. Measure Control. 2024;57(8):1146-1160. doi: 10.1177/002029402412314
- Moscol-Albañil I, Solórzano-Requejo W, Rodriguez C, Ojeda C, Lantada AD. Innovative AI-driven design of patient-specific short femoral stems in primary hip arthroplasty. Mater Design. 2024;240:112868. doi: 10.1016/j.matdes.2024.112868
- Westphal E, Seitz H. Generative artificial intelligence: Analyzing its future applications in additive manufacturing. Big Data Cogn Comput. 2024;8(7):74. doi: 10.3390/bdcc8070074
- Zhang Y, Song C. A novel design of centrifugal pump impeller for hydropower station management based on multi-objective inverse optimization. Processes. 2023;11(12):3335. doi: 10.3390/pr11123335
- Pinto RN, Afzal A, D’Souza LV, Ansari Z, Mohammed Samee A. Computational fluid dynamics in turbomachinery: A review of state of the art. Arch Computat Methods Eng. 2017;24(3):467-479. doi: 10.1007/s11831-016-9175-2
- Cao S, Peng G, Yu Z. Hydrodynamic design of rotodynamic pump impeller for multiphase pumping by combined approach of inverse design and CFD analysis. J Fluids Eng. 2005;127:330-338. doi: 10.1115/1.1881697
- Raja S, Praveenkumar V, Rusho MA, Yishak S. Optimizing additive manufacturing parameters for graphene-reinforced PETG impeller production: A fuzzy AHP-TOPSIS approach. Results Eng. 2024;24:103018. doi: 10.1016/j.rineng.2024.103018
- Mushtaq RT, Wang Y, Rehman M, et al. Investigation of the mechanical properties, surface quality, and energy efficiency of a fused filament fabrication for PA6. Rev Adv Mater Sci. 2023;62(1):20220332. doi: 10.1515/rams-2022-0332
- Raja S, Jayalakshmi M, Rusho MA, et al. Fused deposition modeling process parameter optimization on the development of graphene enhanced polyethylene terephthalate glycol. Sci Rep. 2024;14(1):30744. doi: 10.1038/s41598-024-80376-4
- Borah J, Chandrasekaran M. Development of ANN model for predicting mechanical properties of 3D printed PEEK polymer using FDM and optimization of process parameters for better mechanical properties. Phys Scripta. 2024;99(11):116005. doi: 10.1088/1402-4896/ad7f0f
- Villegas AI, Garcia JP, Carillo J, Espalin D. Bead-Weaved Layered Prints for Improved Interlayer Adhesion in Additive Manufacturing. United States: University of Texas at Austin; 2024. doi: 10.26153/tsw/58049
- Alharbi A, Alosaimi W, Alyami H, et al. Selection of data analytic techniques by using fuzzy AHP TOPSIS from a healthcare perspective. BMC Med Inform Decis Mak. 2024;24(1):240. doi: 10.1186/s12911-024-02651-8
- Lambiase F, Liparoti S, Pace F, Scipioni SI, Paoletti A. A multidisciplinary approach to investigate the influence of process parameters on interlayer adhesion in material extrusion additive manufacturing. Int J Adv Manuf Technol. 2024;133(11):5553-5570. doi: 10.1007/s00170-024-14079-5
- Kumar MS, Farooq MU, Ross NS, Yang CH, Kavimani V, Adediran AA. Achieving effective interlayer bonding of PLA parts during the material extrusion process with enhanced mechanical properties. Sci Rep. 2023;13(1):6800. doi: 10.1038/s41598-023-33510-7
- Altıparmak SC, Yardley VA, Shi Z, Lin J. Extrusion-based additive manufacturing technologies: State of the art and future perspectives. J Manuf Process. 2022;83:607-636. doi: 10.1016/j.jmapro.2022.09.032
- Polo-Triana S, Gutierrez JC, Leon-Becerra J. Integration of machine learning in the supply chain for decision making: A systematic literature review. J Ind Eng Manag. 2024;17(2):344-372. doi: 10.3926/jiem.6403
- Mishra A, Linh NTD, Bhardwaj M, Pinto CM, editors. Multi-criteria Decision Models in Software Reliability: Methods and Applications. CRC Press; 2022. Available from: https://books.google.co.in/books?hl=en&lr=&id=lqcveaaa qbaj&oi=fnd&pg=pp1&dq=%5b41%5d.%09mishra,+a., +linh,+n.+t.+d.,+bhardwaj,+m.,+%26+pinto,+c.+m.+ (eds.).+(2022).+multi/criteria+decision+models+in+ software+reliability:+methods+and+applications.+crc+ press.&ots=hrepmhkbj6&sig=wlxd5kraczllcgqu3vvkrdhr 0vw&redir_esc=y#v=on epage&q&f=false [Last accessed on 2025 Jul 22].
- Sæterbø M. A Decision Support Framework for Metal Additive Manufacturing Adoption in Small and Medium- Sized Enterprises; 2024. Available from: https://www.hdl. handle.net/10037/35740 [Last accessed on 2025 Jul 22].
- Getachew MT, Shiferaw MZ, Ayele BS. Recent advances of additive manufacturing for aerospace industries: Methods, materials, challenges, and future outlooks. In: Solomon Workneh Fanta Mesfin Wogayehu Tenagashaw Muluken Temsgen Tigabu. 2025. p47. doi: 10.1007/978-3-031-77339-6_4
- Li Z, Chang L. Development of wear-resistant polymeric materials using fused deposition modelling (FDM) technologies: A review. Lubricants. 2025;13(3):98. doi: 10.3390/lubricants13030098
- Klenam D, Asumadu T, Bodunrin M, et al. Toward sustainable industrialization in Africa: The potential of additive manufacturing-an overview. Front Manuf Technol. 2025;4:1410653. doi: 10.3389/fmtec.2024.1410653
- Al-Sammak KA, Al-Gburi SH, Marghescu I, et al. Optimizing IoT energy efficiency: Real-time adaptive algorithms for smart meters with LoRaWAN and NB-IoT. Energies. 2025;18(4):987. doi: 10.3390/en18040987
- Glogar M, Petrak S, Mahnić Naglić M. Digital technologies in the sustainable design and development of textiles and clothing-a literature review. Sustainability. 2025;17(4):1371. doi: 10.3390/su17041371
- Yan Z, Guo X, Hui J, Lv J, Xu Z. Optimization of energy consumption and dimensional accuracy for fused deposition modeling processes through a hybrid method. Int J Adv Manuf Technol. 2025;137:2335-2354. doi: 10.1007/s00170-025-15294-4
- Ghaith K. Integrating eco-innovation with AI: Reimagining non-heritage cultural product design through sustainable technological interventions. J Next Gener Rese. 2025;1:1-12. doi: 10.70792/jngr5.0.v1i2.58
- Natarajan M, Pasupuleti T, Kumar V, Kiruthika J, Katta LN, Silambarasan R. Development of AI Prediction Tool for Fused Deposition Modeling of ABS Material for Automobile Applications (No. 2025-28-0127). SAE Technical Paper; 2025. doi: 10.4271/2025-28-0127
- Łach Ł, Svyetlichnyy D. Advances in numerical modeling for heat transfer and thermal management: A review of computational approaches and environmental impacts. Energies. 2025;18(5):1302. doi: 10.3390/en18051302
- Fan H, Liu C, Bian S, et al. New era towards autonomous additive manufacturing: A review of recent trends and future perspectives. Int J Extrem Manuf. 2025;7:032006. doi: 10.1088/2631-7990/ada8e4
- Jalasri M, Panchal SM, Mahalingam K, Venkatasubramanian R, Hemalatha R, Boopathi S. Ai-powered smart energy management for optimizing energy efficiency in high-performance computing systems. In: Future of Digital Technology and AI in Social Sectors. United States: IGI Global; 2025. p. 329-366. doi: 10.4018/979-8-3693-5533-6.ch012