AccScience Publishing / MSAM / Volume 4 / Issue 3 / DOI: 10.36922/MSAM025200031
REVIEW ARTICLE

Ceramic additive manufacturing via vat photopolymerization

Chongyu Long1 Zhiyuan Liu1,2 Changyong Liu1,2 Zhangwei Chen1,2*
Show Less
1 Additive Manufacturing Institute, Shenzhen University, Shenzhen, Guangdong, China
2 Guangdong Key Laboratory of Electromagnetic Control and Intelligent Robotics, Shenzhen University, Shenzhen, Guangdong, China
MSAM 2025, 4(3), 025200031 https://doi.org/10.36922/MSAM025200031
Received: 13 May 2025 | Accepted: 4 June 2025 | Published online: 11 July 2025
(This article belongs to the Special Issue Additive Manufacturing of High Performance Ceramics)
© 2025 by the 2025 Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Vat photopolymerization (VPP) additive manufacturing has emerged as a transformative approach for fabricating high-performance ceramic components with intricate geometries. This review comprehensively examines VPP technologies, including stereolithography, digital light processing, and two-photon polymerization, highlighting their mechanisms, advantages, and limitations. Critical challenges faced by ceramic VPP include light scattering from particles, slurry viscosity control, sedimentation, and post-processing shrinkage. The required optimized characteristics suitable for VPP of ceramic slurries and pre-ceramic polymers are also discussed. The latter offers a promising alternative, enabling the shaping of complex architectures with reduced defects and enhanced thermal stability, supported by active/passive fillers that mitigate shrinkage and improve density. Ceramic VPP applications span biomedical implants, microreactors, aerospace components, and energy devices. Key advancements include the integration of multimaterial systems, hybrid precursors, and nanocomposites. However, challenges persist in achieving uniform curing depths, minimizing anisotropic shrinkage, and scaling production. Future research should focus on material innovation, process parameter optimization, and advanced characterization techniques to unlock the full potential of VPP for next-generation ceramic manufacturing. This technology offers an effective solution for high-value ceramic applications.

Graphical abstract
Keywords
Ceramics
Vat photopolymerization
Stereolithography
Slurries
Sintering
Funding
This work was financially supported by the Key Project of the Department of Education of Guangdong Province (2022ZDZX3017), the Special Support Plan of Guangdong Province (2021TQ05Z151), Guangdong Basic and Applied Basic Research Foundation (2024A1515010049), and SZU Research Fund (GFPY-YB-2024-03).
Conflict of interest
Zhangwei Chen serves as the Editorial Board Member of the journal but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Other authors declare they have no competing interests.
References
  1. Lee JY, An J, Chua CK. Fundamentals and applications of 3D printing for novel materials. Appl Mater Today. 2017;7:120-133. doi: 10.1016/j.apmt.2017.02.004
  2. Chen Z, Li Z, Li J, et al. 3D printing of ceramics: A review. J Eur Ceram Soc. 2019;39(4):661-687. doi: 10.1016/j.jeurceramsoc.2018.11.013
  3. Davoudinejad A. Vat photopolymerization methods in additive manufacturing. In: Additive Manufacturing. Netherlands: Elsevier; 2021. p. 159-181. doi: 10.1016/B978-0-12-818411-0.00007-0
  4. Rahaman MN. Ceramic Processing and Sintering. United States: CRC Press; 2017. doi: 10.1201/9781315274126
  5. Hull CW. Inventor; Methods and Apparatus for Production of Three-dimensional Objects by Stereolithography. USA Patent US5236637; 1986.
  6. Jacobs PF. Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography. United States: Society of Manufacturing Engineers; 1992.
  7. Parra-Cabrera C, Achille C, Kuhn S, Ameloot R. 3D printing in chemical engineering and catalytic technology: Structured catalysts, mixers and reactors. Chem Soc Rev. 2018;47(1):209-230. doi: 10.1039/C7CS00631D
  8. Choi JW, Kim HC, Wicker R. Multi-material stereolithography. J Mater Process Technol. 2011;211(3):318-328. doi: 10.1016/j.jmatprotec.2010.10.003
  9. Klein J, Stern M, Franchin G, et al. Additive manufacturing of optically transparent glass. 3D Print Addit Manuf. 2015;2(3):92-105. doi: 10.1089/3dp.2015.0021
  10. Halloran JW. Ceramic stereolithography: Additive manufacturing for ceramics by photopolymerization. Annu Rev Mater Res. 2016;46(1):19-40. doi: 10.1146/annurev-matsci-070115-031841
  11. Griffith ML, Halloran JW. Ultraviolet curable ceramic suspensions for stereolithography of ceramics. In: Proceedings Solid Freeform Fabrication Symposium; 1994. p. 529-534.
  12. Nakamoto T, Yamaguchi K. Consideration on the Producing of High Aspect Ratio Micro Parts using UV Sensitive Photopolymer. United States: IEEE; 1996. p. 53-58.
  13. Bertsch A, Zissi S, Jezequel J, Corbel S, Andre J. Microstereophotolithography using a liquid crystal display as dynamic mask-generator. Microsyst Technol. 1997;3(2):42-47.
  14. Göppert-Mayer M. Elementary processes with two quantum transitions. Ann Phys. 2009;521(7-8):466-479. doi: 10.1002/andp.200952107-804
  15. Kaiser W, Garrett CGB. Two-photon excitation in CaF2:Eu2+. Phys Rev Lett. 1961;7(6):229-231. doi: 10.1103/PhysRevLett.7.229
  16. Paz VF, Emons M, Obata K, et al. Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization. J Laser Appl. 2012;24(4):042004. doi: 10.2351/1.4712151
  17. Bhawalkar JD, He GS, Prasad PN. Nonlinear multiphoton processes in organic and polymeric materials. Rep Prog Phys. 1996;59(9):1041. doi: 10.1088/0034-4885/59/9/001
  18. LaFratta CN, Fourkas JT, Baldacchini T, Farrer RA. Multiphoton fabrication. Angew Chem Int Ed. 2007;46(33):6238-6258. doi: 10.1002/anie.200603995
  19. Fried JR. Polymer Science and Technology. United Kingdom: Pearson Education; 2014.
  20. Serbin J, Egbert A, Ostendorf A, et al. Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics. Opt Lett. 2003;28(5):301-303. doi: 10.1364/ol.28.000301
  21. Zipfel WR, Williams RM, Webb WW. Nonlinear magic: Multiphoton microscopy in the biosciences. Nat Biotechnol. 2003;21(11):1369-1377. doi: 10.1038/nbt899
  22. Tumbleston John R, Shirvanyants D, Ermoshkin N, et al. Continuous liquid interface production of 3D objects. Science. 2015;347(6228):1349-1352. doi: 10.1126/science.aaa2397
  23. González-Méijome JM, Compañ-Moreno V, Riande E. Determination of oxygen permeability in soft contact lenses using a polarographic method: estimation of relevant physiological parameters. Ind Eng Chem Res. 2008;47(10):3619-3629.
  24. Wang G, Song Y. Enhancing the yield of polycarbosilane synthesis via recycling of liquid by-product at atmospheric pressure. Ceram Int. 2018;44(6):6474-6478. doi: 10.1016/j.ceramint.2018.01.101
  25. Colombo P, Mera G, Riedel R, Sorarù GD. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc. 2010;93(7):1805-1837. doi: 10.1111/j.1551-2916.2010.03876.x
  26. Martínez-Crespiera S, Ionescu E, Schlosser M, et al. Fabrication of silicon oxycarbide-based microcomponents via photolithographic and soft lithography approaches. Sens Actuat A Phys. 2011;169(1):242-249. doi: 10.1016/j.sna.2011.04.041
  27. Kashimura S, Tane Y, Ishifune M, et al. Practical method for the synthesis of polysilanes using Mg and Lewis acid system. Tetrahedron Lett. 2008;49(2):269-271. doi: 10.1016/j.tetlet.2007.11.083
  28. Jones RG, Holder SJ. High-yield controlled syntheses of polysilanes by the Wurtz-type reductive coupling reaction. Polym Int. 2006;55(7):711-718. doi: 10.1002/pi.1945
  29. Krempner C. Polysilane dendrimers. Polymers. 2012;4(1):408-447. doi: 10.3390/polym4010408
  30. Chen J, He G, Liao Z, et al. Control of structure formation of polycarbosilane synthesized from polydimethylsilane by Kumada rearrangement. J Appl Polym Sci. 2008;108(5):3114-3121. doi: 10.1002/app.27847
  31. Cheng X, Xie Z, Song Y, Xiao J, Wang Y. Structure and properties of polycarbosilane synthesized from polydimethylsilane under high pressure. J Appl Polym Sci. 2006;99(3):1188-1194. doi: 10.1002/app.22465
  32. Lodhe M, Babu N, Selvam A, Balasubramanian M. Synthesis and characterization of high ceramic yield polycarbosilane precursor for SiC. J Adv Ceram. 2015;4:307-311. doi: 10.1007/s40145-015-0169-8
  33. He L, Zhang Z, Yang X, Jiao L, Li Y, Xu C. Liquid polycarbosilanes: synthesis and evaluation as precursors for SiC ceramic. Polym Int. 2015;64(8):979-985. doi: 10.1002/pi.4904
  34. Hörz M, Zern A, Berger F, et al. Novel polysilazanes as precursors for silicon nitride/silicon carbide composites without “free” carbon. J Eur Ceram Soc. 2005;25(2-3):99-110. doi: 10.1016/j.jeurceramsoc.2004.05.003
  35. Blum YD, Schwartz KB, Laine RM. Preceramic polymer pyrolysis: Part 1 Pyrolytic properties of polysilazanes. J Mater Sci. 1989;24:1707-1718. doi: 10.1007/BF01138991
  36. Kroke E, Li YL, Konetschny C, Lecomte E, Fasel C, Riedel R. Silazane derived ceramics and related materials. Mater Sci Eng R Rep. 2000;26(4-6):97-199. doi: 10.1016/S0927-796X(00)00013-0
  37. Soraru GD. Silicon oxycarbide glasses from gels: Code: H1. J Sol Gel Sci Technol. 1994;2:843-848. doi: 10.1007/BF00489675
  38. Schmitt M. Analysis of silanes and of siloxanes formation by Raman spectroscopy. RSC Adv. 2014;4(4):1907-1917. doi: 10.1039/C3RA45816A
  39. Mera G, Riedel R, Poli F, Müller K. Carbon-rich SiCN ceramics derived from phenyl-containing poly (silylcarbodiimides). J Eur Ceram Soc. 2009;29(13):2873-2883. doi: 10.1016/j.jeurceramsoc.2009.03.020
  40. Widgeon S, Mera G, Gao Y, et al. Nanostructure and energetics of carbon-rich SiCN ceramics derived from polysilylcarbodiimides: Role of the nanodomain interfaces. Chem Mater. 2012;24(6):1181-1191. doi: 10.1021/cm3000259
  41. Gao Y, Mera G, Nguyen H, Morita K, Kleebe HJ, Riedel R. Processing route dramatically influencing the nanostructure of carbon-rich SiCN and SiBCN polymer-derived ceramics. Part I: Low temperature thermal transformation. J Eur Ceram Soc. 2012;32(9):1857-1866. doi: 10.1016/j.jeurceramsoc.2012.01.022
  42. Zhang Z, Zeng F, Han J, Luo Y, Xu C. Synthesis and characterization of a new liquid polymer precursor for Si-B-C-N ceramics. J Mater Sci. 2011;46:5940-5947. doi: 10.1007/s10853-010-4934-1
  43. Widgeon S, Mera G, Gao Y, Sen S, Navrotsky A, Riedel R. Effect of precursor on speciation and nanostructure of SiBCN polymer‐derived ceramics. J Am Ceram Soc. 2013;96(5):1651-1659. doi: 10.1111/jace.12217
  44. Griffith ML, Halloran JW. Freeform fabrication of ceramics via stereolithography. J Am Ceram Soc. 1996;79(10):2601-2608. doi: 10.1111/j.1151-2916.1996.tb09022.x
  45. Schwartz KB, Rowcliffe DJ. Modeling density contributions in preceramic polymer/ceramic powder systems. J Am Ceram Soc. 1986;69(5):C-106. doi: 10.1111/j.1151-2916.1986.tb04782.x
  46. Wang WL, Cheah CM, Fuh JYH, Lu L. Influence of process parameters on stereolithography part shrinkage. Mater Design. 1996;17(4):205-213. doi: 10.1016/S0261-3069(97)00020-1
  47. Travitzky N, Bonet A, Dermeik B, et al. Additive manufacturing of ceramic-based materials. Adv Eng Mater. 2014;16(6):729-754. doi: 10.1002/adem.201400097
  48. He R, Liu W, Wu Z, et al. Fabrication of complex-shaped zirconia ceramic parts via a DLP- stereolithography-based 3D printing method. Ceram Int. 2018;44(3):3412-3416. doi: 10.1016/j.ceramint.2017.11.135
  49. Zhou M, Liu W, Wu H, et al. Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography - Optimization of the drying and debinding processes. Ceram Int. 2016;42(10):11598-11602. doi: 10.1016/j.ceramint.2016.04.007
  50. Li S, Shan Y, Chen J, et al. 3D printing and biomedical applications of piezoelectric composites: A critical review. Adv Mater Technol. 2025;10(5):2401160.
  51. Hamza M, Kanwal Q, Hussain MI, et al. Recent progress in 3D printed piezoelectric materials for biomedical applications. Mater Sci Eng R Rep. 2025;164:100962.
  52. Zhang P, He R. 3D-printed silicon nitride ceramic implants for clinical applications: The state of the art and prospects. RSC Adv. 2025;15(1):406-419.
  53. Scheithauer U, Schwarzer E, Ganzer G, et al. Microhreactors made by lithography‐based ceramic manufacturing (LCM). In: Additive Manufacturing and Strategic Technologies in Advanced Ceramics: Ceramic Transactions. Vol. 258. United States: Wiley; 2015. p. 31-41. doi: 10.1002/9781119183860.ch3
  54. Schwentenwein M, Homa J. Additive manufacturing of dense alumina ceramics. Int J Appl Ceram Technol. 2015;12(1):1-7. doi: 10.1111/ijac.12324
  55. Scheithauer U, Schwarzer E, Moritz T, Michaelis A. Additive manufacturing of ceramic heat exchanger: Opportunities and limits of the lithography-based ceramic manufacturing (LCM). J Mater Eng Perform. 2018;27(1):14-20. doi: 10.1007/s11665-017-3056-1
  56. Lantada AD, de Blas Romero A, Schwentenwein M, Jellinek C, Homa J. Lithography-based ceramic manufacture (LCM) of auxetic structures: Present capabilities and challenges. Smart Mater Struct. 2016;25(5):054015. doi: 10.1088/0964-1726/25/5/054015
  57. Qu P, Liang G, Hussain MI, et al. Low-temperature fabrication of high-specific strength SiC-based ceramics via photopolymerization 3D printing with controllable anisotropy. Int J Extreme Manuf. 2025;7(5):055002. doi: 10.1088/2631-7990/add2e1
  58. Luo X, Ren W, Xing H, Hussain MI, Chen Z. Additively manufactured Li4SiO4 ceramic pebbles with radial pores for enhanced performance. Ceram Int. 2025. doi. 10.1016/j.ceramint.2025.01.332
  59. Ren W, Liu W, Luo X, Liu Z, Liu C, Chen Z. 3D printing of cordierite glass-ceramics. Ceram Int. 2025;51(2):1632-1642.
  60. Gentry SP, Halloran JW. Depth and width of cured lines in photopolymerizable ceramic suspensions. J Eur Ceram Soc. 2013;33(10):1981-1988. doi: 10.1016/j.jeurceramsoc.2013.02.012
  61. de Hazan Y, Penner D. SiC and SiOC ceramic articles produced by stereolithography of acrylate modified polycarbosilane systems. J Eur Ceram Soc. 2017;37(16):5205-5212. doi: 10.1016/j.jeurceramsoc.2017.03.021
  62. Badev A, Abouliatim Y, Chartier T, et al. Photopolymerization kinetics of a polyether acrylate in the presence of ceramic fillers used in stereolithography. J Photochem Photobiol A. 2011;222(1):117-122. doi: 10.1016/j.jphotochem.2011.05.010
  63. Leigh SJ, Purssell C, Bowen J, Hutchins DA, Covington JA, Billson D. A miniature flow sensor fabricated by micro-stereolithography employing a magnetite/acrylic nanocomposite resin. Sens Actuat A. 2011;168(1):66-71. doi: 10.1016/j.sna.2010.12.007
  64. Chen W, Kirihara S, Miyamoto Y. Fabrication and measurement of micro three‐dimensional photonic crystals of SiO2 ceramic for terahertz wave applications. J Am Ceram Soc. 2007;90(7):2078-2081. doi: 10.1111/j.1551-2916.2007.01724.x
  65. Du D, Asaoka T, Ushida T, Furukawa KS. Fabrication and perfusion culture of anatomically shaped artificial bone using stereolithography. Biofabrication. 2014;6(4):045002. doi: 10.1088/1758-5082/6/4/045002
  66. Lian Q, Sui W, Wu X, Yang F, Yang S. Additive manufacturing of ZrO2 ceramic dental bridges by stereolithography. Rapid Prototyp J. 2018;24(1):114-119. doi: 10.1108/RPJ-09-2016-0144
  67. Bae CJ, Halloran JW. Influence of residual monomer on cracking in ceramics fabricated by stereolithography. Int J Appl Ceram Technol. 2011;8(6):1289-1295. doi: 10.1111/j.1744-7402.2011.02611.x
  68. Bae CJ, Ramachandran A, Halloran JW. Quantifying particle segregation in sequential layers fabricated by additive manufacturing. J Eur Ceram Soc. 2018;38:4082-4088. doi: 10.1016/j.jeurceramsoc.2018.07.040
  69. Mitteramskogler G, Gmeiner R, Felzmann R, et al. Light curing strategies for lithography-based additive manufacturing of customized ceramics. Addit Manuf. 2014;1:110-118. doi: 10.1016/j.addma.2014.08.004
  70. Pfaffinger M, Mitteramskogler G, Gmeiner R, Stampfl J. Thermal Debinding of Ceramic-filled Photopolymers. Switzerland: Trans Tech Publ; 2015. p. 75-81. doi: 10.1002/9781119183860.ch10
  71. Eckel ZC, Zhou C, Martin JH, Jacobsen AJ, Carter WB, Schaedler TA. Additive manufacturing of polymer-derived ceramics. Science. 2016;351(6268):58-62. doi: 10.1126/science.aad2688
  72. Chaudhary RP, Parameswaran C, Idrees M, et al. Additive manufacturing of polymer-derived ceramics: Materials, technologies, properties and potential applications. Prog Mater Sci. 2022;128:100969. doi: 10.1016/j.pmatsci.2022.100969
  73. Toma L, Kleebe HJ, Müller MM, et al. Correlation between intrinsic microstructure and piezoresistivity in a SiOC polymer‐derived ceramic. J Am Ceram Soc. 2012; 95(3):1056-1061. doi: 10.1111/j.1551-2916.2011.05026.x
  74. Colombo P, Bernardo E, Parcianello G. Multifunctional advanced ceramics from preceramic polymers and nano-sized active fillers. J Eur Ceram Soc. 2013;33(3):453-469. doi: 10.1016/j.jeurceramsoc.2012.10.006
  75. Kim KJ, Eom JH, Kim YW, Seo WS. Electrical conductivity of dense, bulk silicon-oxycarbide ceramics. J Eur Ceram Soc. 2015;35(5):1355-1360. doi: 10.1016/j.jeurceramsoc.2014.12.009
  76. Li Z, Chen Z, Liu J, et al. Additive manufacturing of lightweight and high-strength polymer-derived SiOC ceramics. Virtual Phys Prototyp. 2020;15(2):163-177. doi: 10.1080/17452759.2019.1710919
  77. Fu Y, Xu G, Chen Z, Liu C, Wang D, Lao C. Multiple metals doped polymer-derived SiOC ceramics for 3D printing. Ceram Int. 2018;44(10):11030-11038. doi: 10.1016/j.ceramint.2018.03.075
  78. Zocca A, Gomes CM, Staude A, Bernardo E, Günster J, Colombo P. SiOC ceramics with ordered porosity by 3D-printing of a preceramic polymer. J Mater Res. 2013;28(17):2243-2252. doi: 10.1557/jmr.2013.129
  79. Zhou S, Mei H, Chang P, Lu M, Cheng L. Molecule editable 3D printed polymer-derived ceramics. Coord Chem Rev. 2020;422:213486. doi: 10.1016/j.ccr.2020.213486
  80. Hundley JM, Eckel ZC, Schueller E, et al. Geometric characterization of additively manufactured polymer derived ceramics. Addit Manuf. 2017;18:95-102. doi: 10.1016/j.addma.2017.09.005
  81. Zanchetta E, Cattaldo M, Franchin G, et al. Stereolithography of SiOC ceramic microcomponents. Adv Mater. 2016;28(2):370-376. doi: 10.1002/adma.201503470
  82. Li S, Duan W, Zhao T, et al. The fabrication of SiBCN ceramic components from preceramic polymers by digital light processing (DLP) 3D printing technology. J Eur Ceram Soc. 2018;38(14):4597-4603. doi: 10.1016/j.jeurceramsoc.2018.05.043
  83. Wang X, Schmidt F, Hanaor D, Kamm PH, Li S, Gurlo A. Additive manufacturing of ceramics from preceramic polymers: A versatile stereolithographic approach assisted by thiol-ene click chemistry. Addit Manuf. 2019;27:80-90. doi: 10.1016/j.addma.2019.02.012
  84. Brodnik NR, Schmidt J, Colombo P, Faber KT. Analysis of multi-scale mechanical properties of ceramic trusses prepared from preceramic polymers. Addit Manuf. 2020;31:100957. doi: 10.1016/j.addma.2019.100957
  85. Gyak KW, Vishwakarma NK, Hwang YH, Kim J, Yun HS, Kim DP. 3D-printed monolithic SiCN ceramic microreactors from a photocurable preceramic resin for the high temperature ammonia cracking process. 10.1039/ C9RE00201D. React Chem Eng. 2019;4(8):1393-1399. doi: 10.1039/C9RE00201D
  86. Schmidt J, Altun AA, Schwentenwein M, Colombo P. Complex mullite structures fabricated via digital light processing of a preceramic polysiloxane with active alumina fillers. J Eur Ceram Soc. 2019;39(4):1336-1343.doi: 10.1016/j.jeurceramsoc.2018.11.038
  87. Xiong SF, Liu J, Cao JW, et al. 3D printing of crack-free dense polymer-derived ceramic monoliths and lattice skeletons with improved thickness and mechanical performance. Addit Manuf. 2022;57:102964. doi: 10.1016/j.addma.2022.102964
  88. Jiang L, Long C, Xiong S, et al. 4D printing of shape-programmable polymer-derived ceramics via two-stage folding-assisted pyrolysis strategy. Virtual Phys Prototyp. 2024;19(1):e2406408. doi: 10.1080/17452759.2024.2406408
  89. Pham TA, Kim DP, Lim TW, Park SH, Yang DY, Lee KS. Three-dimensional SiCN ceramic microstructures via nano-stereolithography of inorganic polymer photoresists. 2006;16(9):1235-1241. doi: 10.1002/adfm.200600009
  90. Jang D, Meza LR, Greer F, Greer JR. Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nat Mater. 2013;12(10):893. doi: 10.1038/nmat3738

 



Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing