AccScience Publishing / MSAM / Volume 4 / Issue 2 / DOI: 10.36922/MSAM025070006
REVIEW ARTICLE

Hydrogel-based materials for mandibular reconstruction

Yiwen Zhang1,2,3,4,5,6† Yilan Sun1,2,3,4,5,6† Jiacheng Luo2 Zilin Wang7 Zimo Pang8 Yujie Chen8 Jiannan Liu1,2,3,4,5,6*
Show Less
1 Department of Oral and Maxillofacial Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
2 College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
3 National Center for Stomatology, Shanghai, China
4 National Clinical Research Center for Oral Diseases, Shanghai, China
5 Shanghai Key Laboratory of Stomatology, Shanghai, China
6 Shanghai Research Institute of Stomatology, Shanghai, China
7 Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun, Jilin, China
8 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
†These authors contributed equally to this work.
MSAM 2025, 4(2), 025070006 https://doi.org/10.36922/MSAM025070006
Received: 2 February 2025 | Accepted: 4 April 2025 | Published online: 29 April 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Mandibular reconstruction remains a significant clinical challenge due to irregular defect geometries, high functional restoration requirements, and complex oral environments. Traditional vascularized bone grafts, while effective, are limited by donor site complications and poor osseointegration. Hydrogel-based materials have emerged as promising alternatives due to their biocompatibility, tunable mechanical properties, and capacity to mimic the extracellular matrix for osteogenesis and angiogenesis. This review highlights recent advances in hydrogel design strategies tailored for mandibular regeneration. Key considerations include mechanical reinforcement through nanocomposites and dual-network architectures, which enhance compressive strength and toughness to withstand masticatory loads. Injectable hydrogels demonstrate minimally invasive delivery and shape adaptability for irregular defects, while biomimetic wet adhesives achieve robust tissue integration through covalent and coordination bonding mechanisms. Functionalization with bioactive factors and stem cells promotes spatiotemporal regulation of osteogenesis and angiogenesis, as evidenced by successful mandibular regeneration in preclinical models. Antibacterial strategies integrating metal ions, antibacterial agents, or peptides can contribute to addressing oral microbial challenges. This review underscores the potential of multifunctional hydrogels to bridge structural and functional regeneration in craniofacial reconstruction while identifying critical research gaps for future innovation.

Graphical abstract
Keywords
Polymer materials
Hydrogel biomaterials
Mandibular reconstruction
Nanocomposite reinforcement
Injectable hydrogel systems
Bioinspired wet-adhesive interfaces
Oral antibacterial strategies
3D Printing
Funding
This work was supported by the National Natural Science Foundation of China (No. 82170923) and the Fundamental Research Funds for the Central Universities, China (No. YG2023LC06).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Hayden RE, Mullin DP, Patel AK. Reconstruction of the segmental mandibular defect: Current state of the art. Curr Opin Otolaryngol Head Neck Surg. 2012;20(4):231-236. doi: 10.1097/MOO.0b013e328355d0f3
  2. Paré A, Bossard A, Laure B, Weiss P, Gauthier O, Corre P. Reconstruction of segmental mandibular defects: Current procedures and perspectives. Laryngoscope Investig Otolaryngol. 2019;4(6):587-596. doi: 10.1002/lio2.325
  3. Al Maruf DSA, Ghosh YA, Xin H, et al. Hydrogel: A potential material for bone tissue engineering repairing the segmental mandibular defect. Polymers (Basel). 2022;14(19):4186. doi: 10.3390/polym14194186
  4. Zhou B, Jiang X, Zhou X, et al. GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances. Biomater Res. 2023;27(1):86. doi: 10.1186/s40824-023-00422-6
  5. Kumar A, Rao KM, Han SS. Synthesis of mechanically stiff and bioactive hybrid hydrogels for bone tissue engineering applications. Chem Eng J. 2017;317:119-131. doi: 10.1016/j.cej.2017.02.065
  6. Bai X, Gao M, Syed S, Zhuang J, Xu X, Zhang XQ. Bioactive hydrogels for bone regeneration. Bioact Mater. 2018;3(4):401-417. doi: 10.1016/j.bioactmat.2018.05.006
  7. Yue S, He H, Li B, Hou T. Hydrogel as a biomaterial for bone tissue engineering: A review. Nanomaterials (Basel). 2020;10(8):1511. doi: 10.3390/nano10081511
  8. Al Maruf DSA, Parthasarathi K, Cheng K, et al. Current and future perspectives on biomaterials for segmental mandibular defect repair. Int J Polym Mater. 2022;72(9):725-737. doi: 10.1080/00914037.2022.2052729
  9. Spiller KL, Maher SA, Lowman AM. Hydrogels for the repair of articular cartilage defects. Tissue Eng Part B Rev. 2011;17(4):281-299. doi: 10.1089/ten.TEB.2011.0077
  10. Bashir S, Hina M, Iqbal J, et al. Fundamental concepts of hydrogels: Synthesis, properties, and their applications. Polymers (Basel). 2020;12(11):2702. doi: 10.3390/polym12112702
  11. Cheng C, Sun Q, Wang X, He B, Jiang T. Enzyme-manipulated hydrogelation of small molecules for biomedical applications. Acta Biomater. 2022;151:88-105. doi: 10.1016/j.actbio.2022.08.016
  12. Li Y, Wang X, Han Y, Sun HY, Hilborn J, Shi L. Click chemistry-based biopolymeric hydrogels for regenerative medicine. Biomed Mater. 2021;16(2):022003. doi: 10.1088/1748-605X/abc0b3
  13. Zhang Y, Wang S, Tian Y, et al. Multi-physically cross-linked hydrogels for flexible sensors with high strength and self-healing properties. Polymers (Basel). 2023;15(18):3748. doi: 10.3390/polym15183748
  14. Hu W, Wang Z, Xiao Y, Zhang S, Wang J. Advances in crosslinking strategies of biomedical hydrogels. Biomater Sci. 2019;7(3):843-855. doi: 10.1039/c8bm01246f
  15. Salma-Ancane K, Sceglovs A, Tracuma E, et al. Effect of crosslinking strategy on the biological, antibacterial and physicochemical performance of hyaluronic acid and e-polylysine based hydrogels. Int J Biol Macromol. 2022;208:995-1008. doi: 10.1016/j.ijbiomac.2022.03.207
  16. Niewiadomski K, Szopa D, Pstrowska K, Wróbel P, Witek- Krowiak A. Comparative analysis of crosslinking methods and their impact on the physicochemical properties of SA/ PVA hydrogels. Materials (Basel). 2024;17(8):1816. doi: 10.3390/ma17081816
  17. Chuang CH, Lin RZ, Melero-Martin JM, Chen YC. Comparison of covalently and physically cross-linked collagen hydrogels on mediating vascular network formation for engineering adipose tissue. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S434-S447. doi: 10.1080/21691401.2018.1499660
  18. El-Husseiny HM, Mady EA, El-Dakroury WA, Doghish AS, Tanaka R. Stimuli-responsive hydrogels: Smart state of-the-art platforms for cardiac tissue engineering. Front Bioeng Biotechnol. 2023;11:1174075. doi: 10.3389/fbioe.2023.1174075
  19. Aghajanzadeh MS, Imani R, Nazarpak MH, McInnes SJP. Augmented physical, mechanical, and cellular responsiveness of gelatin-aldehyde modified xanthan hydrogel through incorporation of silicon nanoparticles for bone tissue engineering. Int J Biol Macromol. 2024;259(Pt 2):129231. doi: 10.1016/j.ijbiomac.2024.129231
  20. Rauner N, Meuris M, Zoric M, Tiller JC. Enzymatic mineralization generates ultrastiff and tough hydrogels with tunable mechanics. Nature. 2017;543(7645):407-410. doi: 10.1038/nature21392
  21. Yu T, Zhang L, Dou X, et al. Mechanically robust hydrogels facilitating bone regeneration through epigenetic modulation. Adv Sci (Weinh). 2022;9(32):e2203734. doi: 10.1002/advs.202203734
  22. Wu P, Shen L, Liu HF, et al. The marriage of immunomodulatory, angiogenic, and osteogenic capabilities in a piezoelectric hydrogel tissue engineering scaffold for military medicine. Mil Med Res. 2023;10(1):35. doi: 10.1186/s40779-023-00469-5
  23. Li W, Wang C, Wang Z, et al. Physically cross-linked DNA hydrogel-based sustained cytokine delivery for in situ diabetic alveolar bone rebuilding. ACS Appl Mater Interfaces. 2022;14(22):25173-25182. doi: 10.1021/acsami.2c04769
  24. Takallu S, Mirzaei E, Azadi A, Karimizade A, Tavakol S. Plate-shape carbonated hydroxyapatite/collagen nanocomposite hydrogel via in situ mineralization of hydroxyapatite concurrent with gelation of collagen at pH = 7.4 and 37°C. J Biomed Mater Res B Appl Biomater. 2019;107(6):1920-1929. doi: 10.1002/jbm.b.34284
  25. Gwak GH, Choi AJ, Bae YS, Choi HJ, Oh JM. Electrophoretically prepared hybrid materials for biopolymer hydrogel and layered ceramic nanoparticles. Biomater Res. 2016;20:1. doi: 10.1186/s40824-016-0048-4
  26. Shin SR, Jung SM, Zalabany M, et al. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano. 2013;7(3):2369-2380. doi: 10.1021/nn305559j
  27. Kayalvizhy E, Pazhanisamy P. Swelling behavior of poly(N-cyclohexylacrylamide-co-acrylamide/AMPSNa) gold nanocomposite hydrogels. Int J Biol Macromol. 2016;86:721-727. doi: 10.1016/j.ijbiomac.2016.01.047
  28. Kumar A, Jaiswal M. Design and in vitro investigation of nanocomposite hydrogel based in situ spray dressing for chronic wounds and synthesis of silver nanoparticles using green chemistry. J Appl Polym Sci. 2015;133(14):43260. doi: 10.1002/app.43260
  29. Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ. Nanoparticle-hydrogel composites: Concept, design, and applications of these promising, multi-functional materials. Adv Sci (Weinh). 2015;2(1-2):1400010. doi: 10.1002/advs.201400010
  30. Li Z, Mi W, Wang H, Su Y, He C. Nano-hydroxyapatite/ polyacrylamide composite hydrogels with high mechanical strengths and cell adhesion properties. Colloids Surf B Biointerfaces. 2014;123:959-964. doi: 10.1016/j.colsurfb.2014.10.050
  31. Guo J, Yao H, Chang L, et al. Magnesium nanocomposite hydrogel reverses the pathologies to enhance mandible regeneration. Adv Mater. 2025;37(2):e2312920. doi: 10.1002/adma.202312920
  32. Matricardi P, Di Meo C, Coviello T, Hennink WE, Alhaique F. Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv Drug Deliv Rev. 2013;65(9):1172-1187. doi: 10.1016/j.addr.2013.04.002
  33. Zhang G, Wang X, Meng G, et al. Enzyme-mineralized PVASA hydrogels with combined toughness and strength for bone tissue engineering. ACS Appl Mater Interfaces. 2024;16(1):178-189. doi: 10.1021/acsami.3c14006
  34. Li G, Gao F, Yang D, et al. ECM-mimicking composite hydrogel for accelerated vascularized bone regeneration. Bioact Mater. 2024;42:241-256. doi: 10.1016/j.bioactmat.2024.08.035
  35. Zhang X, Huang P, Jiang G, et al. A novel magnesium ion-incorporating dual-crosslinked hydrogel to improve bone scaffold-mediated osteogenesis and angiogenesis. Mater Sci Eng C Mater Biol Appl. 2021;121:111868. doi: 10.1016/j.msec.2021.111868
  36. Zhou X, Sun J, Wo K, et al. nHA-loaded gelatin/ alginate hydrogel with combined physical and bioactive features for maxillofacial bone repair. Carbohydr Polym. 2022;298:120127. doi: 10.1016/j.carbpol.2022.120127
  37. Wu Y, Li X, Sun Y, et al. Multiscale design of stiffening and ROS scavenging hydrogels for the augmentation of mandibular bone regeneration. Bioact Mater. 2023;20:111-125. doi: 10.1016/j.bioactmat.2022.05.021
  38. Qiao M, Xu Z, Pei X, et al. Nano SIM@ZIF-8 modified injectable High-intensity biohydrogel with bidirectional regulation of osteogenesis and Anti-adipogenesis for bone repair. Chem Eng J. 2022;434:134583. doi: 10.1016/j.cej.2022.134583
  39. Zheng A, Wang X, Xin X, et al. Promoting lacunar bone regeneration with an injectable hydrogel adaptive to the microenvironment. Bioact Mater. 2023;21:403-421. doi: 10.1016/j.bioactmat.2022.08.031
  40. Tang Z, Zhao M, Wang Y, et al. Mussel-inspired cellulose-based adhesive with biocompatibility and strong mechanical strength via metal coordination. Int J Biol Macromol. 2020;144:127-134. doi: 10.1016/j.ijbiomac.2019.12.076
  41. Hu S, Wang S, He Q, et al. A mechanically reinforced super bone glue makes a leap in hard tissue strong adhesion and augmented bone regeneration. Adv Sci (Weinh). 2023;10(11):e2206450. doi: 10.1002/advs.202206450
  42. Yang R, Chen B, Zhang X, Bao Z, Yan Q, Luan S. Degradable nanohydroxyapatite-reinforced superglue for rapid bone fixation and promoted osteogenesis. ACS Nano. 2024;18(11):8517-8530. doi: 10.1021/acsnano.4c01214
  43. Yang G, Li Y, Zhang S, et al. Double-cross-linked hydrogel with long-lasting underwater adhesion: Enhancement of maxillofacial in situ and onlay bone retention. ACS Appl Mater Interfaces. 2023;15(40):46639-46654. doi: 10.1021/acsami.3c09117
  44. Deng H, Dong A, Song J, Chen X. Injectable thermosensitive hydrogel systems based on functional PEG/PCL block polymer for local drug delivery. J Control Release. 2019;297:60-70. doi: 10.1016/j.jconrel.2019.01.026
  45. Wang W, Shi Y, Lin G, et al. Advances in mechanical properties of hydrogels for cartilage tissue defect repair. Macromol Biosci. 2023;23(7):e2200539. doi: 10.1002/mabi.202200539
  46. Ghandforoushan P, Alehosseini M, Golafshan N, et al. Injectable hydrogels for cartilage and bone tissue regeneration: A review. Int J Biol Macromol. 2023;246:125674. doi: 10.1016/j.ijbiomac.2023.125674
  47. Zhou L, Fan L, Zhang FM, et al. Hybrid gelatin/oxidized chondroitin sulfate hydrogels incorporating bioactive glass nanoparticles with enhanced mechanical properties, mineralization, and osteogenic differentiation. Bioact Mater. 2021;6(3):890-904. doi: 10.1016/j.bioactmat.2020.09.012
  48. Zhao F, Yang Z, Xiong H, Yan Y, Chen X, Shao L. A bioactive glass functional hydrogel enhances bone augmentation via synergistic angiogenesis, self-swelling and osteogenesis. Bioact Mater. 2023;22:201-210. doi: 10.1016/j.bioactmat.2022.09.007
  49. Bai X, Lü S, Cao Z, et al. Self-reinforcing injectable hydrogel with both high water content and mechanical strength for bone repair. Chem Eng J. 2016;288:546-556. doi: 10.1016/j.cej.2015.12.021
  50. Baker JL, Mark Welch JL, Kauffman KM, McLean JS, He X. The oral microbiome: Diversity, biogeography and human health. Nat Rev Microbiol. 2024;22(2):89-104. doi: 10.1038/s41579-023-00963-6
  51. Dewhirst FE, Chen T, Izard J, et al. The human oral microbiome. J Bacteriol. 2010;192(19):5002-5017. doi: 10.1128/jb.00542-10
  52. Belibasakis GN, Manoil D. Microbial community-driven etiopathogenesis of peri-implantitis. J Dent Res. 2021;100(1):21-28. doi: 10.1177/0022034520949851
  53. Fonder MA, Lazarus GS, Cowan DA, Aronson-Cook B, Kohli AR, Mamelak AJ. Treating the chronic wound: A practical approach to the care of nonhealing wounds and wound care dressings. J Am Acad Dermatol. 2008;58(2):185-206. doi: 10.1016/j.jaad.2007.08.048
  54. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83(3):835-870. doi: 10.1152/physrev.2003.83.3.835
  55. Schreml S, Szeimies RM, Prantl L, Karrer S, Landthaler M, Babilas P. Oxygen in acute and chronic wound healing. Br J Dermatol. 2010;163(2):257-268. doi: 10.1111/j.1365-2133.2010.09804.x
  56. Bako J, Toth F, Gall J, et al. Combined release of antiseptic and antibiotic drugs from visible light polymerized biodegradable nanocomposite hydrogels for periodontitis treatment. Pharmaceutics. 2022;14(5):957. doi: 10.3390/pharmaceutics14050957
  57. Hu Z, Zhou Y, Wu H, et al. An injectable photopolymerizable chitosan hydrogel doped anti-inflammatory peptide for long-lasting periodontal pocket delivery and periodontitis therapy. Int J Biol Macromol. 2023;252:126060. doi: 10.1016/j.ijbiomac.2023.126060
  58. Chen X, Huang H, Guo C, et al. Controlling alveolar bone loss by hydrogel‐based mitigation of oral dysbiosis and bacteria‐triggered proinflammatory immune response. Adv Funct Mater. 2024;35(3):2409121. doi: 10.1002/adfm.202409121
  59. Liu L, Xiang Y, Wang Z, et al. Adhesive liposomes loaded onto an injectable, self-healing and antibacterial hydrogel for promoting bone reconstruction. NPG Asia Mater. 2019;11(1):81. doi: 10.1038/s41427-019-0185-z
  60. Yang K, Han Q, Chen B, et al. Antimicrobial hydrogels: Promising materials for medical application. Int J Nanomedicine. 2018;13:2217-2263. doi: 10.2147/IJN.S154748
  61. Eltawila AM, Hassan MN, Safaan SM, et al. Local treatment of experimental mandibular osteomyelitis with an injectable biomimetic gentamicin hydrogel using a new rabbit model. J Biomed Mater Res B Appl Biomater. 2021;109(11):1677-1688. doi: 10.1002/jbm.b.34824
  62. Xu C, Cao Y, Lei C, et al. Polymer-mesoporous silica nanoparticle core-shell nanofibers as a dual-drug-delivery system for guided tissue regeneration. ACS Appl Nano Mater. 2020;3(2):1457-1467. doi: 10.1021/acsanm.9b02298
  63. Miao Y, Shi X, Li Q, et al. Engineering natural matrices with black phosphorus nanosheets to generate multi-functional therapeutic nanocomposite hydrogels. Biomater Sci. 2019;7(10):4046-4059. doi: 10.1039/c9bm01072f
  64. Huja SS, Fernandez SA, Hill KJ, Li Y. Remodeling dynamics in the alveolar process in skeletally mature dogs. Anat Rec A Discov Mol Cell Evol Biol. 2006;288(12):1243-1249. doi: 10.1002/ar.a.20396
  65. Parsaee F, Alizadeh A, Rezaee M, Alavi O, Alipour H. Evaluation of the osteoconductive properties of scaffold containing platete-enriched-fibrin (PRF) with three calcium phosphate (TCP) in the alveolar socket repair after tooth extraction: An animal study. J Biomater Appl. 2023;37(10):1789-1800. doi: 10.1177/08853282231170346
  66. Vedadghavami A, Minooei F, Mohammadi MH, et al. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater. 2017;62:42-63. doi: 10.1016/j.actbio.2017.07.028
  67. Yanagawa F, Sugiura S, Kanamori T. Hydrogel microfabrication technology toward three dimensional tissue engineering. Regen Ther. 2016;3:45-57. doi: 10.1016/j.reth.2016.02.007
  68. Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Mater Sci Eng R Rep. 2020;140:100543. doi: 10.1016/j.mser.2020.100543
  69. Bittner SM, Guo JL, Melchiorri A, Mikos AG. Three-dimensional printing of multilayered tissue engineering scaffolds. Mater Today (Kidlington). 2018;21(8):861-874. doi: 10.1016/j.mattod.2018.02.006
  70. Du M, Chen B, Meng Q, et al. 3D bioprinting of BMSC-laden methacrylamide gelatin scaffolds with CBD-BMP2- collagen microfibers. Biofabrication. 2015;7(4):044104. doi: 10.1088/1758-5090/7/4/044104
  71. Catros S, Guillemot F, Nandakumar A, et al. Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo. Tissue Eng Part C Methods. 2012;18(1):62-70. doi: 10.1089/ten.TEC.2011.0382
  72. Gruene M, Deiwick A, Koch L, et al. Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng Part C Methods. 2011;17(1):79-87. doi: 10.1089/ten.TEC.2010.0359
  73. Gao G, Yonezawa T, Hubbell K, Dai G, Cui X. Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol J. 2015;10(10):1568-1577. doi: 10.1002/biot.201400635
  74. Gao G, Schilling AF, Hubbell K, et al. Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnol Lett. 2015;37(11):2349-2355. doi: 10.1007/s10529-015-1921-2
  75. Schuurman W, Levett PA, Pot MW, et al. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci. 2013;13(5):551-561. doi: 10.1002/mabi.201200471
  76. Levato R, Visser J, Planell JA, Engel E, Malda J, Mateos- Timoneda MA. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication. 2014;6(3):035020. doi: 10.1088/1758-5082/6/3/035020
  77. Tarassoli SP, Jessop ZM, Jovic T, Hawkins K, Whitaker IS. Candidate bioinks for extrusion 3D bioprinting-a systematic review of the literature. Front Bioeng Biotechnol. 2021;9:616753. doi: 10.3389/fbioe.2021.616753
  78. Fedorovich NE, De Wijn JR, Verbout AJ, Alblas J, Dhert WJ. Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng Part A. 2008;14(1):127-133. doi: 10.1089/ten.a.2007.0158
  79. Gaspar VM, Lavrador P, Borges J, Oliveira MB, Mano JF. Advanced bottom-up engineering of living architectures. Adv Mater. 2020;32(6):e1903975. doi: 10.1002/adma.201903975
  80. Zheng F, Xiao Y, Liu H, Fan Y, Dao M. Patient-specific organoid and organ-on-a-chip: 3D cell-culture meets 3D printing and numerical simulation. Adv Biol (Weinh). 2021;5(6):e2000024. doi: 10.1002/adbi.202000024
  81. Zhang W, Shi W, Wu S, et al. 3D printed composite scaffolds with dual small molecule delivery for mandibular bone regeneration. Biofabrication. 2020;12(3):035020. doi: 10.1088/1758-5090/ab906e
  82. Shi Y, Shi J, Sun Y, et al. A hierarchical 3D graft printed with nanoink for functional craniofacial bone restoration. Adv Funct Mater. 2023;33(40):2301099. doi: 10.1002/adfm.202301099
  83. Amler AK, Thomas A, Tuzuner S, et al. 3D bioprinting of tissue-specific osteoblasts and endothelial cells to model the human jawbone. Sci Rep. 2021;11(1):4876. doi: 10.1038/s41598-021-84483-4
  84. Kuss MA, Harms R, Wu S, et al. Short-term hypoxic preconditioning promotes prevascularization in 3D bioprinted bone constructs with stromal vascular fraction derived cells. RSC Adv. 2017;7(47):29312-29320. doi: 10.1039/c7ra04372d
  85. Zhang H, Sun H, Zhang L, et al. Coaxial 3D printing scaffolds with sequential antibacterial and osteogenic functions to effectively repair infected mandibular defects. Adv Funct Mater. 2024;34:2407483. doi: 10.1002/adfm.202407483
  86. Wu C, Zhou Y, Chang J, Xiao Y. Delivery of dimethyloxallyl glycine in mesoporous bioactive glass scaffolds to improve angiogenesis and osteogenesis of human bone marrow stromal cells. Acta Biomater. 2013;9(11):9159-9168. doi: 10.1016/j.actbio.2013.06.026
  87. Ding H, Gao YS, Wang Y, Hu C, Sun Y, Zhang C. Dimethyloxaloylglycine increases the bone healing capacity of adipose-derived stem cells by promoting osteogenic differentiation and angiogenic potential. Stem Cells Dev. 2014;23(9):990-1000. doi: 10.1089/scd.2013.0486
  88. Genetos DC, Toupadakis CA, Raheja LF, et al. Hypoxia decreases sclerostin expression and increases Wnt signaling in osteoblasts. J Cell Biochem. 2010;110(2):457-467. doi: 10.1002/jcb.22559
  89. Qu ZH, Zhang XL, Tang TT, Dai KR. Promotion of osteogenesis through beta-catenin signaling by desferrioxamine. Biochem Biophys Res Commun. 2008; 370(2):332-337. doi: 10.1016/j.bbrc.2008.03.092
  90. Yao Q, Liu Y, Tao J, Baumgarten KM, Sun H. Hypoxia-mimicking nanofibrous scaffolds promote endogenous bone regeneration. ACS Appl Mater Interfaces. 2016; 8(47):32450-32459. doi: 10.1021/acsami.6b10538
  91. Zheng X, Zhang X, Wang Y, et al. Hypoxia-mimicking 3D bioglass-nanoclay scaffolds promote endogenous bone regeneration. Bioact Mater. 2021;6(10):3485-3495. doi: 10.1016/j.bioactmat.2021.03.011
  92. Zhang W, Li G, Deng R, Deng L, Qiu S. New bone formation in a true bone ceramic scaffold loaded with desferrioxamine in the treatment of segmental bone defect: A preliminary study. J Orthop Sci. 2012;17(3):289-298. doi: 10.1007/s00776-012-0206-z
  93. Stewart R, Goldstein J, Eberhardt A, Chu GT, Gilbert S. Increasing vascularity to improve healing of a segmental defect of the rat femur. J Orthop Trauma. 2011;25(8):472-476. doi: 10.1097/BOT.0b013e31822588d8
  94. Ning Z, Tan B, Chen B, et al. Precisely controlled delivery of abaloparatide through injectable hydrogel to promote bone regeneration. Macromol Biosci. 2019;19(6):e1900020. doi: 10.1002/mabi.201900020
  95. Greenblatt MB, Shim JH, Bok S, Kim JM. The extracellular signal-regulated kinase mitogen-activated protein kinase pathway in osteoblasts. J Bone Metab. 2022;29(1):1-15. doi: 10.11005/jbm.2022.29.1.1
  96. Greenblatt MB, Shim JH, Glimcher LH. Mitogen-activated protein kinase pathways in osteoblasts. Annu Rev Cell Dev Biol. 2013;29:63-79. doi: 10.1146/annurev-cellbio-101512-122347
  97. Zheng W, Gu X, Sun X, Wu Q, Dan H. FAK mediates BMP9- induced osteogenic differentiation via Wnt and MAPK signaling pathway in synovial mesenchymal stem cells. Artif Cells Nanomed Biotechnol. 2019;47(1):2641-2649. doi: 10.1080/21691401.2019.1631838
  98. Gehart H, Kumpf S, Ittner A, Ricci R. MAPK signalling in cellular metabolism: Stress or wellness? EMBO Rep. 2010;11(11):834-840. doi: 10.1038/embor.2010.160
  99. Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 2015;35(6):600-604. doi: 10.3109/10799893.2015.1030412
  100. Yue J, López JM. Understanding MAPK signaling pathways in apoptosis. Int J Mol Sci. 2020;21(7):2346. doi: 10.3390/ijms21072346
  101. Peng S, Zhou G, Luk KD, et al. Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Cell Physiol Biochem. 2009;23(1-3):165-174. doi: 10.1159/000204105
  102. Yu X, Wang X, Li D, et al. Mechanically reinforced injectable bioactive nanocomposite hydrogels for in-situ bone regeneration. Chem Eng J. 2022;433:132799. doi: 10.1016/j.cej.2021.132799

 



Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing