Sustainable amorphous porous carbon for efficient removal of industrial dyes
Cork, a porous biopolymer, is composed of hollow prismatic cells with thin walls arranged in a compact honeycomb-like structure, making it a promising material for adsorption applications. In this study, cork-derived activated carbon (CAC) was synthesized through pyrolysis followed by chemical activation using solid potassium hydroxide, with the aim of producing an efficient adsorbent for the removal of industrial dyes. The structure, morphology, and functional groups of the CAC were characterized using Brunauer-Emmett-Teller (BET) surface area analysis, scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and X-ray diffraction. BET surface area analysis revealed a high specific surface area of 1,793 m2/g, favoring strong adsorption capacity. Batch and fixed-bed column experiments were conducted to evaluate the adsorption performance toward two representative dyes: Methylene blue (MB) and reactive red (RR). The pseudo-second-order kinetic model accurately described the adsorption behavior, while the Langmuir isotherm model indicated monolayer adsorption for MB, and the Freundlich model better fitted the heterogeneous adsorption of RR. The maximum adsorption capacities (qm) were 250 mg/g and 105 mg/g for MB and RR, respectively. Overall, the results demonstrate that the produced CAC exhibits high adsorption efficiency and holds significant potential for application in industrial effluent remediation and the treatment of water contaminated with persistent dye compounds.

- Yuan J, Lv Z, Aliyeva T, Chen X. Optimization of production, distribution, natural resources and capacity planning throughout process sector worldwide supply chains with various goals. Resour Policy. 2024;97:105187. doi: 10.1016/j.resourpol.2024.105187
- Hameed J, Huo C, Albasher G, Abubakr M. Revisiting the nexus between financialization and natural Resource efficiency through the lens of financial development and green industrial optimization. J Clean Prod. 2024;468:143066. doi: 10.1016/j.jclepro.2024.143066
- Luo F, Wang C, Luo S, Tong Q, Xu L. Optimizing natural resource markets : Accelerating green growth in the economic recovery. Resour Policy. 2024;89:104648. doi: 10.1016/j.resourpol.2024.104648
- Azevedo J, Lopes P, Mateus N, de Freitas V. Cork, a natural choice to wine? Foods. 2022;11:2638. doi: 10.3390/foods11172638
- Ramos A, Berzosa J, Clarens F, Marin M, Rouboa A. Environmental and socio-economic assessment of cork waste gasification: Life cycle and cost analysis. J Clean Prod. 2020;249:119316. doi: 10.1016/j.jclepro.2019.119316
- Rives J, Fernandez-Rodriguez I, Rieradevall J, Gabarrell X. Environmental analysis of the production of natural cork stoppers in southern Europe (Catalonia e Spain). J Clean Prod. 2011;19:259-271. doi: 10.1016/j.jclepro.2010.10.001
- Demertzi M, Silva RP, Neto B, Dias AC, Arroja L. Cork stoppers supply chain: Potential scenarios for environmental impact reduction. J Clean Prod. 2016;112:1985-1994. doi: 10.1016/j.jclepro.2015.02.072
- Chander S, Lodha A, Veer K, Gupta A. Enhanced methylene blue dye sequestration by carbon-embedded mesoporous zinc oxide nanoparticles fabricated utilizing Aloe barbadensis miller biowaste: Batch optimization, simulation modeling, and textile effluent feasibility. Mater Today Commun. 2024;40:110107. doi: 10.1016/j.mtcomm.2024.110107
- Altowyan AS, Toghan A, Ahmed HA, et al. Removal of methylene blue dye from aqueous solution using carbon nanotubes decorated by nickel oxide nanoparticles via pulsed laser ablation method. Radiat Phys Chem. 2022;198:110268. doi: 10.1016/j.radphyschem.2022.110268
- Wang Q, Lai Z, Luo C, et al. Honeycomb-like activated carbon with microporous nanosheets structure prepared from waste biomass cork for highly efficient dye wastewater treatment. J Hazard Mater. 2021;416:125896. doi: 10.1016/j.jhazmat.2021.125896
- Mallek M, Chtourou M, Portillo M, et al. Granulated cork as biosorbent for the removal of phenol derivatives and emerging contaminants. J Environ Manage. 2018;223:576-585. doi: 10.1016/j.jenvman.2018.06.069
- Mestre AS, Pires RA, Aroso IM, et al. Activated carbons prepared from industrial pre-treated cork: Sustainable adsorbents for pharmaceutical compounds removal. Chem Eng J. 2014;253:408-417.
- Pintor AMA, Ferreira CIA, Pereira JC, et al. Use of cork powder and granules for the adsorption of pollutants : A review. Water Res. 2012;46:3152-3126. doi: 10.1016/j.watres.2012.03.048
- Novais RM, Caetano APF, Seabra MP, Labrincha JA, Pullar RC. Extremely fast and efficient methylene blue adsorption using eco-friendly cork and paper waste-based activated carbon adsorbents. J Clean Prod. 2018;197:1137-1147.
- Giles MA, Danell R. Water dechlorination by activated carbon, ultraviolet radiation and sodium for fish culture. Water Res. 1983;17:667-676. doi: 10.1016/0043-1354(83)90236-1
- Chen Y, Tang Q, Shen C, Lei Y, Chen X. Activation-self-activation strategy for one-step preparation of Platycladus orientalis leaves based N-O-S self-doping hierarchical porous carbon for high-performance supercapacitor. Ind Crops Prod. 2025;225:120584. doi: 10.1016/j.indcrop.2025.120584
- Xu J, Guo M, Lin M, Ma C, Chen G. Three-dimensional nitrogen-doped modified activated carbon/graphene composite aerogel for highly efficient removal of indoor formaldehyde. J Environ Chem Eng. 2025;13:115576. doi: 10.1016/j.jece.2025.115576
- Quan C, Miskolczi N, Feng S, Grammelis P, Wu C, Gao N. Effect of type of activating agent on properties of activated carbon prepared from digested solid waste. J Environ Manage. 2023;348:119234. doi: 10.1016/j.jenvman.2023.119234
- Zhao Z, Wu W, Li W, et al. Adsorption recovery of chlorinated volatile organic compounds on coffee ground-based activated carbon of tunable porosity. Sep Purif Technol. 2025;354:129271. doi: 10.1016/j.seppur.2024.129271
- Zou Q. Corn-straw-converted activated carbons with tunable porosity and N/O functionalities as high-performance supercapacitors electrode at commercial-level mass loading. J Energy Storage. 2023;72:108673. doi: 10.1016/j.est.2023.108673
- Zhang Z, Liu X, Li D, et al. Mechanism of ultrasonic impregnation on porosity of activated carbons in non-cavitation and cavitation regimes. Ultrason Sonochem. 2019;51:206-213. doi: 10.1016/j.ultsonch.2018.10.024
- Guo Z, Zhang A, Zhang J, Liu H, Kang Y, Zhang C. An ammoniation-activation method to prepare activated carbon with enhanced porosity and functionality. Powder Technol. 2017;309:74-78. doi: 10.1016/j.powtec.2016.12.068
- Domingos DG, Barcelos KM, Oliveira KSGC, Juchen PT, Ruotolo LAM, Hassemer MEN. Cork activated carbon as a new sustainable electrode for electrochemical desalination: Customized surface chemistry for improved performance. Electrochim Acta. 2024;507:145120. doi: 10.1016/j.electacta.2024.145120
- Lagergren S. About the theory of so-called adsorption of soluble substances. In: Kungliga Svenska Vetenskapsakademiens Handlingar; 1898. p. 1-39.
- Ho YS, Mckay G. Sorption of dye from aqueous solution by peat. Chem Eng J. 1998;70:115-124.
- Ferreira AS, Mota AA, Oliveira AM, et al. Equilibrium and kinetic modelling of adsorption: Evaluating the performance of adsorbent in softening water for irrigation and animal consumption. Rev Virtual Quim. 2019;11:1752-1766.
- Weber WJ, Morris JC. Kinetics of adsorption on carbon from solution. J Sanit Eng Div. 1963;89:31-60.
- Ayawei N, Ebelegi AN, Wankasi D. Modelling and interpretation of adsorption isotherms. J Chem. 2017;2017:3039817. doi: 10.1155/2017/3039817
- Chen S, Yue Q, Gao B, Li Q, Xu X, Fu K. Bioresource Technology Adsorption of hexavalent chromium from aqueous solution by modified corn stalk : A fixed-bed column study. Bioresour Technol. 2012;113:114-120. doi: 10.1016/j.biortech.2011.11.110
- Omitola OB, Abonyi MN, Akpomie KG, Dawodu FA. AdamsBohart, YoonNelson, and Thomas modeling of the fixbed continuous column adsorption of amoxicillin onto silver nanoparticle - maize leaf composite. Appl Water Sci. 2022;12:94.
- Silva SP, Sabino MA, Fernandes EM, Correlo VM, Boesel LF, Reis RL. Cork: Properties, capabilities and applications. Int Mater Rev. 2013;50:345-363.
- Guo J, Lua AC. Textural and chemical characterizations of adsorbent prepared from palm shell by potassium hydroxide impregnation at different stages. J Colloid Interface Sci. 2002;233:227-233. doi: 10.1006/jcis.2002.8587
- Zornitta RL, Srimuk P, Lee J, et al. Charge and potential balancing for optimized capacitive deionization using lignin-derived, low-cost activated carbon electrodes. ChemSusChem. 2018;11:2101-2113. doi: 10.1002/cssc.201800689
- Bagheri N, Abedi J. Chemical Engineering Research and Design Preparation of high surface area activated carbon from corn by chemical activation using potassium hydroxide. Chem Eng Res Des. 2009;7:1059-1064. doi: 10.1016/j.cherd.2009.02.001
- Singh G, Maria Ruban A, Geng X, Vinu A. Recognizing the potential of K-salts, apart from KOH, for generating porous carbons using chemical activation. Chem Eng J. 2023;451:139045. doi: 10.1016/j.cej.2022.139045
- Luo J, Jiang T, Li G, Peng Z, Rao M, Zhang Y. Porous materials from thermally activated kaolinite: Preparation, characterization and application. Materials (Basel). 2017;10:647. doi: 10.3390/ma10060647
- Williams NE, Oba OA, Aydinlik NP. Modification, production, and methods of KOH-activated carbon. ChemBioEng Rev. 2022;9:164-189. doi: 10.1002/cben.202100030
- Xu X, et al. Natural Honeycomb-like structure cork carbon with hierarchical Micro-Mesopores and N-containing functional groups for VOCs adsorption. Appl Surf Sci. 2021;565:150550. doi: 10.1016/j.apsusc.2021.150550
- Cardoso B, Mestre AS, Carvalho AP, Pires J. Activated carbon derived from cork powder waste by KOH activation: Preparation, characterization, and VOCs adsorption. Ind Eng Chem Res. 2008;47:5841-5846.
- Abdoul HJ, Yi M, Prieto M, et al. Efficient adsorption of bulky reactive dyes from water using sustainably-derived mesoporous carbons. Environ Res. 2023;221:115254. doi: 10.1016/j.envres.2023.115254
- Yuan X, Zhuo SP, Xing W, et al. Aqueous dye adsorption on ordered mesoporous carbons. colloid Interface Sci. 2007;310:83-89. doi: 10.1016/j.jcis.2007.01.069
- Zhuang X, Wan Y, Feng C, Shen Y, Zhao D. Highly efficient adsorption of bulky dye molecules in wastewater on ordered mesoporous carbons. Chem Mater. 2009;21:706-716. doi: 10.1021/cm8028577
- Wang Q, He D, Li C, Sun Z, Mu J. Honeycomb-like cork activated carbon modified with carbon dots for high-efficient adsorption of Pb(Ⅱ) and rhodamine B. Ind Crops Prod. 2023;196:116485. doi: 10.1016/j.indcrop.2023.116485
- Feng S, Ouyang Q, Huang J, et al. Conversion of lignin into porous carbons for high-performance supercapacitors via spray drying and KOH activation: Structure-properties relationship and reaction mechanism. J Renew Mater. 2024;12:1207-1218. doi: 10.32604/jrm.2024.052579
- Apriyani I, Farma R, Awitdrus A, Yunita A. The amorphous porous carbon incorporating 1D-nanofiber as electroactive biomass with integrated pyrolysis for high-performance symmetrical supercapacitors. Inorg Chem Commun. 2024;169:113069. doi: 10.1016/j.inoche.2024.113069
- Sinaga DS, Indayaningsih N. Synthesis of conductive carbon sheet from coconut fiber with the addition of potassium hydroxide (KOH) activator. J Technomater Phys. 2022;4:63-67. doi: 10.32734/jotp.v4i1.8177
- Anas M, Jahiding M, Sudiana IN. Production and characterization of activated carbon from cashew nut shell using N2 as activation agent. IOP Conf Ser Mater Sci Eng. 2019;550:012035.
- Hardi AD, Joni R, Syukri S, & Aziz, H. Production of Activated Carbon from Empty Palm Fruit Bunches as Supercapacitor Electrodes. Unand Physics J. 2021;9(4):479- 486. doi: 10.25077/jfu.9.4.479-486.2020
- Aguiar JE, de Oliveira JCA, Silvino PFG, Neto JA, Silva IJ Jr., Lucena SMP. Correlation between PSD and adsorption of anionic dyes with different molecular weigths on activated carbon. Colloids Surf A Physicochem Eng Asp. 2016;496:125-131.
- Hadi P, Yeung KY, Barford J, An KJ, McKay G. Significance of ‘effective’ surface area of activated carbons on elucidating the adsorption mechanism of large dye molecules. J Environ Chem Eng. 2015;3:1029-1037. doi: 10.1016/j.jece.2015.03.005
- Streit AFM, Pereira HA, Moreno-Pérez J, et al. New study of the adsorption mechanism of different dye molecules by high porous sludge activated carbon produced from a dairy-treatment effluent plant. J Environ Chem Eng. 2024;12:113745. doi: 10.1016/j.jece.2024.113745
- Langhals H, Sprenger S, and Brandherm MT. Perylenamidine‐imide dyes. Liebigs Annalen. 1995:481- 486. doi: 10.1002/jlac.199519950366
- Li B, Dong Y, Ding Z, Xu Y, Zou C. Renovation and reuse of reactive dyeing effluent by a novel heterogeneous fenton system based on metal modified PTFE fibrous catalyst/ H2O2. Int J Photoenergy. 2013;2013:169493.
- Wang Q, Luo C, Lai Z, Chen S, He D, Mu J. Honeycomb-like cork activated carbon with ultra-high adsorption capacity for anionic, cationic and mixed dye: Preparation, performance and mechanism. Bioresour Technol. 2022;357:127363. doi: 10.1016/j.biortech.2022.127363
- Saeed A, Sharif M, Iqbal M. Application potential of grapefruit peel as dye sorbent : Kinetics, equilibrium and mechanism of crystal violet adsorption. J Hazard Mater. 2010;179:564-572. doi: 10.1016/j.jhazmat.2010.03.041
- Mohamed Nasser S, Abbas M, Trari M. Understanding the rate-limiting step adsorption kinetics onto biomaterials for mechanism adsorption control. Prog React Kinet Mech. 2024;49:1-26. doi: 10.1177/14686783241226858
- Pereira MFR, Soares SF, Órfão JJM, Figueiredo JL. Adsorption of dyes on activated carbons: Influence of surface chemical groups. Carbon. 2003;41:811-821. doi: 10.1016/S0008-6223(02)00406-2
- Pego MFF, Bianchi ML, Carvalho JA, Veiga TRLA. Surface modification of activated carbon by corona treatment. An Acad Bras Cienc. 2019;91:e20170947. doi: 10.1590/0001-3765201920170947
- Farias JP, Demarco CF, Afonso TF, et al. Comparison of the adsorption kinetics of methylene blue using rice husk ash activated with different chemical agents. Rev Bras Ciên Ambient. 2022;57:279-289. doi: 10.5327/Z2176-94781195
- Dharmarathna SP, Priyantha N. Investigation of boundary layer effect of intra-particle diffusion on methylene blue adsorption on activated carbon. Energy Nexus. 2024;14:100294. doi: 10.1016/j.nexus.2024.100294
- Valderrama C, Gamisans X, de las Heras X, Farrán A, Cortina JL. Sorption kinetics of polycyclic aromatic hydrocarbons removal using granular activated carbon: Intraparticle diffusion coefficients. J Hazard Mater. 2008;157:386-396. doi: 10.1016/j.jhazmat.2007.12.119
- Dhaouadi F, Sellaoui L, Dotto GL, Bonilla-Petriciolet A, Erto A, Lamine AB. Adsorption of methylene blue on comminuted raw avocado seeds : Interpretation of the effect of salts via physical monolayer model. J Mol Liq J. 2020;305:112815. doi: 10.1016/j.molliq.2020.112815
- Ghaffar A, Younis MN. Interaction and thermodynamics of methylene blue adsorption on oxidized multi-walled carbon nanotubes. Green Process Synth. 2015;4:209-217. doi: 10.1515/gps-2015-0009
- Belhachemi M, Addoun F. Comparative adsorption isotherms and modeling of methylene blue onto activated carbons. Appl Water Sci. 2011;1:111-117.
- Al-Degs YS, El-Barghouthi MI, Khraisheh MA, Ahmad MN, Allen SJ. Effect of surface area, micropores, secondary micropores, and mesopores volumes of activated carbons on reactive dyes adsorption from solution. Sep Sci Technol. 2005;39:97-111.
- Tran HN, Wang YF, You SJ, Chao HP. Insights into the mechanism of cationic dye adsorption on activated charcoal: The importance of Π–Π interactions. Process Saf Environ Prot. 2017;107:168-180. doi: 10.1016/j.psep.2017.02.010
- Wang Y, Chen Y, Zhao H, et al. Biomass-derived porous carbon with a good balance between high specific surface area and mesopore volume for supercapacitors. Nanomaterials (Basel). 2022;12:3804. doi: 10.3390/nano12213804
- Sellaoui L, Lima EC, Dotto GL, Lamine AB. Adsorption of amoxicillin and paracetamol on modified activated carbons: Equilibrium and positional entropy studies. J Mol Liq. 2017;234:375-381. doi: 10.1016/j.molliq.2017.03.111
- Liu X, Zhu H, Gong L, Jiang L, Lin D, Yang K. New insights into hierarchical pore size and level of concentration in efficient removal of toluene vapor by activated carbon. Sci Total Environ. 2022;853:158719. doi: 10.1016/j.scitotenv.2022.158719
- Wu FC, Tseng RL, Hu CC. Comparisons of pore properties and adsorption performance of KOH-activated and steam-activated carbons. Microporous Mesoporous Mater. 2005;80:95-106. doi: 10.1016/j.micromeso.2004.12.005
- Manocha S, Brahmbhatt A. Development of microporous activated carbon using a polymer blend technique and its behavior towards methylene blue adsorption. Carbon Lett. 2011;12:85-89. doi: 10.5714/CL.2011.12.2.085
- Subba Reddy Y, Rotte NK, Hussain S, Srikanth VVSS, Chandra MR. Sustainable mesoporous graphitic activated carbon as biosorbent for efficient adsorption of acidic and basic dyes from wastewater: Equilibrium, kinetics and thermodynamic studies. J Hazard Mater Adv. 2023;9:100214. doi: 10.1016/j.hazadv.2022.100214
- Olivella MÀ, Fiol N, de la Torre F, Poch J, Villaescusa I. A mechanistic approach to methylene blue sorption on two vegetable wastes: Cork bark and grape stalks. BioResources. 2012;7:3340-3354. doi: 10.15376/biores.7.3.3340-3354
- Nascimento VX, Pinto D, Lütke SF, et al. Brilliant blue FCF dye adsorption using magnetic activated carbon from Sapelli wood sawdust. Environ Sci Pollut Res. 2023;30:58684-58696. doi: 10.1007/s11356-023-26646-6
- El-Desouky MG, Khalil MAG, El-Afify MAM, El-Bindary AA, El-Bindary MA. Effective methods for removing different types of dyes-modelling analysis, statistical physics treatment and DFT calculations : A review. Desalination Water Treat. 2022;280:89-127. doi: 10.5004/dwt.2022.29029
- Aragaw TA, Alene AN. A comparative study of acidic, basic, and reactive dyes adsorption from aqueous solution onto kaolin adsorbent: Effect of operating parameters, isotherms, kinetics, and thermodynamics. Emerg Contam. 2022;8:59-74. doi: 10.1016/j.emcon.2022.01.002
- Behloul H, Ferkous H, Bougdah N, et al. New insights on the adsorption of CI-Reactive Red 141 dye using activated carbon prepared from the ZnCl2-treated waste cotton fibers: Statistical physics, DFT, COSMO-RS, and AIM studies. J Mol Liq. 2022;364:119956. doi: 10.1016/j.molliq.2022.119956
- Khraisheh MAM, Al-Degs YS, Allen SJ, Ahmad MN. Elucidation of controlling steps of reactive dye adsorption on activated carbon. Ind Eng Chem Res. 2002;41:1651-1657. doi: 10.1021/ie000942c
- Lafi R, Montasser I, Hafiane A. Adsorption of congo red dye from aqueous solutions by prepared activated carbon with oxygen-containing functional groups and its regeneration. Adsorpt Sci Technol. 2019;37:160-181.
- Altaleb HA. Effective removal of hazardous cationic dye from polluted water using sulfonated copolymer hydrogel : Synthesis, nonlinear isotherm, and kinetics investigation. J Saudi Chem Soc. 2024;28:101852.
- Foo KY, Hameed BH. Utilization of rice husks as a feedstock for preparation of activated carbon by microwave induced KOH and K2CO3 activation. Bioresour Technol. 2011;102:9814-9817. doi: 10.1016/j.biortech.2011.07.102
