AccScience Publishing / JES / Online First / DOI: 10.36922/JES025310015
ORIGINAL RESEARCH ARTICLE

Kinetic analysis and process optimization of carbon dioxide hydrogenation to methanol over copper/zinc oxide/self-pillared pentasil-zeolite catalyst

Xiaolong Liu1 Guangying Fu1 Ruiqin Ding1 Ke Liang2 Qiaolin Lang1* Xiaobo Yang3*
Show Less
1 Key Laboratory of Photoelectrochemical Conversions, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
2 Tianjin Passion Advanced Material Technology LLC., Binhai, Tianjin, China
3 R&D Division, Vitalite ApS, Allerød, Hovedstaden, Denmark
Received: 31 July 2025 | Revised: 12 September 2025 | Accepted: 12 September 2025 | Published online: 7 October 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Hydrogenation of carbon dioxide (CO2) using hydrogen generated by renewable electricity-powered water electrolysis is a key technology for producing e-fuels and supporting other carbon capture, utilization, and storage applications. Studies on reaction kinetics, reactors, and process engineering have predominantly focused on copper (Cu)/zinc oxide (ZnO)/aluminum oxide catalysts. This study analyzes the reaction kinetics of CO2 hydrogenation into methanol and carbon oxide using a novel catalyst composed of Cu, ZnO, and self-pillared pentasil (SPP) zeolite. The one-site microkinetic model developed by Vanden Bussche and Froment was applied to fit initial laboratory-scale test data. The Cu/ZnO/SPP-zeolite catalyst demonstrates rapid kinetics and low apparent activation energy for methanol synthesis and the reversed water–gas shift reaction. As a result, it achieved an enhanced space-time yield of methanol at 1.75 kg⋅kgcat−1/h at 230°C and 50 bar in a single path simulation with a CO2/3H2 feed stream. Furthermore, a corresponding process optimization aiming at maximizing methanol yield was conducted, incorporating one recycling loop of the vapor products. The process simulation successfully converged with a 90% recycling rate, enabling the conversion of 2,000 NT of CO2 per year, resulting in 1,836 NT of crude methanol at a concentration of 62.5 wt%. These findings provide a valuable addition to the existing literature.

Graphical abstract
Keywords
Carbon dioxide fixation
Carbon dioxide hydrogenation
Copper/zinc oxide/self-pillared pentasil-zeolite catalyst
Reaction kinetics
Process optimization
Funding
This work was funded by the Natural Science Foundation of Shandong Province, China (ZR2022MB053 and ZR2022QB216).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Ueckerdt F, Bauer C, Dirnaichner A, Everall J, Sacchi R, Luderer G. Potential and risks of hydrogen-based e-fuels in climate change mitigation. Nat Clim Change. 2021;11(5):384-393. doi: 10.1038/s41558-021-01032-7

 

  1. Shih CF, Zhang T, Li J, Bai C. Powering the future with liquid sunshine. Joule. 2018;2(10):1925-1949. doi: 10.1016/j.joule.2018.08.016

 

  1. Ahmad T, Liu S, Sajid M, et al. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res Energy. 2022;1:9120021. doi: 10.26599/NRE.2022.9120021

 

  1. Li K, Xu J, Zheng T, et al. In situ dynamic construction of a copper tin sulfide catalyst for high-performance electrochemical CO2 conversion to formate. ACS Catal. 2022;12(16):9922-9932. doi: 10.1021/acscatal.2c02627

 

  1. Zhong J, Yang X, Wu Z, Liang B, Huang Y, Zhang T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem Soc Rev. 2020;49(5):1385-1413. doi: 10.1039/C9CS00614A

 

  1. Hong F, Qi Y, Yang Z, et al. Recent advances of CO2 hydrogenation to methanol. DeCarbon. 2025;8:100111. doi: 10.1016/j.decarb.2025.100111

 

  1. George Olah CO2 to Renewable Methanol Plant, Reykjanes, Iceland. Available from: https://www.carbonrecycling.is [Last accessed on 2025 Sep 09].

 

  1. Behrens M, Studt F, Kasatkin I, et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science. 2012;336(6083):893-897. doi: 10.1126/science.1219831

 

  1. Lin TC, Nolen MA, Farberow CA, Kwon S, Bhan A. Mechanistic and kinetic relevance of hydrogen and water in CO2 hydrogenation on Cu-based catalysts. J Catal. 2025;443:115936. doi: 10.1016/j.jcat.2024.115936

 

  1. Wang M, Zhang G, Wang H, al. Understanding and tuning the effects of H2O on catalytic CO and CO2 hydrogenation. Chem Rev. 2024;124(21):12006-12085. doi: 10.1021/acs.chemrev.4c00282

 

  1. Toyir J, Miloua R, Elkadri NE, et al. Sustainable process for the production of methanol from CO2 and H2 using Cu/ZnO-based multicomponent catalyst. Phys Procedia. 2009;2(3):1075-1079. doi: 10.1016/j.phpro.2009.11.065

 

  1. Zhang S, Wu Z, Liu X, et al. A short review of recent advances in direct CO2 hydrogenation to alcohols. Topics Catal. 2021;64(5):371-394. doi: 10.1007/s11244-020-01405-w

 

  1. Gao P, Zhang L, Li S, Zhou Z, Sun Y. Novel heterogeneous catalysts for CO2 hydrogenation to liquid fuels. ACS Cent Sci. 2020;6(10):1657-1670. doi: 10.1021/acscentsci.0c00976

 

  1. Gao P, Li S, Bu X, et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat Chem. 2017;9(10):1019-1024. doi: 10.1038/nchem.2794

 

  1. Wang J, Wang T, Xi Y, Gao G, Sun P, Li F. In-situ-formed potassium-modified nickel-zinc carbide boosts production of higher alcohols beyond CH4 in CO2 hydrogenation. Angew Chem Int Ed Engl. 2023;62(42):e202311335. doi: 10.1002/anie.202311335

 

  1. Chen J, Ma J, Huang T, et al. Iridium-free high-entropy alloy for acidic water oxidation at high current densities. Angew Chem Int Ed Engl. 2025;64(21):e202503330. doi: 10.1002/anie.202503330

 

  1. Su D, Wang Y, Sheng H, et al. Efficient amine-assisted CO2 hydrogenation to methanol co-catalyzed by metallic and oxidized sites within ruthenium clusters. Nat Commun. 2025;16(1):590. doi: 10.1038/s41467-025-55837-7

 

  1. Wang Y, Wang C, Wang L, Wang L, Xiao FS. Zeolite fixed metal nanoparticles: New perspective in catalysis. Acc Chem Res. 2021;54(11):2579-2590. doi: 10.1021/acs.accounts.1c00074

 

  1. Liu L, Corma A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem Rev. 2018;118(10):4981-5079. doi: 10.1021/acs.chemrev.7b00776

 

  1. Xia Y, Yang X. Toward cost-effective and sustainable use of precious metals in heterogeneous catalysts. Acc Chem Res. 2017;50(3):450-454. doi: 10.1021/acs.accounts.6b00469

 

  1. Kosinov N, Liu C, Hensen EJM, Pidko EA. Engineering of transition metal catalysts confined in zeolites. Chem Mater. 2018;30(10):3177-3198. doi: 10.1021/acs.chemmater.8b01311

 

  1. Ding R, Fu G, Wang S, et al. The activity of ultrafine cu clusters encapsulated in nano-zeolite for selective hydrogenation of CO2 to methanol. Catalysts. 2022;12(11):1296. doi: 10.3390/catal12111296

 

  1. Liu X, Fu G, Lang Q, et al. Reaction intermediates recognized by in situ FTIR spectroscopy in CO2 hydrogenation over the Cu/ZnO/SPP-zeolite catalyst. RSC Appl Interfaces. 2025;2(1):114-121. doi: 10.1039/d4lf00266k

 

  1. Zhang X, Liu JX, Zijlstra B, et al. Optimum Cu nanoparticle catalysts for CO2 hydrogenation towards methanol. Nano Energy. 2018;43:200-209. doi: 10.1016/j.nanoen.2017.11.021

 

  1. Gautam S, Dharamvir K, Goel N. CO2 adsorption and activation over medium sized Cun (n=7, 13 and 19) clusters: A density functional study. Comput Theor Chem. 2013;1009:8-16. doi: 10.1016/j.comptc.2012.12.010

 

  1. Yang B, Liu C, Halder A, et al. Copper cluster size effect in methanol synthesis from CO2. J Phys Chem C. 2017;121(19):10406-10412. doi: 10.1021/acs.jpcc.7b01835

 

  1. Liu C, Yang B, Tyo E, et al. Carbon dioxide conversion to methanol over size-selected Cu4 clusters at low pressures. J Amer Chem Soc. 2015;137(27):8676-8679. doi: 10.1021/jacs.5b03668

 

  1. Li G, Vassilev P, Sanchez-Sanchez M, Lercher JA, Hensen EJM, Pidko EA. Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane oxidation to methanol. J Catal. 2016;338:305-312. doi: 10.1016/j.jcat.2016.03.014

 

  1. Cui WG, Li YT, Yu L, Zhang H, Hu TL. Zeolite-encapsulated ultrasmall Cu/ZnOx nanoparticles for the hydrogenation of CO2 to methanol. ACS Appl Mater Interfaces. 2021;13(16):18693-18703. doi: 10.1021/acsami.1c00432

 

  1. Ding L, Shi T, Gu J, et al. CO2 hydrogenation to ethanol over Cu@Na-Beta. Chem. 2020;6(10):2673-2689. doi: 10.1016/j.chempr.2020.07.001

 

  1. Mehla S, Kandjani AE, Babarao R, et al. Porous crystalline frameworks for thermocatalytic CO2 reduction: An emerging paradigm. Energy Environ Sci. 2021;14(1):320-352. doi: 10.1039/D0EE01882A

 

  1. Stangeland K, Li H, Yu Z. Thermodynamic analysis of chemical and phase equilibria in CO2 hydrogenation to methanol, dimethyl ether, and higher alcohols. Ind Eng Chem Res. 2018;57(11):4081-4094. doi: 10.1021/acs.iecr.7b04866

 

  1. Jia C, Gao J, Dai Y, Zhang J, Yang Y. The thermodynamics analysis and experimental validation for complicated systems in CO2 hydrogenation process. J Energy Chem. 2016;25(6):1027-1037. doi: 10.1016/j.jechem.2016.10.003

 

  1. Mbatha S, Thomas S, Parkhomenko K, et al. Development of an improved kinetic model for CO2 hydrogenation to methanol. Catalysts. 2023;13(10):1349. doi: 10.3390/catal13101349

 

  1. Poto S, Vico van Berkel D, Gallucci F, Fernanda Neira d’Angelo, M. Kinetic modelling of the methanol synthesis from CO2 and H2 over a CuO/CeO2/ZrO2 catalyst: The role of CO2 and CO hydrogenation. Chem Eng J. 2022;435:134946. doi: 10.1016/j.cej.2022.134946

 

  1. Nestler F, Schütze AR, Ouda M, et al. Kinetic modelling of methanol synthesis over commercial catalysts: A critical assessment. Chem Eng J. 2020;394:124881. doi: 10.1016/j.cej.2020.124881

 

  1. Seidel C, Jörke A, Vollbrecht B, Seidel-Morgenstern A, Kienle A. Kinetic modeling of methanol synthesis from renewable resources. Chem Eng Sci. 2018;175:130-138. doi: 10.1016/j.ces.2017.09.043

 

  1. Portha JF, Parkhomenko K, Kobl K, et al. Kinetics of methanol synthesis from carbon dioxide hydrogenation over copper-zinc oxide catalysts. Ind Eng Chem Res. 2017;56(45):13133-13145. doi: 10.1021/acs.iecr.7b01323

 

  1. Park N, Park MJ, Lee YJ, Ha KS, Jun KW. Kinetic modeling of methanol synthesis over commercial catalysts based on three-site adsorption. Fuel Process Tech. 2014;125:139-147. doi: 10.1016/j.fuproc.2014.03.041

 

  1. Kubota T, Hayakawa I, Mabuse H, et al. Kinetic study of methanol synthesis from carbon dioxide and hydrogen. Appl Organometal Chem. 2001;15(2):121-126. doi: 10.1002/1099-0739(200102)15:2<121::AID-AOC106>3.0.CO,2-3

 

  1. Bussche KMV, Froment GF. A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst. J Catal. 1996;161(1):1-10. doi: 10.1006/jcat.1996.0156

 

  1. Slotboom Y, Bos MJ, Pieper J, et al. Critical assessment of steady-state kinetic models for the synthesis of methanol over an industrial Cu/ZnO/Al2O3 catalyst. Chem Eng J. 2020;389:124181. doi: 10.1016/j.cej.2020.124181

 

  1. Leonzio G, Zondervan E, Foscolo PU. Methanol production by CO2 hydrogenation: Analysis and simulation of reactor performance. Int J Hydrogen Energy. 2019;44(16):7915-7933. doi: 10.1016/j.ijhydene.2019.02.056

 

  1. Kyrimis S, Potter ME, Raja R, Armstrong LM. Understanding catalytic CO2 and CO conversion into methanol using computational fluid dynamics. Faraday Discus. 2021;230:100-123. doi: 10.1039/D0FD00136H

 

  1. Ghosh, S, Sebastian, J, Olsson, L, Creaser, D. Experimental and kinetic modeling studies of methanol synthesis from CO2 hydrogenation using In2O3 catalyst. Chem Eng J. 2021;416:129120. doi: 10.1016/j.cej.2021.129120

 

  1. Ahmad K, Upadhyayula S. Kinetics of CO2 hydrogenation to methanol over silica supported intermetallic Ga3Ni5 catalyst in a continuous differential fixed bed reactor. Internat J Hydrogen Energy. 2020;45(1):1140-1150. doi: 10.1016/j.ijhydene.2019.10.156

 

  1. Zhang X, Liu D, Xu D, et al. Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science. 2012;336(6089):1684-1687. doi: 10.1126/science.1221111

 

  1. Graaf GH, Stamhuis EJ, Beenackers AAC. Kinetics of low-pressure methanol synthesis. Chem Eng Sci. 1988;43(12):3185-3195. doi: 10.1016/0009-2509(88)85127-3

 

  1. Hansen JB, Højlund Nielsen PE. Methanol synthesis. In: Ertl G, Knözinger H, Schüth F, Weitkamp J, editos. Handbook of Heterogeneous Catalysis. United States: Wiley; 2008. p. 2920-2949. doi: 10.1002/9783527610044.hetcat0148

 

  1. Sahibzada M, Metcalfe IS, Chadwick D. Methanol synthesis from CO/CO2/H2 over Cu/ZnO/Al2O3 at differential and finite conversions. J Catal. 1998;174(2):111-118. doi: 10.1006/jcat.1998.1964

 

  1. Bisotti F, Fedeli M, Prifti K, et al. Century of technology trends in methanol synthesis: Any need for kinetics refitting? Ind Eng Chem Res. 2021;60(44):16032-16053. doi: 10.1021/acs.iecr.1c02877

 

  1. Ahmad K, Dabbawala AA, Polychronopoulou K, Anjum D, Gacesa M, Abi Jaoude M. Kinetic insights into methanol synthesis from CO2 hydrogenation at atmospheric pressure over intermetallic Pd2Ga catalyst. Glob Chall. 2024;8(10):2400159. doi: 10.1002/gch2.202400159

 

  1. Lacerda de Oliveira Campos B, Herrera Delgado K, Pitter S, Sauer J. Development of consistent kinetic models derived from a microkinetic model of the methanol synthesis. Ind Eng Chem Res. 2021;60(42):15074-15086. doi: 10.1021/acs.iecr.1c02952

 

  1. Lacerda de Oliveira Campos B, Herrera Delgado K, Wild S, Studt F, Pitter S, Sauer J. Surface reaction kinetics of the methanol synthesis and the water gas shift reaction on Cu/ ZnO/Al2O3. React Chem Eng. 2021;6(5):868-887. doi: 10.1039/D1RE00040C

 

  1. Li HX, Yang LQQ, Chi ZY, et al. CO2 Hydrogenation to methanol over Cu/ZnO/Al2O3 catalyst: Kinetic modeling based on either single- or dual-active site mechanism. Catal Lett. 2022;152(10):3110-3124. doi: 10.1007/s10562-021-03913-0

 

  1. Prašnikar A, Pavlišič A, Ruiz-Zepeda F, Kovač J, Likozar B. Mechanisms of copper-based catalyst deactivation during CO2 reduction to methanol. Ind Eng Chem Res. 2019;58(29):13021-13029. doi: 10.1021/acs.iecr.9b01898

 

  1. Karelovic A, Galdames G, Medina JC, Yévenes C, Barra Y, Jiménez R. Mechanism and structure sensitivity of methanol synthesis from CO2 over SiO2-supported Cu nanoparticles. J Catal. 2019;369:415-426. doi: 10.1016/j.jcat.2018.11.012

 

  1. Lunkenbein T, Girgsdies F, Kandemir T, et al. Bridging the time gap: A Copper/Zinc Oxide/Aluminum Oxide catalyst for methanol synthesis studied under industrially relevant conditions and time scales. Angew Chem Int Ed Engl. 2016;55(41):12708-12712. doi: 10.1002/anie.201603368

 

  1. Grabow LC, Mavrikakis M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal. 2011;1(4):365-384. doi: 10.1021/cs200055d

 

  1. Ahmadi Khoshooei M, Wang X, Vitale G, et al. An active, stable cubic molybdenum carbide catalyst for the high-temperature reverse water-gas shift reaction. Science. 2024;384(6695):540-546. doi: 10.1126/science.adl1260

 

  1. Díez-Ramírez J, Díaz JA, Dorado F, Sánchez P. Kinetics of the hydrogenation of CO2 to methanol at atmospheric pressure using a Pd-Cu-Zn/SiC catalyst. Fuel Process Technol. 2018;173:173-181. doi: 10.1016/j.fuproc.2018.01.024

 

  1. Ruland H, Song H, Laudenschleger D, et al. CO2 hydrogenation with Cu/ZnO/Al2O3: A benchmark study. ChemCatChem. 2020;12(12):3216-3222. doi: 10.1002/cctc.202000195

 

  1. Ye J, Dimitratos N, Rossi LM, Thonemann N, Beale AM, Wojcieszak R. Hydrogenation of CO2 for sustainable fuel and chemical production. Science. 2025;387(6737):eadn9388. doi: 10.1126/science.adn9388
Share
Back to top
Journal of Energy and Sustainability, Published by AccScience Publishing