AccScience Publishing / JES / Online First / DOI: 10.36922/JES025280012
SHORT COMMUNICATION

Ultrasound-assisted one-pot cyclization for the synthesis of 2-substituted benzimidazole derivatives: A rapid access via NaOH/I2 as an efficient oxidant system

Nasrin Alishahi1*
Show Less
1 Department of Chemistry, Catalysis Division, Faculty of Organic Chemistry, University of Isfahan, Isfahan, Iran
Received: 7 July 2025 | Revised: 30 August 2025 | Accepted: 15 September 2025 | Published online: 7 October 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Benzimidazole scaffolds represent an important class of heterocyclic compounds due to their wide range of pharmacological and industrial applications. An efficient, metal-free, and operationally simple protocol for the synthesis of 2-substituted benzimidazoles via an ultrasound-assisted one-pot cyclization of aromatic aldehydes and o-phenylenediamine is reported. The method employs NaOH/I as an inexpensive and effective oxidant system under mild conditions at room temperature. This approach addresses the limitations of conventional methods, which often require transition-metal catalysts, hazardous oxidants, prolonged heating, and produce lower yields. In the present study, reactions were completed within 4–7 min, affording the desired products in yields up to 99% across a broad substrate scope. Control experiments demonstrated the beneficial role of ultrasonic irradiation, and a plausible mechanism was proposed. The combination of mild reaction conditions, short reaction times, and high efficiency highlights the potential of this method as a green and scalable alternative for benzimidazole synthesis.

Graphical abstract
Keywords
2-Substituted benzimidazole
Ultrasound-assisted synthesis
NaOH/I2 oxidant
One-pot reaction
Metal-free protocol
Green chemistry
Funding
None.
Conflict of interest
The author declares no conflict of interest.
References
  1. Aroua LM, Alminderej FM, Almuhaylan HR, et al. Benzimidazole(s): Synthons, bioactive lead structures, total synthesis, and the profiling of major bioactive categories. RSC Adv. 2025;15(10):7571-7608. doi: 10.1039/d4ra08864f

 

  1. Singh S, Pal S. Synthesis of benzimidazole fused poly-heterocycles via oxidant free Cu-catalyzed dehydrogenative C-N coupling and photophysical studies. Chem Comm. 2023;59(90):13498-13501. doi: 10.1039/d3cc03931e

 

  1. Song D, Ma S. Recent development of benzimidazole-containing antibacterial agents. ChemMedChem. 2016;11(7):646-659. doi: 10.1002/cmdc.201600041

 

  1. Tahlan S, Kumar S, Kakkar S, Narasimhan B. Benzimidazole scaffolds as promising antiproliferative agents: A review. BMC Chem. 2019;13(1):66. doi: 10.1186/s13065-019-0579-6

 

  1. Hayat S, Ullah H, Rahim F, et al. Synthesis, biological evaluation and molecular docking study of benzimidazole derivatives as α-glucosidase inhibitors and anti-diabetes candidates. J Mol Struct. 2023;1276:134774. doi: 10.1016/j.molstruc.2022

 

  1. Shrivastava N, Naim MJ, Alam MJ, Nawaz F, Ahmed S, Alam O. 2-substituted benzimidazole synthesis in dry medium mediated by pyridine n-oxide. Arch Pharm (Weinheim). 2018;350:3569. doi: 10.37358/RC.18.12.6794

 

  1. Baldisserotto A, Demurtas M, Lampronti I, et al. In-vitro evaluation of antioxidant, antiproliferative and photo-protective activities of benzimidazolehydrazone derivatives. Pharmaceuticals (Basel). 2020;13(4):68. doi: 10.3390/ph13040068

 

  1. Anichina K, Mavrova A. Modulation effect on tubulin polymerization, cytotoxicity and antioxidant activity of 1H-Benzimidazole-2-Yl hydrazones. J Chem Technol Metall. 2022;7:291. doi: 10.3390/molecules28010291

 

  1. Omotuyi O, Olatunji OM, Nash O, et al. Benzimidazole compound abrogates SARS-COV-2 receptor-binding domain (RBD)/ACE2 interaction in vitro. Microb Pathog. 2023;176:105994. doi: 10.1016/j.micpath.2023.105994

 

  1. Mohapatra RK, Dhama K, El-Arabey AA, et al. Repurposing benzimidazole and benzothiazole derivatives as potential inhibitors of SARS-CoV-2: DFT, QSAR, molecular docking, molecular dynamics simulation, and in-silico pharmacokinetic and toxicity studies. J King Saud Univ Sci. 2021;33(8):101637. doi: 10.1016/j.jksus.2021.101637

 

  1. Akhtar MJ, Yar MS, Sharma VK, et al. Recent progress of Benzimidazole hybrids for anticancer potential. Curr Med Chem. 2020;27(35):5970-6014. doi: 10.2174/0929867326666190808122929

 

  1. Tahlan S, Kumar S, Narasimhan B. Pharmacological significance of heterocyclic 1H-benzimidazole scaffolds: A review. BMC Chem. 2019;13(1):101. doi: 10.1186/s13065-019-0625-4

 

  1. Babkov DA, Zhukowskaya ON, Borisov AV, Babkova VA, Sokolova EV, Brigadirova AA. Synthesis, characterization, biological evaluation, and computational study of benzimidazole hybrid thiosemicarbazide derivatives. Bioorganic Med Chem Lett. 2019;29:2443-2447. doi: 10.1002/jhet.4548

 

  1. Dik B, Coşkun D, Bahçivan E, Üney K. Potential antidiabetic activity of benzimidazole derivative albendazole and lansoprazole drugs in different doses in experimental type 2 diabetic rats. Turk J Med Sci. 2021;51(3):1579-1586. doi: 10.3906/sag-2004-38

 

  1. Naeimi H, Alishahi N. An efficient and one-pot reductive cyclization for synthesis of 2-substituted benzimidazoles from o-nitroaniline under microwave conditions. J Ind Eng Chem. 2014;20(4):2543-2547. doi: 10.1016/j.jiec.2013.10.038

 

  1. Naeimi H, Alishahi N. Efficient, rapid and one pot synthesis of 2-substituted benzimidazoles using the NaOH/I2 system as an oxidant under mild conditions. J Chem Res. 2013;37(4):208-209. doi: 10.3184/174751913X13636014702351

 

  1. Kim DY, Dao PD, Yoon NS, Cho CS. Synthesis of pyrrolone‐and isoindolinone‐fused benzimidazole‐4, 7‐diones by stepwise palladium‐catalyzed carbonylative cyclization and oxidation. Asian J Org Chem. 2019;8(9):1726-1731. doi: 10.1002/ajoc.201900423

 

  1. Dubey R, Moorthy NS. Comparative studies on conventional and microwave assisted synthesis of benzimidazole and their 2-substituted derivative with the effect of salt form of reactant. Chem Pharm Bull (Tokyo). 2007;55(1):115-117. doi: 10.1248/cpb.55.115

 

  1. Venugopal S, Kaur B, Verma A, Wadhwa P, Sahu SK. A review on modern approaches to benzimidazole synthesis. Curr Org Synth. 2023;20(6):595-605. doi: 10.2174/1570179420666221010091157

 

  1. Heravi MM, Ghalavand N, Hashemi E. Hydrogen peroxide as a green oxidant for the selective catalytic oxidation of benzylic and heterocyclic alcohols in different media: An overview. Chemistry. 2020;2(1):101-178. doi: 10.3390/chemistry2010010

 

  1. Badday AS, Abdullah AZ, Lee KT, Khayoon MS. Intensification of biodiesel production via ultrasonic-assisted process: A critical review on fundamentals and recent development. Renew Sustain Energy. 2012;16(7):4574-4587. doi: 10.1016/j.rser.2012.04.057

 

  1. Naeimi H, Kiani F. Ultrasound-promoted one-pot three component synthesis of tetrazoles catalyzed by zinc sulfide nanoparticles as a recyclable heterogeneous catalyst. Ultrason Sonochem. 2015;27:408-415. doi: 10.1016/j.ultsonch.2015.06.008

 

  1. Habibi D, Nasrollahzadeh M, Mehrabi L, Mostafaee S. P2O5-SiO2 as an efficient heterogeneous catalyst for the solvent-free synthesis of 1-substituted 1H-1,2,3,4-tetrazoles under conventional and ultrasound irradiation conditions. Monatsh Chem. 2013;144:725-728. doi: 10.1007/s00706-012-0871-9

 

  1. Alishahi N. Passerini reaction: Design and synthesis of new mono‐and bis‐phenyl‐2‐(cyclohexylamino)‐2‐oxoethyl‐2‐ acetoxybenzoate catalyzed by triazine diphosphonium hydrogen sulfate ionic liquid supported on magnetic nanoparticles. Appl Organomet Chem. 2025;39(6):e70226. doi: 10.1002/aoc.70226

 

  1. Martínez RF, Cravotto G, Cintas P. Organic sonochemistry: A chemist’s timely perspective on mechanisms and reactivity. J Org Chem. 2021;86(20):13833-13856. doi: 10.1021/acs.joc.1c00805

 

  1. Trinh QT, Golio N, Cheng Y, et al. Sonochemistry and sonocatalysis: Current progress, existing limitations, and future opportunities in green and sustainable chemistry. Green Chem. 2025;27:4926-4958. doi: 10.1039/d5gc01098e

 

  1. Nile SH, Kumar B, Park SW. Chemo selective one-pot synthesis of 2-aryl-1-arylmethyl-1H-benzimidazoles using amberlite IR-120. Arab J Chem. 2015;8(5):685-691. doi: 10.1016/j.arabjc.2012.12.006

 

  1. Godugu K, Yadala VD, Pinjari MK, Gundala TR, Sanapareddy LR, Nallagondu CG. Natural dolomitic limestone-catalyzed synthesis of benzimidazoles, dihydropyrimidinones, and highly substituted pyridines under ultrasound irradiation. Beilstein J Org Chem. 2020;16(1):1881-1900. doi: 10.3762/bjoc.16.156

 

  1. Bharathi M, Indira S, Vinoth G, Mahalakshmi T, Induja E, Bharathi SK. Green synthesis of benzimidazole derivatives under ultrasound irradiation using cu-schiff base complexes embedded over MCM-41 as efficient and reusable catalysts. J Coord Chem. 2020;73(4):653-670. doi: 10.1080/00958972.2020.1730335
Share
Back to top
Journal of Energy and Sustainability, Published by AccScience Publishing