AccScience Publishing / JCTR / Online First / DOI: 10.36922/jctr.24.00073
REVIEW ARTICLE

Greek poplar-type propolis as an adjunct therapy in hospitalized COVID-19 adults: A randomized controlled trial protocol

Giorgos Tzigkounakis1* Jonathan Brown2
Show Less
1 Department of Research, Health and Resilience Institute, Athens, Greece
2 Department of Nutrition, Food and Exercise Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
Received: 30 October 2024 | Revised: 11 March 2025 | Accepted: 26 March 2025 | Published online: 16 May 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Background: Despite the rapid development and distribution of COVID-19 vaccines, the pandemic continues to challenge global health systems. With vaccine inequity and hesitancy, especially in low-income populations and specific demographic cohorts, alternative therapeutic strategies to mitigate COVID-19 symptoms and reduce viral clearance time remain vital. Propolis, a natural bee product with immunomodulatory and antiviral properties, has demonstrated efficacy against other viral pathogens, suggesting potential as an adjunctive therapy for COVID-19. Objectives: This study protocol outlines a randomized, triple-blind, placebo-controlled clinical trial to assess the efficacy of a Greek propolis hydroalcoholic extract as an adjunct to standard care in hospitalized COVID-19 patients. The primary objectives are to evaluate the extract’s impact on viral clearance time and hospitalization duration, with secondary objectives examining body temperature, cough severity, quality of life, and safety. Methods: A total of 441 severe acute respiratory syndrome coronavirus 2-positive adult patients will be enrolled and stratified by age and vaccination status. Participants will be randomly assigned to one of three arms: (i) propolis extract, (ii) placebo, or (iii) control (standard care only). Primary outcomes include time to negative reverse transcription polymerase chain reaction tests and hospital discharge. Secondary measures involve cough severity and quality-of-life assessments through Visual Analog Scale and Leicester Cough Questionnaire scores, fever duration and resolution patterns, and safety through adverse events and mortality tracking. Statistical analysis will include Kaplan–Meier survival curves, Cox regression for confounders, and analysis of variance for quality-of-life scores. Conclusion: This study aims to validate the therapeutic potential of propolis as a natural, accessible adjunctive treatment for COVID-19. Findings may provide critical evidence supporting propolis in symptom relief, viral clearance, and healthcare burden reduction in resource-limited settings. Relevance for patients: Participants in the intervention arm may experience improved clinical outcomes, such as faster recovery and symptom alleviation, while all patients will continue to receive standard care in alignment with current clinical protocols.

Keywords
SARS-CoV-2
COVID-19
Propolis
Adjunct therapy
Nutraceuticals
Randomized controlled trial
Immune modulation
Funding
None.
Conflict of interest
The authors declare no conflict of interest.
References
  1. World Health Organisation (WHO). COVID-19 Vaccines; 2022. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines [Last accessed on 2022 Aug 18].

 

  1. United Nations (UN). UN Analysis Shows Link between Lack of Vaccine Equity and Widening Poverty Gap; 2022. Available from: https://news.un.org/en/story/2022/03/1114762 [Last accessed on 2022 Sep 05].

 

  1. Kricorian K, Civen R, Equils O. COVID-19 vaccine hesitancy: Misinformation and perceptions of vaccine safety. Hum Vaccin Immunother. 2022;18(1):1950504. doi: 10.1080/21645515.2021.1950504

 

  1. Biswas N, Mustapha T, Khubchandani J, Price JH. The nature and extent of COVID-19 vaccination hesitancy in healthcare workers. J Community Health. 2021;46(6):1244-1251. doi: 10.1007/s10900-021-00984-3

 

  1. Woolf K, McManus IC, Martin CA, et al. Ethnic differences in SARS-CoV-2 vaccine hesitancy in United Kingdom healthcare workers: Results from the UK-REACH prospective nationwide cohort study. Lancet Reg Health Eur. 2021;9:100180. doi: 10.1016/j.lanepe.2021.100180

 

  1. Al Naggar Y, Giesy JP, Abdel-Daim MM, Javed Ansari M, Al-Kahtani SN, Yahya G. Fighting against the second wave of COVID-19: Can honeybee products help protect against the pandemic? Saudi J Biol Sci. 2021;28(3):1519-1527. doi: 10.1016/j.sjbs.2020.12.031

 

  1. Ahmed S, Sulaiman SA, Baig AA, et al. Honey as a potential natural antioxidant medicine: An insight into its molecular mechanisms of action. Oxid Med Cell Longev. 2018;2018(1):8367846. doi: 10.1155/2018/8367846

 

  1. Guler HI, Tatar G, Yildiz O, Belduz AO, Kolayli S. Investigation of potential inhibitor properties of ethanolic propolis extracts against ACE-II receptors for COVID-19 treatment by molecular docking study. Arch Microbiol. 2021;203(6):3557-3564. doi: 10.1007/s00203-021-02351-1

 

  1. Refaat H, Mady FM, Sarhan HA, Rateb HS, Alaaeldin E. Optimization and evaluation of propolis liposomes as a promising therapeutic approach for COVID-19. Int J Pharm. 2021;592:120028. doi: 10.1016/j.ijpharm.2020.120028

 

  1. Clementi N, Scagnolari C, D’Amore A, et al. Naringenin is a powerful inhibitor of SARS-CoV-2 infection in vitro. Pharmacol Res. 2021;163:105255. doi: 10.1016/j.phrs.2020.105255

 

  1. Dilokthornsakul W, Kosiyaporn R, Wuttipongwaragon R, Dilokthornsakul P. Potential effects of propolis and honey in COVID-19 prevention and treatment: A systematic review of in silico and clinical studies. J Integr Med. 2022;20(2):114-125. doi: 10.1016/j.joim.2022.01.008

 

  1. Fiorini AC, Scorza CA, De Almeida ACG, et al. Antiviral activity of Brazilian green propolis extract against SARS-CoV-2 (severe acute respiratory syndrome - coronavirus 2) infection: Case report and review. Clinics (Sao Paulo). 2021;76:e2357. doi: 10.6061/clinics/2021/e2357

 

  1. Zorlu D. COVID-19 and anatolian propolis: A case report. Acta Med Mediterr. 2021;37:1229. doi: 10.19193/0393-6384_2021_2_188

 

  1. Silveira MAD, De Jong D, Berretta AA, et al. Efficacy of Brazilian green propolis (EPP-AF®) as an adjunct treatment for hospitalized COVID-19 patients: A randomized, controlled clinical trial. Biomed Pharmacother. 2021;138:111526. doi: 10.1016/j.biopha.2021.111526

 

  1. Bilir O, guler enes, Kocak AO, Atas I. Evaluation of the Effect of Anatolian Propolis on Covid-19 in Healthcare Professionals: Effect of Anatolian Propolis on Covid-19. ScienceOpen [Preprints]; 2021. doi: 10.14293/S2199-1006.1.SOR-.PPZR1OD.v1

 

  1. Kasiotis KM, Anastasiadou P, Papadopoulos A, Machera K. Revisiting Greek Propolis: Chromatographic Analysis and Antioxidant Activity Study. PLoS One. 2017;12(1):e0170077. doi: 10.1371/journal.pone.0170077

 

  1. Aysin E, Urhan M. Dramatic increase in dietary supplement use during Covid-19. Curr Dev Nutr. 2021;5:207. doi: 10.1093/cdn/nzab029_008

 

  1. Lordan R. Dietary supplements and nutraceuticals market growth during the coronavirus pandemic - implications for consumers and regulatory oversight. Pharma Nutr. 2021;18:100282. doi: 10.1016/j.phanu.2021.100282

 

  1. Epstein E. Pandemic Boosts U.S. Vitamin and Supplement Industry; 2022. Available from: https://www.marketplace.org/2022/06/08/pandemic-boosts-u-s-vitamin-and-supplement-industry [Last accessed on 2022 Sep 02].

 

  1. Bearth A, Berthold A, Siegrist M. People’s perceptions of, willingness-to-take preventive remedies and their willingness-to-vaccinate during times of heightened health threats. PLoS One. 2022;17(2):e0263351. doi: 10.1371/journal.pone.0263351

 

  1. World Health Organisation (WHO). WHO Establishes the Global Centre for Traditional Medicine in India; 2022. Available from: https://www.who.int/news/item/25-03-2022-who-establishes-the-global-centre-for-traditional-medicine-in-india [Last accessed on 2022 Sep 16].

 

  1. Oryan A, Alemzadeh E, Moshiri A. Potential role of propolis in wound healing: Biological properties and therapeutic activities. Biomed Pharmacother. 2018;98:469-483. doi: 10.1016/j.biopha.2017.12.069

 

  1. AL-Ani I, Zimmermann S, Reichling J, Wink M. Antimicrobial activities of european propolis collected from various geographic origins alone and in combination with antibiotics. Medicines. 2018;5(1):2. doi: 10.3390/medicines5010002

 

  1. Sberna G, Biagi M, Marafini G, et al. In vitro evaluation of antiviral efficacy of a standardized hydroalcoholic extract of poplar type propolis against SARS-CoV-2. Front Microbiol. 2022;13:799546. doi: 10.3389/fmicb.2022.799546

 

  1. Pitsillou E, Liang J, Ververis K, Hung A, Karagiannis TC. Interaction of small molecules with the SARS-CoV-2 papain-like protease: In silico studies and in vitro validation of protease activity inhibition using an enzymatic inhibition assay. J Mol Graph Model. 2021;104:107851. doi: 10.1016/j.jmgm.2021.107851

 

  1. Pitsillou E, Liang J, Ververis K, Lim KW, Hung A, Karagiannis TC. Identification of Small molecule inhibitors of the deubiquitinating activity of the SARS-CoV-2 papain-like protease: In silico molecular docking studies and in vitro enzymatic activity assay. Front Chem. 2020;8:623971. doi: 10.3389/fchem.2020.623971

 

  1. Castaldo S, Capasso F. Propolis, an old remedy used in modern medicine. Fitoterapia. 2002;73:S1-S6. doi: 10.1016/S0367-326X(02)00185-5

 

  1. Kuropatnicki AK, Szliszka E, Krol W. Historical aspects of propolis research in modern times. Evid Based Complement Alternative Med. 2013;2013:964149. doi: 10.1155/2013/964149

 

  1. Magnavacca A, Sangiovanni E, Racagni G, Dell’Agli M. The antiviral and immunomodulatory activities of propolis: An update and future perspectives for respiratory diseases. Med Res Rev. 2022;42(2):897-945. doi: 10.1002/med.21866

 

  1. Kujumgiev A, Tsvetkova I, Serkedjieva Y, Bankova V, Christov R, Popov S. Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J Ethnopharmacol. 1999;64(3):235-240. doi: 10.1016/S0378-8741(98)00131-7

 

  1. Boisard S, Le Ray AM, Landreau A, et al. Antifungal and antibacterial metabolites from a french poplar type propolis. Evid Based Complement Alternat Med. 2015;2015:319240. doi: 10.1155/2015/319240

 

  1. Kurek-Górecka A, Keskin Ş, Bobis O, et al. Comparison of the antioxidant activity of propolis samples from different geographical regions. Plants. 2022;11(9):1203. doi: 10.3390/plants11091203

 

  1. Machado JL, Assunção AKM, Da Silva MCP, et al. Brazilian green propolis: Anti-inflammatory property by an immunomodulatory activity. Evid Based Complement Alternat Med. 2012;2012:157652. doi: 10.1155/2012/157652

 

  1. Cusinato DAC, Martinez EZ, Cintra MTC, et al. Evaluation of potential herbal-drug interactions of a standardized propolis extract (EPP-AF®) using an in vivo cocktail approach. J Ethnopharmacol. 2019;245:112174. doi: 10.1016/j.jep.2019.112174

 

  1. Silveira MAD, Teles F, Berretta AA, et al. Effects of Brazilian green propolis on proteinuria and renal function in patients with chronic kidney disease: A randomized, double-blind, placebo-controlled trial. BMC Nephrol. 2019;20(1):140. doi: 10.1186/s12882-019-1337-7

 

  1. Cevik M, Tate M, Lloyd O, Maraolo AE, Schafers J, Ho A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: A systematic review and meta-analysis. Lancet Microbe. 2021;2(1):e13-e22. doi: 10.1016/S2666-5247(20)30172-5

 

  1. Yan D, Zhang X, Chen C, et al. Characteristics of viral shedding time in SARS-CoV-2 infections: A systematic review and meta-analysis. Front Public Health. 2021;9:652842. doi: 10.3389/fpubh.2021.652842

 

  1. Alimohamadi Y, Mansouri Yekta E, Sepandi M, Sharafoddin M, Arshadi M, Hesari E. Hospital length of stay for COVID-19 patients: A systematic review and meta-analysis. Multidiscip Respir Med. 2022;17:856. doi: 10.4081/mrm.2022.856

 

  1. Spinou A, Birring SS. An update on measurement and monitoring of cough: What are the important study endpoints? J Thorac Dis. 2014;6 Suppl 7:S728-34. doi: 10.3978/j.issn.2072-1439.2014.10.08

 

  1. Lee KK, Matos S, Evans DH, White P, Pavord ID, Birring SS. A longitudinal assessment of acute cough. Am J Respir Crit Care Med. 2013;187(9):991-997. doi: 10.1164/rccm.201209-1686OC

 

  1. Yousaf N, Lee KK, Jayaraman B, Pavord ID, Birring SS. The assessment of quality of life in acute cough with the leicester cough questionnaire (LCQ-acute). Cough. 2011;7(1):4. doi: 10.1186/1745-9974-7-4

 

  1. Devequi-Nunes D, Machado BAS, Barreto GDA, et al. Chemical characterization and biological activity of six different extracts of propolis through conventional methods and supercritical extraction. PLoS One. 2018;13(12):e0207676. doi: 10.1371/journal.pone.0207676

 

  1. Kubiliene L, Jekabsone A, Zilius M, et al. Comparison of aqueous, polyethylene glycol-aqueous and ethanolic propolis extracts: Antioxidant and mitochondria modulating properties. BMC Complement Altern Med. 2018;18(1):165. doi: 10.1186/s12906-018-2234-5

 

  1. Sun C, Wu Z, Wang Z, Zhang H. Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of beijing propolis extracts. Evid Based Complement Alternat Med. 2015;2015:595393. doi: 10.1155/2015/595393

 

  1. Kubiliene L, Laugaliene V, Pavilonis A, et al. Alternative preparation of propolis extracts: comparison of their composition and biological activities. BMC Complement Altern Med. 2015;15(1):156. doi: 10.1186/s12906-015-0677-5

 

  1. Kara Y, Can Z, Kolaylı S. What should be the ideal solvent percentage and solvent-propolis ratio in the preparation of ethanolic propolis extract? Food Anal Methods. 2022;15(6):1707-1719. doi: 10.1007/s12161-022-02244-z

 

  1. Park YK, Ikegaki M. Preparation of water and ethanolic extracts of propolis and evaluation of the preparations. Biosci Biotechnol Biochem. 1998;62(11):2230-2232. doi: 10.1271/bbb.62.2230

 

  1. Woisky RG, Salatino A. Analysis of propolis: Some parameters and procedures for chemical quality control. J Apic Res. 1998;37(2):99-105. doi: 10.1080/00218839.1998.11100961

 

  1. Graikou K, Popova M, Gortzi O, Bankova V, Chinou I. Characterization and biological evaluation of selected Mediterranean propolis samples. Is it a new type? LWT. 2016;65:261-267. doi: 10.1016/j.lwt.2015.08.025

 

  1. Aminimoghadamfarouj N, Nematollahi A. Propolis diterpenes as a remarkable bio-source for drug discovery development: A review. Int J Mol Sci. 2017;18(6):1290. doi: 10.3390/ijms18061290

 

  1. Bankova V. Recent trends and important developments in propolis research. Evid Based Complement Alternat Med. 2005;2(1):29-32. doi: 10.1093/ecam/neh059

 

  1. Oroian M, Ursachi F, Dranca F. Influence of ultrasonic amplitude, temperature, time and solvent concentration on bioactive compounds extraction from propolis. Ultrason Sonochem. 2020;64:105021. doi: 10.1016/j.ultsonch.2020.105021

 

  1. Ding Q, Sheikh AR, Gu X, et al. Chinese propolis: Ultrasound‐assisted enhanced ethanolic extraction, volatile components analysis, antioxidant and antibacterial activity comparison. Food Sci Nutr. 2021;9(1):313-330. doi: 10.1002/fsn3.1997

 

  1. Elkhateeb OM, Badawy MEI, Noreldin AE, Abou- Ahmed HM, El-Kammar MH, Elkhenany HA. Comparative evaluation of propolis nanostructured lipid carriers and its crude extract for antioxidants, antimicrobial activity, and skin regeneration potential. BMC Complement Med Ther. 2022;22(1):256. doi: 10.1186/s12906-022-03737-4

 

  1. Yusof N, Abdul Munaim MS, Veloo Kutty R. Ultrasound- assisted extraction propolis and its kinetic study. IOP Conf Ser Mater Sci Eng. 2020;736(2):022089. doi: 10.1088/1757-899X/736/2/022089

 

  1. Baysan U, Elmas F, Koç M. The effect of spray drying conditions on physicochemical properties of encapsulated propolis powder. J Food Process Eng. 2019;42(4): e13024.doi: 10.1111/jfpe.13024

 

  1. Pant K, Thakur M, Chopra HK, Nanda V. Encapsulated bee propolis powder: Drying process optimization and physicochemical characterization. LWT. 2022;155:112956. doi: 10.1016/j.lwt.2021.112956

 

  1. Asama T, Hiraoka T, Ohkuma A, Okumura N, Yamaki A, Urakami K. Cognitive improvement and safety assessment of a dietary supplement containing propolis extract in elderly Japanese: A placebo-controlled, randomized, parallel-group, double-blind human clinical study. Evid Based Complement Alternat Med. 2021;2021:6664217. doi: 10.1155/2021/6664217

 

  1. Popova MP, Bankova VS, Bogdanov S, Tsvetkova I, Naydenski C, Marcazzan GL. Chemical characteristics of poplar type propolis of different geographic origin. Apidologie. 2007;38:306-311.

 

  1. Bankova V. Chemical diversity of propolis and the problem of standardization. J Ethnopharmacol. 2005;100(1-2):114-117. doi: 10.1016/j.jep.2005.05.004

 

  1. Popova M, Bankova V, Butovska D, et al. Validated methods for the quantification of biologically active constituents of poplar‐type propolis. Phytochem Anal. 2004;15(4):235-240. doi: 10.1002/pca.777

 

  1. Stefova M, Stafilov T, Kulevanova S. HPLC Analysis of Flavonoids. New York City: Marcel Dekker, Inc.; 2003. p. 113-119.

 

  1. Asgharpour F, Moghadamnia AA, Kazemi S, Nouri HR, Motallebnejad M. Applying GC-MS analysis to identify chemical composition of Iranian propolis prepared with different solvent and evaluation of its biological activity. Caspian J Intern Med. 2020;11(2):191-198. doi: 10.22088/cjim.11.2.191

 

  1. Falcão SI, Vale N, Gomes P, et al. Phenolic profiling of portuguese propolis by LC-MS spectrometry: Uncommon propolis rich in flavonoid glycosides. Phytochem Anal. 2013;24(4):309-318. doi: 10.1002/pca.2412

 

  1. García-Viguera C, Ferreres F, Tomás-Barberán FA. Study of Canadian propolis by GC-MS and HPLC. Z Naturforsch C. 1993;48(9-10):731-735. doi: 10.1515/znc-1993-9-1009

 

  1. World Health Organization (WHO). Guidelines for Good Clinical Practice (GCP) for Trials on Pharmaceutical Products. WHO Technical Report Series No. 850. 1995. Available from: https://apps.who.int/medicinedocs/pdf/ whozip13e/whozip13e.pdf [Last accessed 2022 Aug 28].

 

  1. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. ICH Harmonized Tripartite Guideline. Guideline for Good Clinical Practice E6(R1); 1996. Available from: https://www.ich.org/fileadmin /public_web_site/ich_products/guidelines/efficacy/e6/e6_r1_guideline.pdf [Last accessed on 2022 Aug 08].

 

  1. Newton PN, Schellenberg D, Ashley EA, et al. Quality assurance of drugs used in clinical trials: Proposal for adapting guidelines. BMJ. 2015;350:h602. doi: 10.1136/bmj.h602

 

  1. Schoenfeld D. The asymptotic properties of nonparametric tests for comparing survival distributions. Biometrika. 1981;68(1):316-319. doi: 10.1093/biomet/68.1.316

 

  1. Zhong B. How to calculate sample size in randomized controlled trial? J Thorac Dis. 2009;1(1):51-54.

 

  1. Armstrong RA. When to use the Bonferroni correction. Ophthalmic Physiol Optics. 2014;34(5):502-508. doi: 10.1111/opo.12131

 

  1. Rees EM, Nightingale ES, Jafari Y, et al. COVID-19 length of hospital stay: A systematic review and data synthesis. BMC Med. 2020;18(1):270. doi: 10.1186/s12916-020-01726-3

 

  1. Wei CJ, Hu XX, Ye GM, Yang JM, Cheng ZS, Wang XH. Time and risk factors of viral clearance in COVID-19 patients. Chin Med J (Engl). 2021;134(17):2131-2133. doi: 10.1097/CM9.0000000000001467

 

  1. Disease Control and Health Statistics. COVID-19 Cases, Hospitalizations, and Deaths by Vaccination Status. Washington State Department of Health; 2022. Available from: https://doh.wa.gov/sites/default/files/2022-02/421-010- casesinnotfullyvaccinated.pdf [Last accessed on 2022 Aug 18].

 

  1. Kissler SM, Fauver JR, Mack C, et al. Viral dynamics of SARS-CoV-2 variants in vaccinated and unvaccinated persons. N Engl J Med. 2021;385(26):2489-2491. doi: 10.1056/NEJMc2102507

 

  1. Centers for Disease Control and Prevention (CDC). COVID-19 Hospitalizations; 2022. Available from: https:// gis.cdc.gov/grasp/covidnet/COVID19_5.html [Last accessed on 2022 Dec 03].

 

  1. Centers for Disease Control and Prevention (CDC). COVID-19 Vaccinations in the United States. November 30, 30AD. Available from: https://covid.cdc.gov/ covid-data-tracker/#vaccinations_vacc-people-additional-dose-totalpop [Last accessed on 2022 Dec 03].

 

  1. Berretta AA, Nascimento AP, Bueno PCP, De Oliveira Lima Leite Vaz MM, Marchetti JM. Propolis standardized extract (EPP-AF®), an innovative chemically and biologically reproducible pharmaceutical compound for treating wounds. Int J Biol Sci. 2012;8(4):512-521. doi: 10.7150/ijbs.3641

 

  1. EPP-AF® Apis Flora. EPP-AF® - the Standardized Propolis Extract that is an Assurance of Quality, Effectiveness and Safety. Available from: https://cienciadapropolis.com.br/en/ what-is-epp-af/epp-af [Last accessed on 2022 Jul 20].

 

  1. Hossain KS, Hossain MG, Moni A, et al. Prospects of honey in fighting against COVID-19: Pharmacological insights and therapeutic promises. Heliyon. 2020;6(12):e05798. doi: 10.1016/j.heliyon.2020.e05798

 

Share
Back to top
Journal of Clinical and Translational Research, Electronic ISSN: 2424-810X Print ISSN: 2382-6533, Published by AccScience Publishing