AccScience Publishing / JCTR / Volume 3 / Issue 2 / DOI: 10.18053/jctres.03.201702.001
ORIGINAL ARTICLE

Acellular porcine heart matrices: whole organ decellularization with 3D-bioscaffold & vascular preservation Acellular porcine heart matrices: whole organ decellularization with 3D-bioscaffold & vascular preservation

Alice S. Ferng1,4 Alana M. Connell1,4 Katherine M. Marsh1,4 Ning Qu1 Annalisa O. Medina1 Naing Bajaj1 Daniel Palomares3 Jessika Iwanski1,4 Phat L. Tran3,5 Kapil Lotun4 Kitsie Johnson1 Zain Khalpey1,4,6
Show Less
1 Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona College of Medicine, Tucson, Arizona, United States
2 Department of Physiological Sciences, University of Arizona College of Medicine, Tucson, Arizona, United States
3 Department of Biomedical Engineering, University of Arizona College of Medicine, Tucson, Arizona, United States
4 University of Arizona College of Medicine, Tucson, Arizona, United States
5 Department of Internal Medicine, Division of Cardiology, University of Arizona College of Medicine, Tucson, Arizona, United States
6 Banner, University Medical Center, Tucson, Arizona, United States
Received: 4 October 2016 | Revised: 27 February 2017 | Accepted: 10 March 2017 | Published online: 15 March 2017
© 2017 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Regenerative medicine, particularly decellularization-recellularization methods via whole-organ tissue engineering, has been increasingly studied due to the growing donor organ shortage. Though numerous decellularization protocols exist, the ideal decellularization protocol for optimal recellularization is unclear. This study was performed to optimize existing heart decellularization protocols and compare current methods using the detergents SDS (sodium dodecyl sulfate), Triton X-100, OGP (octyl β-D-glucopyranoside), and CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate) through retrograde aortic perfusion via aortic cannulation of a whole porcine heart. The goal of decellularization is to preserve extracellular matrix integrity and architecture, which was analyzed in this study through histology, microscopy, DNA analysis, hydroxyproline content analysis, materials analysis and angiography. Effective decellularization was determined by analyzing the tissue organization, geometry, and biological properties of the resultant extracellular matrix scaffold. Using these parameters, optimal decellularization was achieved between 90 and 120 mmHg pressure with 3% SDS as a detergent.

Conflict of interest
The authors declare they have no competing interests.
References

[1] Tapias LF, Ott HC. Decellularized scaffolds as a platform for  bioengineered organs. Curr Opin Organ Transplant 2014; 19: 145–152. 

[2] Faulk DM, Johnson SA, Zhang L, Badylak SF. Role of the extracellular matrix in whole organ engineering. J Cell Physiol 2014; 229: 984–989.

[3] Yagi H, Soto-Gutierrez A, Kitagawa Y. Whole-organ  re-engineering: a regenerative medicine approach to digestive  organ replacement. Surg Today 2013; 43: 587–594.

[4] He M, Callanan A. Comparison of methods for whole-organ  decellularization in tissue engineering of bioartificial organs.  Tissue Eng Part B Rev 2013; 19: 194–208.

[5] Song JJ, Ott HC. Organ engineering based on decellularized  matrix scaffolds. Trends Mol Med 2011; 17: 424–432.

[6] Murphy SV, Atala A. Organ engineering—combining stem  cells, biomaterials, and bioreactors to produce bioengineered  organs for transplantation. Bioessays 2013; 35: 163–172.

[7] Sullivan DC, Mirmalek-Sani SH, Deegan DB, Baptista PM,  Aboushwareb T, Atala A, Yoo JJ. Decellularization methods of  porcine kidneys for whole organ engineering using a  high-throughput system. Biomaterials 2012; 33: 7756–7764.

[8] Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi  MA, Shulman C, Milwid J, Kobayashi N, Tilles A, Berthiaume  F, Hertl M, Nahmias Y, Yarmush ML, Uygun K. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med,  2010; 16: 814–820.

[9] Gilpin SE, Guyette JP, Gonzalez G, Ren X, Asara JM, Mathisen DJ, Vacanti JP, Ott HC. Perfusion decellularization of  human and porcine lungs: bringing the matrix to clinical scale.  J Heart Lung Transplant 2014;33: 298–308.

[10] Jensen T, Roszell B, Zang F, Girard E, Matson A, Thrall  R, Jaworski DM, Hatton C, Weiss DJ, Finck C. A rapid lung  decellularization protocol supports embryonic stem cell differentiation in vitro and following implantation. Tissue Eng Part C Methods. 2012;18: 632–646.

[11] Khalpey Z, Qu N, Hemphill C, Louis AV, Ferng AS

[12] Orlando G, Baptista P, Birchall M, De Coppi P, Farney  A, Guimaraes-Souza NK, Opara E, Rogers J, Seliktar  D, Shapira-Schweitzer K, Stratta RJ, Atala A, Wood KJ, Soker  S. Regenerative medicine as applied to solid organ transplantation: current status and future challenges. Transpl Int 2011; 24: 223–232.

[13] Tee R, Lokmic Z, Morrison WA, Dilley RJ. Strategies in cardiac tissue engineering. ANZ J Surg 2011; 80: 683–693.

[14] Guyette JP, and Coauthors, 2016: Bioengineering human myocardium on native extracellular matrix. Circ Res 2016; 118: 56–72.

[15] Sánchez PL, Fernández-Santos ME, Costanza S, Climent  AM, Moscoso I, Gonzalez-Nicolas MA, Sanz-Ruiz  R, Rodríguez H, Kren SM, Garrido G, Escalante JL, BermejoJ, Elizaga J, Menarguez J, Yotti R, Pérez del Villar C, Espinosa  MA, Guillem MS, Willerson JT, Bernad A, Matesanz  R, Taylor DA, Fernández-Avilés F. Acellular human heart matrix: A critical step toward whole heart grafts. Biomaterials  2015; 61: 279–289.

[16] Oberwallner B, Brodarac A, Choi YH, Saric T, Anić P,  Morawietz L, Stamm C. Preparation of cardiac extracellular  matrix scaffolds by decellularization of human myocardium. J  Biomed Mater Res A 2014; 102: 3263–3272.

[17] Lu TY, Lin B, Kim J, Sullivan M, Tobita K, Salama G, Yang L. Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor  cells. Nat Commun 2013; 4: 2307.

[18] Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA. Perfusion-decellularized matrix: using nature's  platform to engineer a bioartificial heart. Nat Med 2008; 14: 213–221.

[19] Methe K, Bäckdahl H, Johansson BR, Nayakawde N, Dellgren G, Sumitran-Holgersson S. An alternative approach to decellularize whole porcine heart. Biores Open Access 2014; 3:  327–338.

[20] Guyette JP, Gilpin SE, Charest JM, Tapias LF, Ren X, Ott HC. Perfusion decellularization of whole organs. Nat Protoc 2014;  9: 1451–1468.

[21] Choi MY, Kim JT, Lee WJ, Lee Y, Park KM, Yang YI, Park KD. Engineered extracellular microenvironment with a tunable mechanical property for controlling cell behavior and cardiomyogenic fate of cardiac stem cells. Acta Biomater 2017;  50: 234-248

[22] Fernandes H, Moroni L, van Blitterswijk C, de Boer J. Extracellular matrix and tissue engineering applications. Journal of  Materials Chemistry 2009; 19: 5474–5484.

[23] Momtahan N, Poornejad N, Struk JA, Castleton AA, Herrod  BJ, Vance BR, Eatough JP, Roeder BL, Reynolds PR, Cook  AD. Automation of pressure control improves whole porcine  heart decellularization. Tissue Eng Part C Methods 2015;  21:1148-1161.

[24] Friedrich LH, Jungebluth P, Sjöqvist S, Lundin V, Haag JC, Lemon G, Gustafsson Y, Ajalloueian F, Sotnichenko  A, Kielstein H, Burguillos MA, Joseph B, Teixeira AI, Lim  ML, Macchiarini P. Preservation of aortic root architecture and  properties using a detergent-enzymatic perfusion protocol.  Biomaterials 2014; 35: 1907–1913.

[25] Wainwright JM, Czajka CA, Patel UB, Freytes DO, Tobita K,  Gilbert TW, Badylak SF. Preparation of cardiac extracellular  matrix from an intact porcine heart. Tissue Eng Part C Methods 2010; 16: 525–532.

[26] Weymann A, Patil NP, Sabashnikov A, Jungebluth P, Korkmaz  S, Li S, Veres G, Soos P, Ishtok R, Chaimow N, Pätzold  I, Czerny N, Schies C, Schmack B, Popov AF, Simon  AR, Karck M, Szabo G. Bioartificial Heart: A Human-Sized  Porcine Model - The Way Ahead. PLoS ONE 2014; 9: e111591.

[27] Petersen TH, Calle EA, Colehour MB, Niklason LE. Matrix  composition and mechanics of decellularized lung scaffolds.  Cells Tissues Organs (Print) 2012; 195: 222–231.

[28] Remlinger NT, Wearden PD, Gilbert TW. Procedure for decellularization of porcine heart by retrograde coronary perfusion. J Vis Exp 2012: e50059.

[29] Booth C, Korossis SA, Wilcox HE, Watterson KG, Kearney JN, Fisher J, Ingham E. Tissue engineering of cardiac valve  prostheses I: Development and histological characterization of  an acellular porcine scaffold. J Heart Valve Dis 2002; 11: 457–462.

[30] Dong J, Li Y, Mo X. The study of a new detergent (octyl-glucopyranoside) for decellularizing porcine pericardium  as tissue engineering scaffold. J Surg Res 2013; 183: 56–67.

[31] Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and  whole organ decellularization processes. Biomaterials 2011;  32: 3233–3243.

[32] Nagata S, Hanayama R, Kawane K. Autoimmunity and the  clearance of dead cells. Cell 2010; 140: 619–630.

Share
Back to top
Journal of Clinical and Translational Research, Electronic ISSN: 2424-810X Print ISSN: 2382-6533, Published by AccScience Publishing