AccScience Publishing / JCTR / Volume 3 / Issue 1 / DOI: 10.18053/jctres.03.2017S1.003
REVIEW

The impact of sterile inflammation in acute liver injury

Benjamin L. Woolbright1 Hartmut Jaeschke1
Show Less
1 Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United State
Received: 18 December 2016 | Revised: 10 February 2017 | Accepted: 12 February 2017 | Published online: 12 February 2017
© 2017 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Background: The liver has a number of functions in innate immunity. These functions predispose the liver  to innate immune-mediated liver injury when inflammation goes unchecked. Significant progress has been  made in the last 25 years on sterile inflammatory liver injury in a number of models; however, a great deal  of controversy and many questions about the nature of sterile inflammation still exist.

Aim: The goal of this article is to review sterile inflammatory liver injury using both a basic approach to  what constitutes the inflammatory injury, and through examination of current models of liver injury and  inflammation. This information will be tied to human patient conditions when appropriate.

Relevance for patients: Inflammation is one of the most critical factors for managing in-patient liver disease in a number of scenarios. More information is needed for both scientists and clinicians to develop  rational treatments.

Keywords
sterile inflammation
liver
neutrophil
monocyte
mechanisms
cholestasis
ischemia
reperfusion
acetaminophen
Conflict of interest
The authors declare they have no competing interests.
References

[1] Krenkel O, Mossanen JC, Tacke F. Immune mechanisms in  acetaminophen-induced acute liver failure. Hepatobiliary Surg  Nutr 2014; 3: 331-343.

[2] Jaeschke H. Reactive oxygen and mechanisms of inflammatory liver injury: Present concepts. J Gastroenterol Hepatol 2011;26 Suppl 1: 173-179.

[3] Kubes P, Mehal WZ. Sterile inflammation in the liver. Gastroenterology 2012; 143: 1158-1172.

[4] Woolbright BL, Jaeschke H. Sterile inflammation in acute  liver injury: myth or mystery? Expert Rev Gastroenterol  Hepatol 2015; 9: 1027-1029.

[5] Woolbright BL, Jaeschke H. Role of the Inflammasome in  Acetaminophen-induced Liver Injury and Acute Liver Failure. J Hepatol 2017 in press. 

[6] Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002; 418191-195.

[7] Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 1995; 146: 3-15.

[8] Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F.  Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 1999; 274: 10689-10692.

[9] Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases  and processing of proIL-beta. Mol Cell 2002; 10: 417- 426.

[10] Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie  S, Dong J, Newton K, Qu Y, Liu J, Heldens S, Zhang J, Lee  WP, Roose-Girma M, Dixit VM. Non-canonical inflammasome activation targets caspase-11. Nature 2011; 479:  117-121.

[11] Andrei C, Dazzi C, Lotti L, Torrisi MR, Chimini G, Rubartelli  A. The secretory route of the leaderless protein interleukin  1beta involves exocytosis of endolysosome-related vesicles.  Mol Biol Cell 1999; 10: 1463-1475

[12] Gardella S, Andrei C, Ferrera D, Lotti LV, Torrisi MR, Bianchi  ME, Rubartelli A. The nuclear protein HMGB1 is secreted by  monocytes via a non-classical, vesicle-mediated secretory  pathway. EMBO Rep 2002; 3: 995-1001. 

[13] McGill MR, Sharpe MR, Williams CD, Taha M, Curry SC,  Jaeschke H. The mechanism underlying acetaminophen- induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J Clin Invest 2012; 122: 1574-1583. 

[14] Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi  K, Itagaki K, Hauser CJ. Circulating mitochondrial DAMPs  cause inflammatory responses to injury. Nature 2010; 464:  104-107. 

[15] Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J.  Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006; 440: 237-241.

[16] Yamasaki K, Muto J, Taylor KR, Cogen AL, Audish D, Bertin  J, Grant EP, Coyle AJ, Misaghi A, Hoffman HM, Gallo RL.  NLRP3/cryopyrin is necessary for interleukin-1β (IL-1β) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J Biol Chem 2009; 284:  12762–12771.

[17] Huang H, Evankovich J, Yan W, Nace G, Zhang L, Ross M,  Liao X, Billiar T, Xu J, Esmon CT, Tsung A. Endogenous histones function as alarmins in sterile inflammatory liver injury  through Toll-like receptor 9 in mice. Hepatology 2011; 54:  999-1008. 

[18] Wen Z, Lei Z, Yao L, Jiang P, Gu T, Ren F, Liu Y, Gou C, Li X,  Wen T. Circulating histones are major mediators of systemic  inflammation and cellular injury in patients with acute liver  failure. Cell Death Dis 2016; 7: e2391. 

[19] Woolbright BL, Jaeschke H. Therapeutic targets for cholestatic  liver injury. Expert Opin Ther Targets 2016; 20: 463-475.

[20] Seki E, Brenner DA. Toll-like receptors and adaptor molecules  in liver disease: update. Hepatology 2008; 48: 322-335.

[21] Hoque R, Sohail MA, Salhanick S, Malik AF, Ghani A, Robson SC, Mehal WZ. P2X7 receptor-mediated purinergic signaling promotes liver injury in acetaminophen hepatotoxicity  in mice. Am J Physiol Gastrointest Liver Physiol 2012; 302:  G1171-G1179.

[22] Kennel SJ, Lankford TK, Foote LJ, Shinpock SG, Stringer C.  CD44 expression on murine tissues. J Cell Sci 1993; 104:  373-382.

[23] Smedsrød B, Melkko J, Araki N, Sano H, Horiuchi S. Advanced glycation end products are eliminated by scavenger-receptor-mediated endocytosis in hepatic sinusoidal Kupffer and endothelial cells. Biochem J 1997; 322: 567-573.

[24] Jaeschke H. Cellular adhesion molecules: regulation and functional significance in the pathogenesis of liver diseases. Am J  Physiol 1997; 273: G602-11.

[25] Allen K, Jaeschke H, Copple BL. Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation  during obstructive cholestasis. Am J Pathol 2011; 178:  175-186. 

[26] Clarke C, Kuboki S, Sakai N, Kasten KR, Tevar AD, Schuster  R, Blanchard J, Caldwell CC, Edwards MJ, Lentsch AB. CXC  chemokine receptor-1 is expressed by hepatocytes and regulates liver recovery after hepatic ischemia/reperfusion injury. Hepatology 2011; 53: 261-271.

[27] Dambach DM, Watson LM, Gray KR, Durham SK, Laskin DL.  Role of CCR2 in macrophage migration into the liver during  acetaminophen-induced hepatotoxicity in the mouse. Hepatology 2002; 35: 1093-1103.

[28] Holt MP, Cheng L, Ju C. Identification and characterization of  infiltrating macrophages in acetaminophen-induced liver injury. J Leukoc Biol 2008; 84: 1410-1421.

[29] Kuboki S, Shin T, Huber N, Eismann T, Galloway E, Schuster  R, Blanchard J, Edwards MJ, Lentsch AB. Hepatocyte signaling through CXC chemokine receptor-2 is detrimental to liver  recovery after ischemia/reperfusion in mice. Hepatology 2008;  48: 1213-1223.

[30] Mossanen JC, Krenkel O, Ergen C, Govaere O, Liepelt A,  Puengel T, Heymann F, Kalthoff S, Lefebvre E, Eulberg  D, Luedde T, Marx G, Strassburg CP, Roskams T, Trautwein  C, Tacke F. Chemokine (C-C motif) receptor 2-positive monocytes aggravate the early phase of acetaminophen- induced  acute liver injury. Hepatology 2016; 64: 1667-1682.

[31] Broz P, Dixit VM. Inflammasomes: mechanism of assembly,  regulation and signalling. Nat Rev Immunol 2016; 16:  407-420. 

[32] Gujral JS, Farhood A, Bajt ML, Jaeschke H. Neutrophils aggravate acute liver injury during obstructive cholestasis in bile  duct-ligated mice. Hepatology 2003; 38: 355-363.

[33] Woolbright BL, Antoine DJ, Jenkins RE, Bajt ML, Park BK,  Jaeschke H. Plasma biomarkers of liver injury and inflammation demonstrate a lack of apoptosis during obstructive cholestasis in mice. Toxicol Appl Pharmacol 2013; 273: 524-531.

[34] Lawson JA, Farhood A, Hopper RD, Bajt ML, Jaeschke H.  The hepatic inflammatory response after acetaminophen  overdose: role of neutrophils. Toxicol Sci 2000; 54: 509-516.

[35] Jaeschke H, Farhood A, Smith CW. Neutrophils contribute to  ischemia/reperfusion injury in rat liver in vivo. FASEB J 1990;  4: 3355-3359.

[36] Bertola A, Park O, Gao B. Chronic plus binge ethanol feeding  synergistically induces neutrophil infiltration and liver injuryin mice: a critical role for E-selectin. Hepatology 2013; 58:  1814-23.

[37] Jaeschke H, Farhood A, Smith CW. Neutrophil-induced liver  cell injury in endotoxin shock is a CD11b/CD18-dependent  mechanism. Am J Physiol 1991; 261: G1051-1056.

[38] Bilzer M, Roggel F, Gerbes AL. Role of Kupffer cells in host  defense and liver disease. Liver Int 2006; 26: 1175-1186.

[39] Jaeschke H, Woolbright BL. Current strategies to minimize  hepatic ischemia-reperfusion injury by targeting reactive oxygen species. Transplant Rev (Orlando) 2012; 26: 103- 114.

[40] Jaeschke H, Farhood A. Neutrophil and Kupffer cell-induced  oxidant stress and ischemia-reperfusion injury in rat liver. Am  J Physiol 1991; 260: G355-362.

[41] Jaeschke H, Farhood A, Bautista AP, Spolarics Z, Spitzer JJ.  Complement activates Kupffer cells and neutrophils during  reperfusion after hepatic ischemia. Am J Physiol 1993; 264:  G801-G809.

[42] Adachi Y, Bradford BU, Gao W, Bojes HK, Thurman RG.  Inactivation of Kupffer cells prevents early alcohol-induced  liver injury. Hepatology 1994; 20: 453-460.

[43] Canbay A, Feldstein AE, Higuchi H, Werneburg N,  Grambihler A, Bronk SF, Gores GJ. Kupffer cell engulfment  of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology 2003; 38: 1188-1198.

[44] Liu P, McGuire GM, Fisher MA, Farhood A, Smith CW, Jaeschke H. Activation of Kupffer cells and neutrophils for reactive oxygen formation is responsible for endotoxin-enhanced  liver injury after hepatic ischemia. Shock 1995; 3: 56-62.

[45] Marzi I, Cowper K, Takei Y, Lindert K, Lemasters JJ, Thurman RG. Methyl palmitate prevents Kupffer cell activation  and improves survival after orthotopic liver transplantation in  the rat. Transpl Int 1991; 4: 215-220.

[46] Zhong Z, Connor H, Mason RP, Qu W, Stachlewitz RF, Gao W,  Lemasters JJ, Thurman RG. Destruction of Kupffer cells increases survival and reduces graft injury after transplantation  of fatty livers from ethanol-treated rats. Liver Transpl Surg 1996; 2: 383-387.

[47] Tiegs G, Wolter M, Wendel A. Tumor necrosis factor is a terminal mediator in galactosamine/endotoxin-induced hepatitis  in mice. Biochem Pharmacol 1989; 38: 627-631.

[48] Bautista AP, Skrepnik N, Niesman MR, Bagby GJ. Elimination of macrophages by liposome-encapsulated dichloromethylene diphosphonate suppresses the endotoxin-induced priming of Kupffer cells. J Leukoc Biol 1994a; 55: 321-7.

[49] Barkett M, Gilmore TD. Control of apoptosis by Rel/NFkappaB transcription factors. Oncogene 1999; 18: 6910-6924

[50] McGill MR, Yan HM, Ramachandran A, Murray GJ, Rollins  DE, Jaeschke H. HepaRG cells: a human model to study  mechanisms of acetaminophen hepatotoxicity. Hepatology 2011; 53: 974-982. 

[51] Woolbright BL, Dorko K, Antoine DJ, Clarke JI, Gholami P,  Li F, Kumer SC, Schmitt TM, Forster J, Fan F, Jenkins  RE, Park BK, Hagenbuch B, Olyaee M, Jaeschke H. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis. Toxicol Appl Pharmacol 2015; 283: 168-177.

[52] Wang M, You Q, Lor K, Chen F, Gao B, Ju C. Chronic alcohol  ingestion modulates hepatic macrophage populations and  functions in mice. J Leukoc Biol 2014; 96: 657-665.

[53] Heymann F, Trautwein C, Tacke F. Monocytes and macrophages as cellular targets in liver fibrosis. Inflamm Allergy  Drug Targets 2009; 8: 307-318.

[54] Ju C, Tacke F. Hepatic macrophages in homeostasis and liver  diseases: from pathogenesis to novel therapeutic strategies.  Cell Mol Immunol 2016; 13: 316-327. 

[55] Naveau S, Chollet-Martin S, Dharancy S, Mathurin P, Jouet P,  Piquet MA, Davion T, Oberti F, Broët P, Emilie D; FoieAlcool group of the Association Française pour l'Etude du  Foie. A double-blind randomized controlled trial of infliximab  associated with prednisolone in acute alcoholic hepatitis.  Hepatology 2004; 39: 1390-1397.

[56] Boetticher NC, Peine CJ, Kwo P, Abrams GA, Patel T, Aqel B,  Boardman L, Gores GJ, Harmsen WS, McClain CJ, Kamath  PS, Shah VH. A randomized, double-blinded, placebo-controlled multicenter trial of etanercept in the treatment of  alcoholic hepatitis. Gastroenterology 2008; 135: 1953-1960.

[57] Jaeschke H. Mechanisms of Liver Injury. II. Mechanisms of  neutrophil-induced liver cell injury during hepatic ischemia-reperfusion and other acute inflammatory conditions. Am J Physiol Gastrointest Liver Physiol 2006; 290: G1083- G1088.

[58] Jaeschke H, Ho YS, Fisher MA, Lawson JA, Farhood A. Glutathione peroxidase-deficient mice are more susceptible to  neutrophil-mediated hepatic parenchymal cell injury during  endotoxmia: importance of an intracellular oxidant stress.  Hepatology 1999; 29: 443-450.

[59] Jaeschke H, Farhood A, Fisher MA, Smith CW. Sequestration  of neutrophils in the hepatic vasculature during endotoxemia is  independent of beta 2 integrins and intercellular adhesion  molecule-1. Shock 1996; 6: 351-356

[60] Jaeschke H, Fisher MA, Lawson JA, Simmons CA, Farhood A,  Jones DA. Activation of caspase 3 (CPP32)-like proteases is  essential for TNF-alpha-induced hepatic parenchymal cell  apoptosis and neutrophil-mediated necrosis in a murine endotoxin shock model. J Immunol 1998; 160: 3480-3486.

[61] McEver RP. Selectins: lectins that initiate cell adhesion under  flow. Curr Opin Cell Biol 2002; 14: 581-586.

[62] Wong J, Johnston B, Lee SS, Bullard DC, Smith CW, Beaudet  AL, Kubes P. A minimal role for selectins in the recruitment of  leukocytes into the inflamed liver microvasculature. J Clin Invest 1997; 99: 2782-2790.

[63] Essani NA, Fisher MA, Simmons CA, Hoover JL, Farhood A,  Jaeschke H. Increased P-selectin gene expression in the liver  vasculature and its role in the pathophysiology of neutrophil-induced liver injury in murine endotoxin shock. Leukoc  Biol 1998; 63: 288-296.

[64] Chosay JG, Essani NA, Dunn CJ, Jaeschke H. Neutrophil  margination and extravasation in sinusoids and venules of liver during endotoxin-induced injury. Am J Physiol 1997; 272:  G1195-G1200

[65] Lawson JA, Burns AR, Farhood A, Lynn Bajt M, Collins RG,  Smith CW, Jaeschke H. Pathophysiologic importance of Eand L-selectin for neutrophil-induced liver injury during endotoxemia in mice. Hepatology 2000; 32: 990-998.

[66] Dold S, Laschke MW, Zhau Y, Schilling M, Menger MD,  Jeppsson B, Thorlacius H. P-selectin glycoprotein ligand-1-mediated leukocyte recruitment regulates hepatocellular  damage in acute obstructive cholestasis in mice. Inflamm Res 2010; 59: 291-298.

[67] Kubes P, Payne D, Woodman RC. Molecular mechanisms of  leukocyte recruitment in postischemic liver microcirculation.  Am J Physiol Gastrointest Liver Physiol 2002; 283:  G139-G147.

[68] Yadav SS, Howell DN, Steeber DA, Harland RC, Tedder TFClavien PA. P-Selectin mediates reperfusion injury through  neutrophil and platelet sequestration in the warm ischemic  mouse liver. Hepatology 1999; 29: 1494-1502.

[69] Khandoga A, Biberthaler P, Messmer K, Krombach F. Platelet-endothelial cell interactions during hepatic ischemia-reperfusion in vivo: a systematic analysis. Microvasc Res  2003; 65: 71-77.

[70] van Golen RF, Stevens KM, Colarusso P, Jaeschke H, Heger  M. Platelet aggregation but not activation and degranulation  during the acute post-ischemic reperfusion phase in livers with  no underlying disease. J Clin Transl Res 2015; 1: 107-115.

[71] Jaeschke H, Smith CW. Mechanisms of neutrophil-induced  parenchymal cell injury. J Leukoc Biol 1997; 61: 647-653.

[72] Entman ML, Youker K, Shoji T, Kukielka G, Shappell SB,  Taylor AA, Smith CW. Neutrophil induced oxidative injury of  cardiac myocytes. A compartmented system requiring  CD11b/CD18-ICAM-1 adherence. J Clin Invest 1992; 90:  1335-1345.

[73] Diamond MS, Staunton DE, de Fougerolles AR, Stacker SA,  Garcia-Aguilar J, Hibbs ML, Springer TA. ICAM-1 (CD54): a  counter-receptor for Mac-1 (CD11b/CD18). J Cell Biol 1990;  111: 3129-3139.

[74] Nagendra AR, Mickelson JK, Smith CW. CD18 integrin and  CD54-dependent neutrophil adhesion to cytokine-stimulated  human hepatocytes. Am J Physiol 1997; 272: G408-G416.

[75] Weiss SJ. Tissue destruction by neutrophils. N Engl J Med 1989; 320: 365-376.

[76] Xu H, Gonzalo JA, St Pierre Y, Williams IR, Kupper TS, Cotran RS, Springer TA, Gutierrez-Ramos JC. Leukocytosis and  resistance to septic shock in intercellular adhesion molecule  1-deficient mice. J Exp Med 1994; 180: 95-109.

[77] Farhood A, McGuire GM, Manning AM, Miyasaka M, Smith  CW, Jaeschke H. Intercellular adhesion molecule 1 (ICAM-1)  expression and its role in neutrophil-induced ischemia- reperfusion injury in rat liver. J Leukoc Biol 1995; 57: 368-374.

[78] Gujral JS, Liu J, Farhood A, Hinson JA, Jaeschke H. Functional importance of ICAM-1 in the mechanism of neutrophil-induced liver injury in bile duct-ligated mice. Am J Physiol Gastrointest Liver Physiol 2004; 286: G499-G507.

[79] Zimmerman GA1, McIntyre TM. Neutrophil adherence to  human endothelium in vitro occurs by CDw18 (Mo1, MAC- 1/LFA-1/GP 150, 95) glycoprotein-dependent and–independent mechanisms. J Clin Invest 1988; 81: 531-537.

[80] Lehnert M, Arteel GE, Smutney OM, Conzelmann LO, Zhong  Z, Thurman RG, Lemasters JJ. Dependence of liver injury after hemorrhage/resuscitation in mice on NADPH oxidase-derived superoxide. Shock 2003; 19: 345-351.

[81] Gujral JS, Hinson JA, Jaeschke H. Chlorotyrosine protein  adducts are reliable biomarkers of neutrophil-induced cytotoxicity in vivo. Comp Hepatol 2004; 3 Suppl 1: S48.

[82] Kato Y. Neutrophil myeloperoxidase and its substrates: formation of specific markers and reactive compounds during inflammation. J Clin Biochem Nutr 2016; 58: 99-104.

[83] Hazell LJ, Arnold L, Flowers D, Waeg G, Malle E, Stocker R.  Presence of hypochlorite-modified proteins in human atherosclerotic lesions. J Clin Invest 1996; 97: 1535-44.

[84] Gujral JS, Hinson JA, Farhood A, Jaeschke H. NADPH oxidase-derived oxidant stress is critical for neutrophil cytotoxicity during endotoxemia. Am J Physiol Gastrointest Liver  Physiol 2004; 287: G243-G252.

[85] Sandhaus RA, Turino G. Neutrophil elastase-mediated lung  disease. COPD 2013; 10 Suppl: 1: 60-3.

[86] Huebener P, Pradere JP, Hernandez C, Gwak GY, Caviglia JM,  Mu X, Loike JD, Jenkins RE, Antoine DJ, Schwabe RF. The  HMGB1/RAGE axis triggers neutrophil- mediated injury amplification following necrosis. J Clin Invest 2015; 125:  539-550. 

[87] Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann  Y, Weiss DS, Weinrauch Y, Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science 2004; 303: 1532-1535.

[88] Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z,  Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair  GD, Keys EM, Allen-Vercoe E, Devinney R, Doig CJ, Green  FH, Kubes P. Platelet TLR4 activates neutrophil extracellular  traps to ensnare bacteria in septic blood. Nat Med. 2007; 13:  463-469. 

[89] Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 2015;  349: 316-320.

[90] Ge L, Zhou X, Ji WJ, Lu RY, Zhang Y, Zhang YD, Ma  YQ, Zhao JH, Li YM. Neutrophil extracellular traps in ischemia-reperfusion injury-induced myocardial no-reflow: therapeutic potential of DNase-based reperfusion strategy. Am J  Physiol Heart Circ Physiol 2015; 308: H500-H509.

[91] Huang H, Tohme S, Al-Khafaji AB, Tai S, Loughran P, Chen L,  Wang S, Kim J, Billiar T, Wang Y, Tsung A. Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury.  Hepatology 2015; 62: 600-614.

[92] Jaeschke H, Hasegawa T. Role of neutrophils in acute inflammatory liver injury. Liver Int 2006; 26: 912-9.

[93] Godfrey DI, Hammond KJ, Poulton LD, Smyth MJ, Baxter  AG. NKT cells: facts, functions and fallacies. Immunol Today 2000; 21: 573–583.

[94] Swain MG. Hepatic NKT cells: friend or foe? Clin Sci (Lond) 2008; 114: 457-466.

[95] Shimoda S, Harada K, Niiro H, Shirabe K, Taketomi A,  Maehara Y, Tsuneyama K, Nakanuma Y, Leung P, Ansari  AA, Gershwin ME, Akashi K. Interaction between Toll-like  receptors and natural killer cells in the destruction of bile ducts  in primary biliary cirrhosis. Hepatology 2011; 53: 1270-1281.

[96] Liu ZX, Govindarajan S, Kaplowitz N. Innate immune system  plays a critical role in determining the progression and severity  of acetaminophen hepatotoxicity. Gastroenterology 2004; 127:  1760-1774.

[97] Feng M, Li G, Qian X, Fan Y, Huang X, Zhang F, Lu L.  IL-17A-producing NK cells were implicated in liver injury  induced by ischemia and reperfusion. Int Immunopharmacol 2012; 13: 135-140.

[98] Downs I, Aw TY, Liu J, Adegboyega P, Ajuebor MN.  Vα14iNKT cell deficiency prevents acetaminophen-induced  acute liver failure by enhancing hepatic glutathione and altering APAP metabolism. Biochem Biophys Res Commun 2012;  428: 245-251.

[99] Martin-Murphy BV, Kominsky DJ, Orlicky DJ, Donohue TM  Jr, Ju C. Increased susceptibility of natural killer T-cell-deficient mice to acetaminophen-induced liver injury. Hepatology 2013; 57: 1575-1584.

[100] Plitas G, Burt BM, Stableford JA, Nguyen HM, Welles AP,  DeMatteo RP. Dendritic cells are required for effective  cross-presentation in the murine liver. Hepatology 2008; 47:  1343-1351.

[101] Connolly MK, Ayo D, Malhotra A, Hackman M, Bedrosian AS,Ibrahim J, Cieza-Rubio NE, Nguyen AH, Henning  JR, Dorvil-Castro M, Pachter HL, Miller G. Dendritic cell depletion exacerbates acetaminophen hepatotoxicity. Hepatology 2011; 54: 959-968.

[102] Jaeschke H. Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning. Am J Physiol  Gastrointest Liver Physiol 2003; 284: G15-26.

[103] van Golen RF, Reiniers MJ, Olthof PB, van Gulik TM, Heger  M. Sterile inflammation in hepatic ischemia/reperfusion injury:  present concepts and potential therapeutics. J Gastroenterol  Hepatol 2013; 28: 394-400.

[104] Zhai Y, Petrowsky H, Hong JC, Busuttil RW, Kupiec-Weglinski JW. Ischaemia-reperfusion injury in liver transplantation--from bench to bedside. Nat Rev Gastroenterol Hepatol  2013; 10: 79-89.

[105] Herman B, Gores GJ, Nieminen AL, Kawanishi T, Harman A,  Lemasters JJ. Calcium and pH in anoxic and toxic injury. Crit  Rev Toxicol 1990; 21: 127-48.

[106] Kehrer JP, Jones DP, Lemasters JJ, Farber JL, Jaeschke H.  Mechanisms of hypoxic cell injury. Summary of the symposium presented at the 1990 annual meeting of the Society of  Toxicology. Toxicol Appl Pharmacol 1990; 106: 165-78.

[107] Anundi I, King J, Owen DA, Schneider H, Lemasters JJ,  Thurman RG. Fructose prevents hypoxic cell death in liver. Am J Physiol 1987; 253: G390-G396.

[108] Jaeschke H, Smith CV, Mitchell JR. Hypoxic damage generates reactive oxygen species in isolated perfused rat liver. Biochem Biophys Res Commun 1988; 150: 568-574.

[109] Jaeschke H, Smith CV, Mitchell JR. Reactive oxygen species  during ischemia-reflow injury in isolated perfused rat liver. J  Clin Invest 1988; 81: 1240-1246.

[110] Jaeschke H, Mitchell JR. Mitochondria and xanthine oxidase  both generate reactive oxygen species in isolated perfused rat  liver after hypoxic injury. Biochem Biophys Res Commun  1989; 160: 140-147.

[111] Horvatits T, Trauner M, Fuhrmann V. Hypoxic liver injury and  cholestasis in critically ill patients. Curr Opin Crit Care 2013;  19: 128-132.

[112] Weemhoff JL, Woolbright BL, Jenkins RE, McGill MR,  Sharpe MR, Olson JC, Antoine DJ, Curry SC, Jaeschke H.  Plasma biomarkers to study mechanisms ozf liver injury in patients with hypoxic hepatitis. Liver Int 2017;37:377-384.

[113] Jaeschke H, Lemasters JJ. Apoptosis versus oncotic necrosis in  hepatic ischemia/reperfusion injury. Gastroenterology 2003;  125: 1246-1257.

[114] Hu J, Ramshesh VK, McGill MR, Jaeschke H, Lemasters JJ.  Low Dose Acetaminophen Induces Reversible Mitochondrial  Dysfunction Associated with Transient c-Jun N-Terminal Kinase Activation in Mouse Liver. Toxicol Sci 2016; 150: 204- 215.

[115] Tsung A, Sahai R, Tanaka H, Nakao A, Fink MP, Lotze MT,  Yang H, Li J, Tracey KJ, Geller DA, Billiar TR. The nuclear  factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med 2005; 201: 1135-1143.

[116] Yang M, Antoine DJ, Weemhoff JL, Jenkins RE, Farhood A,  Park BK, Jaeschke H. Biomarkers distinguish apoptotic and  necrotic cell death during hepatic ischemia/reperfusion injury  in mice. Liver Transpl 2014a; 20: 1372-1382.

[117] Nace GW, Huang H, Klune JR, Eid RE, Rosborough BR,  Korff S, Li S, Shapiro RA, Stolz DB, Sodhi CP, Hackam  DJ, Geller DA, Billiar TR, Tsung A. Cellular-specific role of  toll-like receptor 4 in hepatic ischemia-reperfusion injury inmice. Hepatology 2013; 58: 374-387.

[118] Jaeschke H, Bautista AP, Spolarics Z, Spitzer JJ. Superoxide  generation by Kupffer cells and priming of neutrophils during  reperfusion after hepatic ischemia. Free Radic Res Commun  1991; 15: 277-284.

[119] Colletti LM, Remick DG, Burtch GD, Kunkel SL, Strieter RM,  Campbell DA Jr. Role of tumor necrosis factor-alpha in the  pathophysiologic alterations after hepatic ischemia/reperfusion  injury in the rat. J Clin Invest 1990; 85: 1936-1943

[120] Lentsch AB, Yoshidome H, Cheadle WG, Miller FN, Edwards  MJ. Chemokine involvement in hepatic ischemia/reperfusion  injury in mice: roles for macrophage inflammatory protein-2  and KC. Hepatology 1998; 27: 1172-1177.

[121] Kamo N, Ke B, Ghaffari AA, Shen XD, Busuttil RW, Cheng  G, Kupiec-Weglinski JW. ASC/caspase-1/IL-1β signaling  triggers inflammatory responses by promoting HMGB1 induction in liver ischemia/reperfusion injury. Hepatology 2013; 58:  351-362.

[122] Huang H, Chen HW, Evankovich J, Yan W, Rosborough BR,  Nace GW, Ding Q, Loughran P, Beer-Stolz D, Billiar  TR, Esmon CT, Tsung A. Histones activate the NLRP3 inflammasome in Kupffer cells during sterile inflammatory liver  injury. J Immunol 2013; 191: 2665-2679. 

[123] Kukan M, Vajdová K, Horecký J, Nagyová A, Mehendale HM,  Trnovec T. Effects of blockade of Kupffer cells by gadolinium  chloride on hepatobiliary function in cold ischemia-reperfusion injury of rat liver. Hepatology 1997; 26:  1250-1257.

[124] Bilzer M, Paumgartner G, Gerbes AL. Glutathione protects the  rat liver against reperfusion injury after hypothermic preservation. Gastroenterology 1999; 117: 200-210.

[125] Liu P, Fisher MA, Farhood A, Smith CW, Jaeschke H. Beneficial effects of extracellular glutathione against endotoxin-induced liver injury during ischemia and reperfusion. Circ  Shock 1994; 43: 64-70.

[126] Nakano H, Nagasaki H, Barama A, Boudjema K, Jaeck D,  Kumada K, Tatsuno M, Baek Y, Kitamura N, Suzuki  T, Yamaguchi M. The effects of N-acetylcysteine and anti-intercellular adhesion molecule-1 monoclonal antibody  against ischemia-reperfusion injury of the rat steatotic liver  produced by a choline-methionine-deficient diet. Hepatology 1997; 26: 670-678.

[127] Chu MJ, Vather R, Hickey AJ, Phillips AR, Bartlett AS. Impact of ischaemic preconditioning on experimental steatotic  livers following hepatic ischaemia-reperfusion injury: a systematic review. HPB (Oxford) 2015; 17: 1-10.

[128] Jaeschke H, Bautista AP, Spolarics Z, Spitzer JJ. Superoxide  generation by neutrophils and Kupffer cells during in vivo  reperfusion after hepatic ischemia in rats. J Leukoc Biol 1992;  52: 377-382.

[129] Okaya T, Lentsch AB. Cytokine cascades and the hepatic inflammatory response to ischemia and reperfusion. J Invest  Surg 2003; 16: 141-147.

[130] Jaeschke H, Farhood A, Bautista AP, Spolarics Z, Spitzer JJ,  Smith CW. Functional inactivation of neutrophils with a  Mac-1 (CD11b/CD18) monoclonal antibody protects against  ischemia-reperfusion injury in rat liver. Hepatology 1993; 17:  915-923.

[131] Bamboat ZM, Balachandran VP, Ocuin LM, Obaid H, Plitas G,  DeMatteo RP. Toll-like receptor 9 inhibition confers protection  from liver ischemia-reperfusion injury. Hepatology 2010; 51:  621-632.

[132] Zwacka RM, Zhang Y, Halldorson J, Schlossberg H, Dudus L,  Engelhardt JF. CD4(+) T-lymphocytes mediate ischemia/reperfusion-induced inflammatory responses in mouse  liver. J Clin Invest 1997; 100: 279-289.

[133] Caldwell CC, Okaya T, Martignoni A, Husted T, Schuster R,  Lentsch AB. Divergent functions of CD4+ T lymphocytes in  acute liver inflammation and injury after ischemia-reperfusion.  Am J Physiol Gastrointest Liver Physiol 2005; 289:  G969-G976. 

[134] Loi P, Yuan Q, Torres D, Delbauve S, Laute MA, Lalmand MC,  Pétein M, Goriely S, Goldman M, Flamand V. Interferon regulatory factor 3 deficiency leads to interleukin-17-mediated  liver ischemia-reperfusion injury. Hepatology 2013; 57:  351-361. 

[135] Wilson GC, Freeman CM, Kuethe JW, Quillin RC 3rd, Nojima  H, Schuster R, Blanchard J, Edwards MJ, Caldwell  CC, Lentsch AB. CXC chemokine receptor-4 signaling limits  hepatocyte proliferation after hepatic ischemia-reperfusion in  mice. Am J Physiol Gastrointest Liver Physiol 2015; 308:  G702-G709.

[136] Sakai N, Van Sweringen HL, Belizaire RM, Quillin RC,  Schuster R, Blanchard J, Burns JM, Tevar AD, Edwards MJ,  Lentsch AB. Interleukin-37 reduces liver inflammatory injury  via effects on hepatocytes and non-parenchymal cells. J Gastroenterol Hepatol 2012; 27: 1609-16.

[137] Sakai N, Van Sweringen HL, Quillin RC, Schuster R,  Blanchard J, Burns JM, Tevar AD, Edwards MJ, Lentsch AB.  Interleukin-33 is hepatoprotective during liver ischemia/reperfusion in mice. Hepatology 2012; 56: 1468-1478. 

[138] Lentsch AB, Yoshidome H, Warner RL, Ward PA, Edwards MJ.  Secretory leukocyte protease inhibitor in mice regulates local  and remote organ inflammatory injury induced by hepatic ischemia/reperfusion. Gastroenterology 1999; 117: 953-961.

[139] Yoshidome H, Kato A, Edwards MJ, Lentsch AB. Interleukin-10 suppresses hepatic ischemia/reperfusion injury in mice:  implications of a central role for nuclear factor kappaB. Hepatology 1999; 30: 203-208.

[140] Kato A, Yoshidome H, Edwards MJ, Lentsch AB. Regulation  of liver inflammatory injury by signal transducer and activator  of transcription-6. Am J Pathol 2000; 157: 297-302.

[141] Camargo CA Jr, Madden JF, Gao W, Selvan RS, Clavien PA.  Interleukin-6 protects liver against warm ischemia/reperfusion  injury and promotes hepatocyte proliferation in the rodent.  Hepatology 1997; 26: 1513-1520.

[142] Schmidt SC, Hamann S, Langrehr JM, Höflich C, Mittler J,  Jacob D, Neuhaus P. Preoperative high-dose steroid administration attenuates the surgical stress response following liver  resection: results of a prospective randomized study. J  Hepatobiliary Pancreat Surg 2007; 14: 484-492.

[143] Saito C, Zwingmann C, Jaeschke H. Novel mechanisms of  protection against acetaminophen hepatotoxicity in mice by  glutathione and N-acetylcysteine. Hepatology 2010b; 51:  246-254.

[144] Smilkstein MJ, Knapp GL, Kulig KW, Rumack BH. Efficacy  of oral N-acetylcysteine in the treatment of acetaminophen  overdose. Analysis of the national multicenter study (1976 to  1985). N Engl J Med 1988; 319: 1557-1562.

[145] Ishida Y, Kondo T, Kimura A, Tsuneyama K, Takayasu T,  Mukaida N. Opposite roles of neutrophils and macrophages in  the pathogenesis of acetaminophen-induced acute liver injury.  Eur J Immunol 2006; 36: 1028-1038.

[146] Laskin DL, Gardner CR, Price VF, Jollow DJ. Modulation ofmacrophage functioning abrogates the acute hepatotoxicity of acetaminophen. Hepatology 1995; 21: 1045-1050.

[147] Liu ZX, Han D, Gunawan B, Kaplowitz N. Neutrophil depletion protects against murine acetaminophen hepatotoxicity. Hepatology 2006; 43: 1220-1230.

[148] Jaeschke H, Williams CD, Ramachandran A, Bajt ML. Acetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity. Liver Int 2012; 32: 8-20.

[149] Mitchell JR, Jollow DJ, Potter WZ, Gillette JR, Brodie BB.  Acetaminophen-induced hepatic necrosis. IV. Protective role  of glutathione. J Pharmacol Exp Ther 1973 Oct; 187: 211- 217.

[150] Hjelle JJ, Klaassen CD. Glucuronidation and biliary excretion  of acetaminophen in rats. J Pharmacol Exp Ther 1984; 228:  407-413.

[151] Xie Y, McGill MR, Cook SF, Sharpe MR, Winefield RD, Wilkins DG, Rollins DE, Jaeschke H. Time course of acetaminophen-protein adducts and acetaminophen metabolites in circulation of overdose patients and in HepaRG cells. Xenobiotica  2015; 45: 921-929.

[152] Dahlin DC, Miwa GT, Lu AY, Nelson SD. N-acetyl-p- benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci USA 1984; 81:  1327-1331.

[153] Jaeschke H, McGill MR, Ramachandran A. Oxidant stress,  mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity.  Drug Metab Rev 2012; 44: 88-106.

[154] Hanawa N, Shinohara M, Saberi B, Gaarde WA, Han D,  Kaplowitz N. Role of JNK translocation to mitochondria  leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury. J Biol Chem 2008; 283:  13565-13577.

[155] Sharma M, Gadang V, Jaeschke A. Critical role for mixedlineage kinase 3 in acetaminophen-induced hepatotoxicity. Mol Pharmacol 2012; 82: 1001-1007.

[156] Xie Y, Ramachandran A, Breckenridge DG, Liles JT, Lebofsky M, Farhood A, Jaeschke H. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury. Toxicol Appl Pharmacol 2015; 286: 1-9.

[157] Win S, Than TA, Min RW, Aghajan M, Kaplowitz N. c-Jun  N-terminal kinase mediates mouse liver injury through a novel  Sab (SH3BP5)-dependent pathway leading to inactivation of  intramitochondrial Src. Hepatology 2016; 63: 1987-2003.

[158] Du K, Xie Y, McGill MR, Jaeschke H. Pathophysiological  significance of c-jun N-terminal kinase in acetaminophen  hepatotoxicity. Expert Opin Drug Metab Toxicol 2015; 11:  1769-1779.

[159] Enomoto A, Itoh K, Nagayoshi E, Haruta J, Kimura T,  O'Connor T, Harada T, Yamamoto M. High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated  with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes. Toxicol Sci 2001; 59: 169- 177.

[160] Okawa H, Motohashi H, Kobayashi A, Aburatani H, Kensler  TW, Yamamoto M. Hepatocyte-specific deletion of the keap1  gene activates Nrf2 and confers potent resistance against acute  drug toxicity. Biochem Biophys Res Commun 2006; 339:  79-88.

[161] El-Hassan H, Anwar K, Macanas-Pirard P, Crabtree M,  Chow SC, Johnson VL, Lee PC, Hinton RH, Price SC, Kass  GE. Involvement of mitochondria in acetaminophen-inducedapoptosis and hepatic injury: roles of cytochrome c, Bax, Bid,  and caspases. Toxicol Appl Pharmacol 2003; 191: 118-129.

[162] Bajt ML, Farhood A, Lemasters JJ, Jaeschke H. Mitochondrial  bax translocation accelerates DNA fragmentation and cell necrosis in a murine model of acetaminophen hepatotoxicity. J  Pharmacol Exp Ther 2008; 324: 8-14.

[163] Ramachandran A, McGill MR, Xie Y, Ni HM, Ding WX,  Jaeschke H. Receptor interacting protein kinase 3 is a critical  early mediator of acetaminophen-induced hepatocyte necrosis  in mice. Hepatology 2013; 58: 2099-2108.

[164] Zhang YF, He W, Zhang C, Liu XJ, Lu Y, Wang H, Zhang ZH,  Chen X, Xu DX. Role of receptor interacting protein (RIP)1  on apoptosis-inducing factor-mediated necroptosis during acetaminophen-evoked acute liver failure in mice. Toxicol Lett 2014; 225: 445-453.

[165] Dara L, Johnson H, Suda J, Win S, Gaarde W, Han D,  Kaplowitz N. Receptor interacting protein kinase 1 mediates  murine acetaminophen toxicity independent of the necrosome  and not through necroptosis. Hepatology 2015; 62: 1847-1857.

[166] Zhang J, Yang Y, He W, Sun L. Necrosome core machinery:  MLKL. Cell Mol Life Sci 2016; 73: 2153-2163.

[167] Günther C, He GW, Kremer AE, Murphy JM, Petrie EJ,  Amann K, Vandenabeele P, Linkermann A, Poremba  C, Schleicher U, Dewitz C, Krautwald S, Neurath MF, Becker  C, Wirtz S. The pseudokinase MLKL mediates programmed  hepatocellular necrosis independently of RIPK3 during hepatitis. J Clin Invest 2016; 126: 4346-4360

[168] Kon K, Kim JS, Jaeschke H, Lemasters JJ. Mitochondrial  permeability transition in acetaminophen-induced necrosis and  apoptosis of cultured mouse hepatocytes. Hepatology 2004; 40:  1170-1179.

[169] Gunawan BK, Liu ZX, Han D, Hanawa N, Gaarde WA,  Kaplowitz N. c-Jun N-terminal kinase plays a major role in  murineacetaminophen hepatotoxicity. Gastroenterology 2006;  131: 165-178.

[170] Saito C, Lemasters JJ, Jaeschke H. c-Jun N-terminal kinase  modulates oxidant stress and peroxynitrite formation independent of inducible nitric oxide synthase in acetaminophen  hepatotoxicity. Toxicol Appl Pharmacol 2010; 246: 8-17.

[171] Williams CD, Koerner MR, Lampe JN, Farhood A, Jaeschke H. Mouse strain-dependent caspase activation during acetaminophen hepatotoxicity does not result in apoptosis or modulation of inflammation. Toxicol Appl Pharmacol 2011; 257:  449-458.

[172] Bajt ML, Cover C, Lemasters JJ, Jaeschke H. Nuclear translocation of endonuclease G and apoptosis-inducing factor during  acetaminophen-induced liver cell injury. Toxicol Sci 2006; 94:  217-225.

[173] Bajt ML, Ramachandran A, Yan HM, Lebofsky M, Farhood A,  Lemasters JJ, Jaeschke H. Apoptosis-inducing factor modulates mitochondrial oxidant stress in acetaminophen hepatotoxicity. Toxicol Sci 2011; 122: 598-605. 

[174] Ni HM, Bockus A, Boggess N, Jaeschke H, Ding WX. Activation of autophagy protects against acetaminophen-induced  hepatotoxicity. Hepatology 2012; 55: 222-232. 

[175] Williams JA, Ni HM, Haynes A, Manley S, Li Y, Jaeschke H, Ding WX. Chronic deletion and acute knockdown of parkin  have differential responses to acetaminophen-induced mitophagy and liver injury in mice. J Biol Chem 2015; 290:  10934- 10946.

[176] Ni HM, McGill MR, Chao X, Du K, Williams JA, Xie Y,  Jaeschke H, Ding WX. Removal of acetaminophen proteinadducts by autophagy protects against acetaminophen-induced  liver injury in mice. J Hepatol 2016; 65: 354-362. 

[177] Ni HM, Williams JA, Jaeschke H, Ding WX. Zonated induction of autophagy and mitochondrial spheroids limits acetaminophen-induced necrosis in the liver. Redox Biol 2013; 1:  427-432.

[178] Michael SL, Pumford NR, Mayeux PR, Niesman MR, Hinson JA. Pretreatment of mice with macrophage inactivators decreases acetaminophen hepatotoxicity and the formation of  reactive oxygen and nitrogen species. Hepatology 1999; 30:  186-195.

[179] Imaeda AB, Watanabe A, Sohail MA, Mahmood S, Mohamadnejad M, Sutterwala FS, Flavell RA, Mehal WZ. Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9  and the Nalp3 inflammasome. J Clin Invest 2009; 119:  305-314. 

[180] Cai C, Huang H, Whelan S, Liu L, Kautza B, Luciano J, Wang  G, Chen G, Stratimirovic S, Tsung A, Billiar TR, Zuckerbraun  BS. Benzyl alcohol attenuates acetaminophen-induced acute  liver injury in a Toll-like receptor-4-dependent pattern in mice.  Hepatology 2014; 60: 990-1002. 

[181] Marques PE, Amaral SS, Pires DA, Nogueira LL, Soriani FM,  Lima BH, Lopes GA, Russo RC, Avila TV, Melgaço  JG, Oliveira AG, Pinto MA, Lima CX, De Paula AM, Cara  DC, Leite MF, Teixeira MM, Menezes GB. Chemokines and  mitochondrial products activate neutrophils to amplify organ  injury during mouse acute liver failure. Hepatology 2012; 56:  1971-1982.

[182] Marques PE, Oliveira AG, Pereira RV, David BA, Gomides LF,  Saraiva AM, Pires DA, Novaes JT, Patricio DO, Cisalpino  D, Menezes-Garcia Z, Leevy WM, Chapman SE, Mahecha  G, Marques RE, Guabiraba R, Martins VP, Souza DG, Mansur  DS, Teixeira MM, Leite MF, Menezes GB. Hepatic DNA deposition drives drug-induced liver injury and inflammation in  mice. Hepatology 2015; 61: 348-360. 

[183] Masson MJ, Carpenter LD, Graf ML, Pohl LR. Pathogenic  role of natural killer T and natural killer cells inacetaminophen-induced liver injury in mice is dependent on the presence  of dimethyl sulfoxide. Hepatology 2008; 48: 889-897. 

[184] Cover C, Liu J, Farhood A, Malle E, Waalkes MP, Bajt ML,  Jaeschke H. Pathophysiological role of the acute inflammatory  response during acetaminophen hepatotoxicity. Toxicol Appl  Pharmacol 2006; 216: 98-107.

[185] Kodali P, Wu P, Lahiji PA, Brown EJ, Maher JJ. ANIT toxicity  toward mouse hepatocytes in vivo is mediated primarily by  neutrophils via CD18 Am J Physiol Gastrointest Liver Physiol  2006; 291: G355-63.

[186] Jaeschke H, Liu J. Neutrophil depletion protects against murine acetaminophen hepatotoxicity: another perspective. Hepatology 2007; 45: 1588-1589.

[187] Williams CD, Bajt ML, Farhood A, Jaeschke H. Acetaminophen-induced hepatic neutrophil accumulation and inflammatory liver injury in CD18-deficient mice. Liver Int 2010; 30:  1280-1292.

[188] Williams CD, Bajt ML, Sharpe MR, McGill MR, Farhood A,  Jaeschke H. Neutrophil activation during acetaminophen  hepatotoxicity and repair in mice and humans. Toxicol Appl  Pharmacol 2014; 275: 122-133.

[189] Hu B, Colletti LM. CXC receptor-2 knockout genotype increases X-linked inhibitor of apoptosis protein and protects  mice from acetaminophen hepatotoxicity. Hepatology 2010;  52: 691-702.

[190] Gujral JS, Knight TR, Farhood A, Bajt ML, Jaeschke H. Mode  of cell death after acetaminophen overdose in mice: apoptosis  or oncotic necrosis? Toxicol Sci 2002; 67: 322- 328.

[191] Schulze-Osthoff K, Bantel H. Necrosis versus apoptosis in  acetaminophen-induced hepatotoxicity. Hepatology 2011; 53:  1070.

[192] Kono H, Chen CJ, Ontiveros F, Rock KL. Uric acid promotes  an acute inflammatory response to sterile cell death in mice. J  Clin Invest 2010; 120: 1939-1949.

[193] Kataoka H, Kono H, Patel Z, Kimura Y, Rock KL. Evaluation  of the contribution of multiple DAMPs and DAMP receptors  in cell death-induced sterile inflammatory responses. PLoS  One 2014; 9: e104741.

[194] Ito Y, Bethea NW, Abril ER, McCuskey RS. Early hepatic  microvascular injury in response to acetaminophen toxicity.  Microcirculation 2003; 10: 391-400.

[195] Ju C, Reilly TP, Bourdi M, Radonovich MF, Brady JN, George  JW, Pohl LR. Protective role of Kupffer cells in acetaminophen-induced hepatic injury in mice. Chem Res Toxicol 2002;  15: 1504-1513.

[196] Knight TR, Jaeschke H. Peroxynitrite formation and sinusoidal  endothelial cell injury during acetaminophen-induced hepatotoxicity in mice. Comp Hepatol 2004 Jan 14; 3 Suppl 1: S46.

[197] Gehring S, Dickson EM, San Martin ME, van Rooijen N, Papa  EF, Harty MW, Tracy TF Jr, Gregory SH. Kupffer cells abrogate cholestatic liver injury in mice. Gastroenterology 2006;  130: 810-822.

[198] James LP, McCullough SS, Knight TR, Jaeschke H, Hinson JA.  Acetaminophen toxicity in mice lacking NADPH oxidase activity: role of peroxynitrite formation and mitochondrial oxidant stress. Free Radic Res 2003; 37: 1289-1297.

[199] Hogaboam CM, Bone-Larson CL, Steinhauser ML, Matsukawa A, Gosling J, Boring L, Charo IF, Simpson KJ, Lukacs  NW, Kunkel SL. Exaggerated hepatic injury due to acetaminophen challenge in mice lacking C-C chemokine receptor  2. Am J Pathol 2000; 156: 1245-1252.

[200] Holt MP, Yin H, Ju C. Exacerbation of acetaminophen- induced disturbances of liver sinusoidal endothelial cells in the  absence of Kupffer cells in mice.Toxicol Lett 2010; 194: 34- 41.

[201] You Q, Holt M, Yin H, Li G, Hu CJ, Ju C. Role of hepatic  resident and infiltrating macrophages in liver repair after acute  injury. Biochem Pharmacol 2013; 86: 836-843.

[202] Antoniades CG, Berry PA, Davies ET, Hussain M, Bernal W,  Vergani D, Wendon J. Reduced monocyte HLA-DR expression:  a novel biomarker of disease severity and outcome in acetaminophen-induced acute liver failure. Hepatology 2006; 44:  34-43.

[203] Antoniades CG, Khamri W, Abeles RD, Taams LS, Triantafyllou E, Possamai LA, Bernsmeier C, Mitry  RR, O'Brien A, Gilroy D, Goldin R, Heneghan M, Heaton  N, Jassem W, Bernal W, Vergani D, Ma Y, Quaglia A, Wendon  J, Thursz M. Secretory leukocyte protease inhibitor: a pivotal  mediator of anti-inflammatory responses in acetaminophen-induced acute liver failure. Hepatology 2014; 59:  1564-1576.

[204] Antoniades CG, Quaglia A, Taams LS, Mitry RR, Hussain M,  Abeles R, Possamai LA, Bruce M, McPhail M, Starling  C, Wagner B, Barnardo A, Pomplun S, Auzinger G, Bernal  W, Heaton N, Vergani D, Thursz MR, Wendon J. Source and  characterization of hepatic macrophages in acetaminophen-induced acute liver failure in humans. Hepatology 2012;56: 735-746. 

[205] Amaral SS, Oliveira AG, Marques PE, Quintão JL, Pires DA,  Resende RR, Sousa BR, Melgaço JG, Pinto MA, Russo  RC, Gomes AK, Andrade LM, Zanin RF, Pereira RV, Bonorino  C, Soriani FM, Lima CX, Cara DC, Teixeira MM, Leite  MF, Menezes GB. Altered responsiveness to extracellular ATP  enhances acetaminophen hepatotoxicity. Cell Commun Signal 2013; 11: 10.

[206] Williams CD, Farhood A, Jaeschke H. Role of caspase-1 and  interleukin-1beta in acetaminophen-induced hepatic inflammation and liver injury. Toxicol Appl Pharmacol 2010; 247:  169-178.

[207] Williams CD, Antoine DJ, Shaw PJ, Benson C, Farhood A,  Williams DP, Kanneganti TD, Park BK, Jaeschke H. Role of  the Nalp3 inflammasome in acetaminophen-induced sterile inflammation and liver injury. Toxicol Appl Pharmacol 2011;  252: 289-297.

[208] Xie Y, Williams CD, McGill MR, Lebofsky M, Ramachandran  A, Jaeschke H. Purinergic receptor antagonist A438079 protects against acetaminophen-induced liver injury by inhibiting  p450 isoenzymes, not by inflammasome activation. Toxicol  Sci 2013; 131: 325-335.

[209] Xie Y, Woolbright BL, Kos M, McGill MR, Dorko K, Kumer  SC, Schmitt TM, Jaeschke H. Lack of Direct Cytotoxicity of  Extracellular ATP against Hepatocytes: Role in the Mechanism  of Acetaminophen Hepatotoxicity. J Clin Transl Res 2015; 1:  100-106.

[210] Bourdi M, Masubuchi Y, Reilly TP, Amouzadeh HR, Martin  JL, George JW, Shah AG, Pohl LR. Protection against acetaminophen-induced liver injury and lethality by interleukin 10:  role of inducible nitric oxide synthase. Hepatology 2002; 35:  289-298.

[211] Knight TR, Ho YS, Farhood A, Jaeschke H. Peroxynitrite is a  critical mediator of acetaminophen hepatotoxicity in murine  livers: protection by glutathione. J Pharmacol Exp Ther 2002;  303: 468-475.

[212] Cover C, Mansouri A, Knight TR, Bajt ML, Lemasters JJ,  Pessayre D, Jaeschke H. Peroxynitrite-induced mitochondrial  and endonuclease-mediated nuclear DNA damage in acetaminophen hepatotoxicity. J Pharmacol Exp Ther 2005; 315:  879-887.

[213] James LP, Lamps LW, McCullough S, Hinson JA. Interleukin  6 and hepatocyte regeneration in acetaminophen toxicity in the  mouse. Biochem Biophys Res Commun 2003a; 309: 857-863.

[214] Ryan PM, Bourdi M, Korrapati MC, Proctor WR, Vasquez RA,  Yee SB, Quinn TD, Chakraborty M, Pohl LR. Endogenous interleukin-4 regulates glutathione synthesis followingacetaminophen-induced liver injury in mice. Chem Res Toxicol 2012; 25: 83-93.

[215] Pires DA, Marques PE, Pereira RV, David BA, Gomides LF,  Dias AC, Nunes-Silva A, Pinho V, Cara DC, Vieira  LQ, Teixeira MM, Menezes GB. Interleukin-4 deficiency protects mice from acetaminophen-induced liver injury and inflammation by prevention of glutathione depletion. Inflamm  Res 2014; 63: 61-69.

[216] Levy R, Schlaeffer F, Keynan A, Nagauker O, Yaari A, Sikuler  E. Increased neutrophil function induced by bile duct ligation  in a rat model. Hepatology 1993; 17: 908-914.

[217] Van Nieuwkerk CM, Elferink RP, Groen AK, Ottenhoff R,  Tytgat GN, Dingemans KP, Van Den Bergh Weerman  MA, Offerhaus GJ. Effects of Ursodeoxycholate and cholate  feeding on liver disease in FVB mice with a disrupted mdr2 P-glycoprotein gene. Gastroenterology 1996; 111: 165-171.

[218] Spivey JR, Bronk SF, Gores GJ. Glycochenodeoxycholate-induced lethal hepatocellular injury in rat hepatocytes.  Role of ATP depletion and cytosolic free calcium. J Clin Invest 1993; 92: 17-24.

[219] Galle PR, Theilmann L, Raedsch R, Otto G, Stiehl A. Ursodeoxycholate reduces hepatotoxicity of bile salts in primary  human hepatocytes. Hepatology 1990; 12: 486-491.

[220] Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa  M, Fukusumi S, Habata Y, Itoh T, Shintani Y, Hinuma  S, Fujisawa Y, Fujino M. A G protein-coupled receptor responsive to bile acids. J Biol Chem 2003; 278: 9435-9440. 

[221] Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 1999; 3: 543-553. [222] Patel T, Bronk SF, Gores GJ. Increases of intracellular magnesium promote glycodeoxycholate-induced apoptosis in rat  hepatocytes. J Clin Invest 1994; 94: 2183-92.

[223] Tamaki N, Hatano E, Taura K, Tada M, Kodama Y, Nitta T,  Iwaisako K, Seo S, Nakajima A, Ikai I, Uemoto S. CHOP deficiency attenuates cholestasis-induced liver fibrosis by reduction of hepatocyte injury. Am J Physiol Gastrointest Liver  Physiol 2008; 294: G498-G505.

[224] Woolbright BL, Li F, Xie Y, Farhood A, Fickert P, Trauner M,  Jaeschke H. Lithocholic acid feeding results in direct hepato-toxicity independent of neutrophil function in mice. Toxicol  Lett 2014; 228: 56-66.

[225] Neale G, Lewis B, Weaver V, Panveliwalla D. Serum bile acids in liver disease. Gut 1971; 12: 145-152.

[226] Zhang Y, Hong JY, Rockwell CE, Copple BL, Jaeschke H,  Klaassen CD. Effect of bile duct ligation on bile acid composition in mouse serum and liver. Liver Int 2012; 32: 58-69.

[227] Woolbright BL, McGill MR, Yan H, Jaeschke H. Bile Acid-Induced Toxicity in HepaRG Cells Recapitulates the Response in Primary Human Hepatocytes. Basic Clin Pharmacol  Toxicol 2016; 118: 160-167.

[228] Yang M, Ramachandran A, Yan HM, Woolbright BL, Copple  BL, Fickert P, Trauner M, Jaeschke H. Osteoponti

[229] Fickert P, Zollner G, Fuchsbichler A, Stumptner C, Weiglein  AH, Lammert F, Marschall HU, Tsybrovskyy O, Zatloukal K,  Denk H, Trauner M. Ursodeoxycholic acid aggravates bile infarcts in bile duct-ligated and Mdr2 knockout mice via disruption of cholangioles. Gastroenterology 2002; 123: 1238-1251.

[230] Georgiev P, Jochum W, Heinrich S, Jang JH, Nocito A, Dahm  F, Clavien PA. Characterization of time-related changes after  experimental bile duct ligation. Br J Surg 2008; 95: 646-656.

[231] Levy R, Nagauker O, Sikuler E, Leto TL, Schlaeffer F. Elevated NADPH-oxidase activity in neutrophils from bile-ductligated rats: changes in the kinetic parameters and in the oxidase cytosolic factor p47. Biochim Biophys Acta 1994; 1220:  261-265.

[232] Gujral JS, Liu J, Farhood A, Jaeschke H. Reduced oncotic  necrosis in Fas receptor-deficient C57BL/6J-lpr mice after bile duct ligation. Hepatology 2004; 40: 998-1007.

[233] Uchinami H, Seki E, Brenner DA, D’Armiento J. Loss ofMMP 13 attenuates murine hepatic injury and fibrosis during  cholestasis. Hepatology 2006; 44: 420-429.

[234] Kahraman A, Bronk SF, Cazanave S, Werneburg NW, Mott JL,  Contreras PC, Gores GJ. Matrix metalloproteinase inhibitor,  CTS-1027, attenuates liver injury and fibrosis in the bile  duct-ligated mouse. Hepatol Res 2009; 39: 805-813. 

[235] O’Brien KM, Allen KM, Rockwell CE, Towery K, Luyendyk  JP, Copple BL. IL-17A synergistically enhances bile acid-induced inflammation during obstructive cholestasis. Am J  Pathol 2013; 183: 1498-1507.

[236] Licata LA, Nguyen CT, Burga RA, Falanga V, Espat NJ, Ayala  A, Thorn M, Junghans RP, Katz SC. Biliary obstruction results  in PD-1-dependent liver T cell dysfunction and acute inflammation mediated by Th17 cells and neutrophils. J Leukoc Biol 2013; 94: 813-823.

[237] Canbay A, Higuchi H, Bronk SF, Taniai M, Sebo TJ, Gores GJ.  Fas enhances fibrogenesis in the bile duct ligated mouse: a  link between apoptosis and fibrosis. Gastroenterology 2002;  123: 1323-1330.

[238] Li M, Mennone A, Soroka CJ, Hagey LR, Ouyang X, Weinman EJ, Boyer JL. Na(+) /H(+) exchanger regulatory factor 1  knockout mice have an attenuated hepatic inflammatory response and are protected from cholestatic liver injury. Hepatology 2015; 62: 1227-1236. 

[239] Woolbright BL, Jaeschke H. Novel insight into mechanisms of  cholestatic liver injury. World J Gastroenterol 2012; 18:  4985-4993.

[240] Fickert P, Trauner M, Fuchsbichler A, Zollner G, Wagner M,  Marschall HU, Zatloukal K, Denk H. Oncosis represents the  main type of cell death in mouse models of cholestasis. J  Hepatol 2005; 42: 378-385.

[241] Kim ND, Moon JO, Slitt AL, Copple BL. Early growth response factor-1 is critical for cholestatic liver injury. Toxicol  Sci 2006; 90: 586-595.

[242] Rolo AP, Palmeira CM, Holy JM, Wallace KB. Role of mitochondrial dysfunction in combined bile acid-induced cytotoxicity: the switch between apoptosis and necrosis. Toxicol Sci 2004; 79: 196-204.

[243] Sokol RJ, Dahl R, Devereaux MW, Yerushalmi B, Kobak GE,  Gumpricht E. Human hepatic mitochondria generate reactive  oxygen species and undergo the permeability transition in response to hydrophobic bile acids. J Pediatr Gastroenterol Nutr 2005; 41: 235-243.

[244] Trottier J, Białek A, Caron P, Straka RJ, Heathcote J, Milkiewicz P, Barbier O. Metabolomic profiling of 17 bile acids in  serum from patients with primary biliary cirrhosis and primary  sclerosing cholangitis: a pilot study. Dig Liver Dis 2012; 44:  303-310.

[245] Trottier J, Białek A, Caron P, Straka RJ, Milkiewicz P, Barbier  O. Profiling circulating and urinary bile acids in patients with  biliary obstruction before and after biliary stenting. PLoS One 2011; 6: e22094

[246] Dilger K, Hohenester S, Winkler-Budenhofer U, Bastiaansen  BA, Schaap FG, Rust C, Beuers U. Effect of ursodeoxycholic  acid on bile acid profiles and intestinal detoxification machinery in primary biliary cirrhosis and health. J Hepatol 2012; 57:  133-140

Share
Back to top
Journal of Clinical and Translational Research, Electronic ISSN: 2424-810X Print ISSN: 2382-6533, Published by AccScience Publishing