Mast cells and histamine receptor-targeted adjunctive treatments for COVID-19: A literature review
With the rollout of multiple COVID-19 vaccines, adjunctive treatments for COVID-19 have received less attention. Breakthrough infections post-vaccination (including boosters) underscore the need to continue evaluating repurposed drugs and nutraceuticals as candidate adjunctive treatments. Early clinical studies of antihistamines hypothesized that targeting mast cells (and/or histamine receptors) might benefit COVID-19 patients. In cultured human coronary artery endothelial cells, histamine potentiated spike-mediated angiotensin-converting enzyme 2 internalization; this effect can be blocked by the antihistamine famotidine. This literature review focuses on clinical studies of antihistamines, mast cell stabilizers, and leukotriene receptor antagonists for COVID-19 patients. Several antihistamines and mast cell-targeting agents, including fluvoxamine, cyproheptadine, hydroxyzine, and antihistamines used alone or with azithromycin (dexchlorpheniramine, cetirizine, loratadine, and ebastine), as well as azelastine, famotidine (standard or high-dose), high-dose famotidine with celecoxib, and the flavonoid mast cell stabilizer quercetin, have been reported to be associated with clinical benefits in COVID-19 patients. Multiple studies have reported mixed results for aspirin, montelukast, and normal-dose famotidine; patients taking aspirin often have associated COVID-19 risk factors. In the context of current standard-of-care treatments, clinical studies evaluating candidate adjunctive treatments should carefully consider and avoid known drug–drug interactions, such as those involving celecoxib and dexamethasone. Further clinical studies of the identified treatments targeting mast cells and/or histamine receptors in COVID-19 patients associated with clinical benefits are therefore strongly recommended.
- Malone RW, Tisdall P, Fremont-Smith P, et al. COVID-19: Famotidine, histamine, mast cells, and mechanisms. Front Pharmacol. 2021;12:633680. doi: 10.3389/fphar.2021.633680
- Fremont-Smith M, Gherlone N, Smith N, Tisdall P, Ricke DO. Models for COVID-19 early cardiac pathology following SARS-CoV-2 infection. Int J Infect Dis. 2021;113:331-335. doi: 10.1016/j.ijid.2021.09.052
- Ricke DO, Gherlone N, Fremont-Smith P, Tisdall P, Fremont- Smith M. Kawasaki disease, multisystem inflammatory syndrome in children: Antibody-induced mast cell activation hypothesis. J Pediatr Pediatr Med. 2020;4(2):1-7. doi: 10.29245/2578-2940/2020/2.1157
- Ricke DO, Smith N. VAERS vasculitis adverse events retrospective study: Etiology model of immune complexes activating Fc receptors in Kawasaki disease and multisystem inflammatory syndromes. Life (Basel). 2024;14(3):353. doi: 10.3390/life14030353
- Yu F, Liu X, Ou H, et al. The histamine receptor H1 acts as an alternative receptor for SARS-CoV-2. mBio. 2024;15(8):e0108824. doi: 10.1128/mbio.01088-24
- Wu ML, Liu FL, Sun J, et al. SARS-CoV-2-triggered mast cell rapid degranulation induces alveolar epithelial inflammation and lung injury. Signal Transduct Target Ther. 2021;6(1):428. doi: 10.1038/s41392-021-00849-0
- Hafezi B, Chan L, Knapp JP, et al. Cytokine storm syndrome in SARS-CoV-2 infections: A functional role of mast cells. Cells. 2021;10(7):1761. doi: 10.3390/cells10071761
- Cao JB, Zhu ST, Huang XS, et al. Mast cell degranulation-triggered by SARS-CoV-2 induces tracheal-bronchial epithelial inflammation and injury. Virol Sin. 2024;39(2): 309-318. doi: 10.1016/j.virs.2024.03.001
- Hu Z, Song C, Xu C, et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci China Life Sci. 2020;63(5):706-711. doi: 10.1007/s11427-020-1661-4
- Tian S, Hu N, Lou J, et al. Characteristics of COVID-19 infection in Beijing. J Infect. 2020;80(4):401-406. doi: 10.1016/j.jinf.2020.02.018
- Basso C, Leone O, Rizzo S, et al. Pathological features of COVID-19-associated myocardial injury: A multicentre cardiovascular pathology study. Eur Heart J. 2020;41(39):3827-3835. doi: 10.1093/eurheartj/ehaa664
- Bearse M, Hung YP, Krauson AJ, et al. Factors associated with myocardial SARS-CoV-2 infection, myocarditis, and cardiac inflammation in patients with COVID-19. Mod Pathol. 2021;34(7):1345-1357. doi: 10.1038/s41379-021-00790-1
- Darby JB, Jackson JM. Kawasaki disease and multisystem inflammatory syndrome in children: An overview and comparison. Am Fam Physician. 2021;104(3):244-252.
- Patel P, DeCuir J, Abrams J, Campbell AP, Godfred- Cato S, Belay ED. Clinical characteristics of multisystem inflammatory syndrome in adults: A systematic review. JAMA Netw Open. 2021;4(9):e2126456. doi: 10.1001/jamanetworkopen.2021.26456
- Dufort Elizabeth M, Koumans Emilia H, Chow Eric J, et al. Multisystem inflammatory syndrome in children in New York State. N Engl J Med. 2020;383(4):347-358. doi: 10.1056/NEJMoa2021756
- Feldstein Leora R, Rose Erica B, Horwitz Steven M, et al. Multisystem inflammatory syndrome in U.S. children and adolescents. N Engl J Med. 2020;383(4):334-346. doi: 10.1056/NEJMoa2021680
- Ricke DO. Cardiac adverse events post-vaccination. Brain Heart. 2025;3(2):1-15. doi: 10.36922/bh.5747
- Ricke DO. Vaccine-associated Kawasaki disease in children. Microbes Immun. 2025. doi: 10.36922/MI025200044
- Klussmann JP, Grosheva M, Meiser P, et al. Early intervention with azelastine nasal spray may reduce viral load in SARS-CoV-2 infected patients. Sci Rep. 2023;13(1):6839. doi: 10.1038/s41598-023-32546-z
- Meiser P, Flegel M, Holzer F, et al. Azelastine nasal spray in non-hospitalized subjects with mild COVID-19 infection: A randomized placebo-controlled, parallel-group, multicentric, phase II clinical trial. Viruses. 2024;16(12):1914. doi: 10.3390/v16121914
- Lehr T, Meiser P, Selzer D, et al. Azelastine nasal spray for prevention of SARS-CoV-2 infections: A phase 2 randomized clinical trial. JAMA Intern Med. 2025;185(11):1309-1317. doi: 10.1001/jamainternmed.2025.4283
- Hogan RB 2nd, Hogan RB 3rd, Cannon T, et al. Dual-histamine receptor blockade with cetirizine - famotidine reduces pulmonary symptoms in COVID-19 patients. Pulm Pharmacol Ther. 2020;63:101942. doi: 10.1016/j.pupt.2020.101942
- Morán Blanco JI, Alvarenga Bonilla JA, Homma S, Suzuki K, Fremont-Smith P, Villar Gómez de Las Heras K. Antihistamines and azithromycin as a treatment for COVID-19 on primary health care - A retrospective observational study in elderly patients. Pulm Pharmacol Ther. 2021;67:101989-101989. doi: 10.1016/j.pupt.2021.101989
- Matsumori A, Yamamoto K, Shimada M. Cetirizine a histamine H1 receptor antagonist improves viral myocarditis. J Inflamm Lond Engl. 2010;7:39-39. doi: 10.1186/1476-9255-7-39
- Freedberg DE, Conigliaro J, Wang TC, et al. Famotidine use is associated with improved clinical outcomes in hospitalized COVID-19 patients: A propensity score matched retrospective cohort study. Gastroenterology. 2020;159(3):1129-1131.e3. doi: 10.1053/j.gastro.2020.05.053
- Mather JF, Seip RL, McKay RG. Impact of famotidine use on clinical outcomes of hospitalized patients with COVID-19. Am J Gastroenterol. 2020;115(10):1617-1623. doi: 10.14309/ajg.0000000000000832
- Pahwani S, Kumar M, Aperna F, et al. Efficacy of oral famotidine in patients hospitalized with severe acute respiratory syndrome coronavirus 2. Cureus. 2022;14(2):e22404. doi: 10.7759/cureus.22404
- Chowdhury ATMM, Kamal A, Abbas MKU, et al. Role of H2 receptor blocker famotidine over the clinical recovery of COVID-19 patients: A randomized controlled trial. World J Clin Cases. 2022;10(23):8170. doi: 10.12998/wjcc.v10.i23.8170
- Wagner JJ, St. Cyr N, Douen A, Fogel J, Trillo J. A retrospective analysis of clinical outcomes between hospitalized patients with COVID-19 who received famotidine or pantoprazole. JGH Open. 2023;7(7):464-469. doi: 10.1002/jgh3.12905
- Kwon R, Kim HJ, Lee SW, et al. Effectiveness of famotidine on the risk of poor prognosis in patients with COVID-19: A nationwide cohort study in Korea. Heliyon. 2023;9(6):e16171. doi: 10.1016/j.heliyon.2023.e16171
- Razjouyan J, Helmer DA, Lynch KE, et al. Smoking status and factors associated with COVID-19 in-hospital mortality among US veterans. Nicotine Tob Res. 2022;24(5):785-793. doi: 10.1093/ntr/ntab223
- Chiu L, Shen M, Lo CH, et al. Effect of famotidine on hospitalized patients with COVID-19: A systematic review and meta-analysis. PLoS One. 2021;16(11):e0259514. doi: 10.1371/journal.pone.0259514
- Cheung KS, Hung IFN, Leung WK. Association between famotidine use and COVID-19 severity in Hong Kong: A territory-wide study. Gastroenterology. 2021;160(5):1898-1899. doi: 10.1053/j.gastro.2020.05.098
- Sun C, Chen Y, Hu L, et al. Does famotidine reduce the risk of progression to severe disease, death, and intubation for COVID-19 patients? A systemic review and meta-analysis. Dig Dis Sci. 2021;66(11):3929-3937. doi: 10.1007/s10620-021-06872-z
- Kuno T, So M, Takahashi M, Egorova NN. The association between famotidine and in-hospital mortality of patients with COVID-19. J Med Virol. 2022;94(3):1186-1189. doi: 10.1002/jmv.27375
- Fung KW, Baik SH, Baye F, Zheng Z, Huser V, McDonald CJ. Effect of common maintenance drugs on the risk and severity of COVID-19 in elderly patients. PLoS One. 2022;17(4):e0266922. doi: 10.1371/journal.pone.0266922
- Balouch B, Vontela S, Yeakel H, Alnouri G, Sataloff RT. Role of famotidine and other acid reflux medications for SARS-CoV-2: A pilot study. J Voice. 2023;37(3):419-425. doi: 10.1016/j.jvoice.2021.01.007
- Cheema HA, Shafiee A, Athar MMT, et al. No evidence of clinical efficacy of famotidine for the treatment of COVID-19: A systematic review and meta-analysis. J Infect. 2023;86(2):154-225. doi: 10.1016/j.jinf.2022.11.022
- Amjad W, Kamal F, Malik A, Singh R, Mahmood S. Histamine 2 receptor antagonists do not improve the outcomes of hospitalized COVID-19 patients. Prz Gastroenterol. 2022;17(2):146-151. doi: 10.5114/pg.2021.107799
- Li W, Dong Y, Lei X. No evidence indicates famotidine reduces the risk of serious disease in COVID-19 patients after propensity score matching: Meta-analysis and systematic reviews. Dig Dis Sci. 2022;67(1):351-353. doi: 10.1007/s10620-021-07214-9
- Yeramaneni S, Doshi P, Sands K, Cooper M, Kurbegov D, Fromell G. Famotidine use is not associated with 30-day mortality: A coarsened exact match study in 7158 hospitalized patients with coronavirus disease 2019 from a large healthcare system. Gastroenterology. 2021;160(3): 919-921.e3. doi: 10.1053/j.gastro.2020.10.011
- Kow CS, Abdul Sattar Burud I, Hasan SS. Use of famotidine and risk of severe course of illness in patients with COVID-19: A meta-analysis. Mayo Clin Proc. 2021; 96(5):1365-1367. doi: 10.1016/j.mayocp.2021.03.001
- Brennan CM, Nadella S, Zhao X, et al. Oral famotidine versus placebo in non-hospitalised patients with COVID-19: A randomised, double-blind, data-intense, phase 2 clinical trial. Gut. 2022;71:879-888. doi: 10.1136/gutjnl-2022-326952
- Janowitz T, Gablenz E, Pattinson D, et al. Famotidine use and quantitative symptom tracking for COVID-19 in non-hospitalised patients: A case series. Gut. 2020;69(9):1592. doi: 10.1136/gutjnl-2020-321852
- Samimagham HR, Hassani Azad M, Haddad M, Arabi M, Hooshyar D, KazemiJahromi M. The efficacy of famotidine in improvement of outcomes in hospitalized COVID-19 patients: A structured summary of a study protocol for a randomised controlled trial. Trials. 2020;21(1):848. doi: 10.1186/s13063-020-04773-6
- Sethia R, Prasad M, Mahapatra SJ, et al. Efficacy of Famotidine for COVID-19: A Systematic Review and Meta- Analysis. medRxiv; 2020. doi: 10.1101/2020.09.28.20203463
- Raghavan S, Leo MD. Histamine potentiates SARS-CoV-2 spike protein entry into endothelial cells. Front Pharmacol. 2022;13:872736. doi: 10.3389/fphar.2022.872736
- Mukherjee R, Bhattacharya A, Bojkova D, et al. Famotidine inhibits toll-like receptor 3-mediated inflammatory signaling in SARS-CoV-2 infection. J Biol Chem. 2021;297(2):100925. doi: 10.1016/j.jbc.2021.100925
- Tomera K, Kittah J. Brief Report: Rapid Clinical Recovery from Severe COVID-19 with High Dose Famotidine and High Dose Celecoxib Adjuvant Therapy. Preprintsorg; 2020. doi: 10.20944/preprints202008.0519.v1
- Tomera KM, Malone RW, Kittah JK. Hospitalized COVID-19 Patients Treated with Celecoxib and High Dose Famotidine Adjuvant Therapy show Significant Clinical Responses. SSRN Prepr; 2020. p. 42. doi: 10.2139/ssrn.3646583
- Theoharides TC, Conti P. Dexamethasone for COVID-19? Not so fast. J Biol Regul Homeost Agents. 2020;34(4): 1241-1243. doi: 10.23812/20-EDITORIAL_1-5
- Malone R, Tomera K, Egbujiobi L, Kittah J. Famotidine and Celecoxib COVID-19 Treatment Without and With Dexamethasone; Retrospective Comparison of Sequential Continuous Cohorts. United States: Research Square; 2021. doi: 10.21203/rs.3.rs-526394/v1
- Drug Interactions between Celecoxib and Dexamethasone; 2025. Available from: https://www.drugs.com/drug-interactions/celecoxib-with-dexamethasone-560-0-810-0. html [Last accessed on 2025 Nov 15].
- DrugBank. Celecoxib; 2025. Available from: https://go.drugbank.com/drugs/DB00482 [Last accessed on 2025 Oct 01].
- Files DC, Aggarwal N, Albertson T, et al. Report of the first seven agents in the I-SPY COVID trial: A phase 2, open label, adaptive platform randomised controlled trial. eClinicalMedicine. 2023;58:101889. doi: 10.1016/j.eclinm.2023.101889
- Mura C, Preissner S, Nahles S, Heiland M, Bourne PE, Preissner R. Real-world evidence for improved outcomes with histamine antagonists and aspirin in 22,560 COVID-19 patients. Signal Transduct Target Ther. 2021;6(1):267. doi: 10.1038/s41392-021-00689-y
- Torres J, Go CC, Chohan FA, et al. Chlorpheniramine Maleate Nasal Spray in COVID-19 Patients: Case Series. United States: Research Square; 2021. doi: 10.21203/rs.3.rs-138252/v1
- Valerio-Pascua F, Jackeline E, Tesch ML, et al. Chlorpheniramine Intranasal Spray to Accelerate COVID-19 Clinical Recovery in an Outpatient Setting: The ACCROS Trials. United States: Research Square; 2022. doi: 10.21203/rs.3.rs-2167465/v1
- Wannigama DL, Hurst C, Phattharapornjaroen P, et al. Early treatment with fluvoxamine, bromhexine, cyproheptadine, and niclosamide to prevent clinical deterioration in patients with symptomatic COVID-19: A randomized clinical trial. eClinicalMedicine. 2024;70:102517. doi: 10.1016/j.eclinm.2024.102517
- Boniatti MM, Nedel WL, Rihl MF, et al. Effect of cyproheptadine on ventilatory support-free days in critically ill patients with COVID-19: An open-label, randomized clinical trial. Indian J Crit Care Med. 2023;27(7):517-521. doi: 10.5005/jp-journals-10071-24482
- Sánchez-Rico M, Limosin F, Vernet R, et al. Hydroxyzine use and mortality in patients hospitalized for COVID-19: A multicenter observational study. J Clin Med. 2021; 10(24):5891. doi: 10.3390/jcm10245891
- Morán Blanco JI, Alvarenga Bonilla JA, Fremont-Smith P, Villar Gómez de las Heras K. Antihistamines as an early treatment for Covid-19. Heliyon. 2023;9(5):e15772. doi: 10.1016/j.heliyon.2023.e15772
- Pastor-Fernández A, Bertos AR, Sierra-Ramírez A, et al. Treatment with the senolytics dasatinib/quercetin reduces SARS-CoV-2-related mortality in mice. Aging Cell. 2023;22(3):e13771. doi: 10.1111/acel.13771
- Wu ML, Liu FL, Sun J, et al. Combinational benefit of antihistamines and remdesivir for reducing SARS-CoV-2 replication and alleviating inflammation-induced lung injury in mice. Zool Res. 2022;43(3):457-468. doi: 10.24272/j.issn.2095-8137.2021.469
- Villatoro JM, Mejía-Abril G, García LD, et al. A case-control of patients with COVID-19 to explore the association of previous hospitalisation use of medication on the mortality of COVID-19 disease: A propensity score matching analysis. Pharmaceuticals (Basel). 2022;15(1):78. doi: 10.3390/ph15010078
- Ghobain MA, Rebh F, Saad A, et al. The efficacy of Zafirlukast as a SARS-CoV-2 helicase inhibitor in adult patients with moderate COVID-19 Pneumonia (pilot randomized clinical trial). J Infect Public Health. 2022;15(12):1546-1550. doi: 10.1016/j.jiph.2022.11.016
- Reznikov LR, Norris MH, Vashisht R, et al. Identification of antiviral antihistamines for COVID-19 repurposing. Biochem Biophys Res Commun. 2021;538:173-179. doi: 10.1016/j.bbrc.2020.11.095
- Black SD. Molecular modeling and preliminary clinical data suggesting antiviral activity for chlorpheniramine (chlorphenamine) against COVID-19. Cureus. 2022;14(1):e20980. doi: 10.7759/cureus.20980
- Berkowitz RL, Bluhm AP, Knox GW, McCurdy CR, Ostrov DA, Norris MH. Sigma receptor ligands prevent COVID mortality in vivo: Implications for future therapeutics. Int J Mol Sci. 2023;24(21):15718. doi: 10.3390/ijms242115718
- Panse S, Kanchi M, Chacko J, et al. Intensive care unit setup for COVID-19. J Cardiac Critical Care TSS. 2020;4(1):5-11. doi: 10.1055/s-0040-1713548
- May BC, Gallivan KH. Levocetirizine and montelukast in the COVID-19 treatment paradigm. Int Immunopharmacol. 2022;103:108412. doi: 10.1016/j.intimp.2021.108412
- Kim B, Jung JH, Han K, et al. Histamine-2 receptor antagonists and proton pump inhibitors are associated with reduced risk of SARS-CoV-2 infection without comorbidities including diabetes, hypertension, and dyslipidemia: A propensity score-matched nationwide cohort study. J Korean Med Sci. 2023;38(13):e99. doi: 10.3346/jkms.2023.38.e99
- Fan X, Liu Z, Miyata T, et al. Effect of acid suppressants on the risk of COVID-19: A propensity score-matched study using UK biobank. Gastroenterology. 2021;160(1): 455-458.e5. doi: 10.1053/j.gastro.2020.09.028
- Puigdellívol-Sánchez A, Juanes-González M, Calderón-Valdiviezo A, et al. COVID-19 in relation to chronic antihistamine prescription. Microorganisms. 2024;12(12):2589. doi: 10.3390/microorganisms12122589
- Redondo-Sendino Á, González Sánchez IC, de Victoria Fernández B. Skin manifestations associated with the new coronavirus SARS-CoV-2 disease. Med Clin Engl Ed. 2020;155(9):414-415. doi: 10.1016/j.medcle.2020.04.026
- Criado PR, Criado RFJ, Pincelli TP, Yoshimoto TA, Naufal GGA, Abdalla BMZ. Chronic spontaneous urticaria exacerbation in a patient with COVID-19: Rapid and excellent response to omalizumab. Int J Dermatol. 2020;59(10):1294-1295. doi: 10.1111/ijd.15134
- Tesch ML, Dasgupta R, Khawaja UA, Sanchez-Gonzalez M, Franck R. Chlorpheniramine maleate throat spray for the treatment of COVID-19-induced acute viral pharyngitis: Case series. Cureus. 2023;15(1):e34310. doi: 10.7759/cureus.34310
- Yi L, Li Z, Yuan K, et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol. 2004;78(20):11334-11339. doi: 10.1128/jvi.78.20.11334-11339.2004
- Umsumarng S, Dissook S, Arjsri P, et al. Inhibitory effect of luteolin on spike S1 glycoprotein-induced inflammation in THP-1 cells via the ER stress-inducing calcium/CHOP/ MAPK pathway. Pharmaceuticals (Basel). 2024;17(10):402. doi: 10.3390/ph17101402
- Di Stadio A, Gallina S, Cocuzza S, et al. Treatment of COVID-19 olfactory dysfunction with olfactory training, palmitoylethanolamide with luteolin, or combined therapy: A blinded controlled multicenter randomized trial. Eur Arch Otorhinolaryngol. 2023;280(11):4949-4961. doi: 10.1007/s00405-023-08085-8
- Di Stadio A, Cantone E, De Luca P, et al. Parosmia COVID-19 related treated by a combination of olfactory training and ultramicronized PEA-LUT: A prospective randomized controlled trial. Biomedicines. 2023;11(4):1109. doi: 10.3390/biomedicines11041109
- Cantone E, D’Ascanio L, De Luca P, et al. Persistent COVID-19 parosmia and olfactory loss post olfactory training: Randomized clinical trial comparing central and peripheral-acting therapeutics. Eur Arch Otorhinolaryngol. 2024;281(7):3671-3678. doi: 10.1007/s00405-024-08548-6
- Lee S, Kim JH, Kim C, Jung W, Park J, Park J. Luteolin-7- O-glucoside from Elsholtzia ciliata extract inhibits the replication of coronavirus. PLoS One. 2025;20(6):e0325371. doi: 10.1371/journal.pone.0325371
- Di Pierro F, Iqtadar S, Khan A, et al. Potential clinical benefits of quercetin in the early stage of COVID-19: Results of a second, pilot, randomized, controlled and open-label clinical trial. Int J Gen Med. 2021;14:2807-2816. doi: 10.2147/ijgm.s318949
- Rondanelli M, Perna S, Gasparri C, et al. Promising effects of 3-month period of quercetin phytosome® supplementation in the prevention of symptomatic COVID-19 disease in healthcare workers: A pilot study. Life (Basel). 2022;12(1):66. doi: 10.3390/life12010066
- Arslan B, Ergun NU, Topuz S, et al. Synergistic effect of quercetin and vitamin C against COVID-19: Is a possible guard for front liners. SSRN. Published online 2020. Available from: https://europepmc.org/article/ppr/ppr239932
- Tylishchak Z, Pryshliak O, Boichuk O, et al. Effectiveness of the quercetin use in patients with COVID-19 with concomitant type 2 diabetes mellitus. Wiad Lek. 2024;77(10):1962-1968. doi: 10.36740/wlek/191875
- Di Pierro F, Khan A, Iqtadar S, et al. Quercetin as a possible complementary agent for early-stage COVID-19: Concluding results of a randomized clinical trial. Front Pharmacol. 2023;13:1096853. doi: 10.3389/fphar.2022.1096853
- Di Pierro F, Derosa G, Maffioli P, et al. Possible therapeutic effects of adjuvant quercetin supplementation against early-stage COVID-19 infection: A prospective, randomized, controlled, and open-label study. Int J Gen Med. 2021;8(14):2359-2366. doi: 10.2147/ijgm.s318720
- Ujjan ID, Khan S, Nigar R, Ahmed H, Ahmad S, Khan A. The possible therapeutic role of curcumin and quercetin in the early-stage of COVID-19-Results from a pragmatic randomized clinical trial. Front Nutr. 2023;9:1023997. doi: 10.3389/fnut.2022.1023997
- Khan A, Iqtadar S, Mumtaz SU, et al. Oral co-supplementation of curcumin, quercetin, and vitamin D3 as an adjuvant therapy for mild to moderate symptoms of COVID-19-results from a pilot open-label, randomized controlled trial. Front Pharmacol. 2022;13:898062. doi: 10.3389/fphar.2022.898062
- Önal H, Arslan B, Ergun NÜ, et al. Treatment of COVID-19 patients with quercetin: A prospective, single center, randomized, controlled trial. Turk J Biol. 2021;45(4):518-529. doi: 10.3906/biy-2104-16
- Wu W, Wang W, Liang L, et al. Treatment with quercetin inhibits SARS-CoV-2 N protein-induced acute kidney injury by blocking Smad3-dependent G1 cell-cycle arrest. Mol Ther. 2023;31(2):344-361. doi: 10.1016/j.ymthe.2022.12.002
- Ziaei S, Alimohammadi-Kamalabadi M, Hasani M, Malekahmadi M, Persad E, Heshmati J. The effect of quercetin supplementation on clinical outcomes in COVID-19 patients: A systematic review and meta-analysis. Food Sci Nutr. 2023;11(12):7504-7514. doi: 10.1002/fsn3.3715
- Shohan M, Nashibi R, Mahmoudian-Sani MR, et al. The therapeutic efficacy of quercetin in combination with antiviral drugs in hospitalized COVID-19 patients: A randomized controlled trial. Eur J Pharmacol. 2022;914:174615. doi: 10.1016/j.ejphar.2021.174615
- Roy AV, Chan M, Banadyga L, et al. Quercetin inhibits SARS-CoV-2 infection and prevents syncytium formation by cells co-expressing the viral spike protein and human ACE2. Virol J. 2024;21(1):29. doi: 10.1186/s12985-024-02299-w
- Al-Juhaishi AMR, Aal-Aaboda M, Mosa AU. Effects of cranberry on outpatients with mild to moderate COVID-19 infection. Iraqi J Pharm Sci. 2024;32(3):165-171. doi: 10.31351/vol32iss3pp165-171
- Rothman RL, Stewart TG, Mourad A, et al. Time to sustained recovery among outpatients with COVID-19 receiving montelukast vs placebo: The ACTIV-6 randomized clinical trial. JAMA Netw Open. 2024;7(10):e2439332. doi: 10.1001/jamanetworkopen.2024.39332
- Khan AR, Misdary C, Yegya-Raman N, et al. Montelukast in hospitalized patients diagnosed with COVID-19. J Asthma. 2021;59(4):780-786. doi: 10.1080/02770903.2021.1881967
- Pourahmad M, Aria A, Momenzadeh M, et al. Evaluation of the effect of montelukast drug in improving the clinical condition of patients with COVID-19 in referral hospitals in Isfahan; a randomized clinical trial. J Nephropharmacol. 2024;13(2):e11650. doi: 10.34172/npj.2023.11650
- Jahangirifard A, Fani K, Mirtajani SB. The effect of bromelain combined with montelukast in hospitalized COVID-19 patients. Int J Basic Sci Med. 2023;8(1):36-41. doi: 10.34172/ijbsm.2023.06
- Parisi GF, Manti S, Papale M, et al. Addition of a nutraceutical to montelukast or inhaled steroid in the treatment of wheezing during COVID-19 pandemic: A multicenter, open-label, randomized controlled trial. Acta Biomed. 2022;93(2):e2022156. doi: 10.23750/abm.v93i2.11958
- Soltani R, Nasirharandi S, Khorvash F, Nasirian M, Dolatshahi K, Hakamifard A. The effectiveness of gabapentin and gabapentin/montelukast combination compared with dextromethorphan in the improvement of COVID-19- related cough: A randomized, controlled clinical trial. Clin Respir J. 2022;16(9):604-610. doi: 10.1111/crj.13529
- Lima-Morales R, Méndez-Hernández P, Flores YN, et al. Effectiveness of a multidrug therapy consisting of Ivermectin, Azithromycin, Montelukast, and Acetylsalicylic acid to prevent hospitalization and death among ambulatory COVID-19 cases in Tlaxcala, Mexico. Int J Infect Dis. 2021;105:598-605. doi: 10.1016/j.ijid.2021.02.014
- Salehi-Pourmehr H, Dolati S, Mehdipour R, et al. Effect of montelukast on treatment of coronavirus pneumonia (COVID-19): A systematic review. Biomed Res Bull. 2023;1(1):19-29. doi: 10.34172/biomedrb.2023.06
- Kerget B, Kerget F, Aydın M, Karaşahin Ö. Effect of montelukast therapy on clinical course, pulmonary function, and mortality in patients with COVID-19. J Med Virol. 2022;94(5):1950-1958. doi: 10.1002/jmv.27552
- Al-kuraishy HM, Al-Gareeb AI, Almulaiky YQ, Cruz- Martins N, El-Saber Batiha G. Role of leukotriene pathway and montelukast in pulmonary and extrapulmonary manifestations of Covid-19: The enigmatic entity. Eur J Pharmacol. 2021;904:174196. doi: 10.1016/j.ejphar.2021.174196
- Camera M, Canzano P, Brambilla M, Rovati GE. Montelukast inhibits platelet activation induced by plasma from COVID-19 patients. Front Pharmacol. 2022;13:784214. doi: 10.3389/fphar.2022.784214
- Salah HM, Mehta JL. Meta-analysis of the effect of aspirin on mortality in COVID-19. Am J Cardiol. 2021;142:158-159. doi: 10.1016/j.amjcard.2020.12.073
- Prieto-Campo Á, Zapata-Cachafeiro M, Portela-Romero M, Piñeiro-Lamas M, Figueiras A, Salgado-Barreira Á. Impact of prior use of antiplatelets on COVID-19 susceptibility, progression, and severity: A population-based study. Rev Esp Cardiol Engl Ed. 2024;77(7):539-546. doi: 10.1016/j.rec.2023.12.004
- Trimarco V, Izzo R, Pacella D, et al. Aspirin reduces the risk of type 2 diabetes associated with COVID-19. NPJ Metabolic Health Dis. 2025;3(1):27. doi: 10.1038/s44324-025-00072-3
- Abdelwahab HW, Shaltout SW, Sayed Ahmed HA, et al. Acetylsalicylic acid compared with enoxaparin for the prevention of thrombosis and mechanical ventilation in COVID-19 patients: A retrospective cohort study. Clin Drug Investig. 2021;41(8):723-732. doi: 10.1007/s40261-021-01061-2
- Chow JH, Khanna AK, Kethireddy S, et al. Aspirin use is associated with decreased mechanical ventilation, intensive care unit admission, and in-hospital mortality in hospitalized patients with coronavirus disease 2019. Anesth Analg. 2021;132(4):930-941. doi: 10.1213/ANE.0000000000005292
- Haji Aghajani M, Moradi O, Amini H, et al. Decreased in-hospital mortality associated with aspirin administration in hospitalized patients due to severe COVID-19. J Med Virol. 2021;93(9):5390-5395. doi: 10.1002/jmv.27053
- Su W, Miao H, Guo Z, Chen Q, Huang T, Ding R. Associations between the use of aspirin or other antiplatelet drugs and all-cause mortality among patients with COVID-19: A meta-analysis. Front Pharmacol. 2022;13:989903. doi: 10.3389/fphar.2022.989903
- Baral N, Mitchell JD, Savarapu PK, et al. All-cause and in-hospital mortality after aspirin use in patients hospitalized with COVID-19: A systematic review and meta-analysis. Biol Methods Protoc. 2022;7(1):bpac027. doi: 10.1093/biomethods/bpac027
- Wijaya I, Andhika R, Huang I, Purwiga A, Budiman KY. The effects of aspirin on the outcome of COVID-19: A systematic review and meta-analysis. Clin Epidemiol Glob Health. 2021;12:100883. doi: 10.1016/j.cegh.2021.100883
- Srinivasan A, Brown J, Krishnamani PP, et al. Aspirin use is associated with decreased inpatient mortality in patients with COVID-19: A meta-analysis. Am Heart J Plus Cardiol Res Pract. 2022;20:100191. doi: 10.1016/j.ahjo.2022.100191
- Zhao X, Gao C, Dai F, Treggiari MM, Deshpande R, Meng L. Treatments associated with lower mortality among critically ill COVID-19 patients: A retrospective cohort study. Anesthesiology. 2021;135(6):1076-1090. doi: 10.1097/ALN.0000000000003999
- Osborne TF, Veigulis ZP, Arreola DM, Mahajan SM, Röösli E, Curtin CM. Association of mortality and aspirin prescription for COVID-19 patients at the Veterans Health Administration. PLoS One. 2021;16(2):e0246825. doi: 10.1371/journal.pone.0246825
- Lal A, Garces JPD, Bansal V, et al. Pre-hospital aspirin use and patient outcomes in COVID-19: Results from the international viral infection and respiratory illness universal study (VIRUS). Arch Bronconeumol. 2022;58(11):746-753. doi: 10.1016/j.arbres.2022.07.017
- Meizlish ML, Goshua G, Liu Y, et al. Intermediate-dose anticoagulation, aspirin, and in-hospital mortality in COVID-19: A propensity score-matched analysis. Am J Hematol. 2021;96(4):471-479. doi: 10.1002/ajh.26102
- Iacobucci G. Covid-19: Aspirin does not improve survival for patients admitted to hospital, trial reports. BMJ. 2021;373:n1475. doi: 10.1136/bmj.n1475
- Ma S, Su W, Sun C, et al. Does aspirin have an effect on risk of death in patients with COVID-19? A meta-analysis. Eur J Clin Pharmacol. 2022;78(9):1403-1420. doi: 10.1007/s00228-022-03356-5
- Martha JW, Pranata R, Lim MA, Wibowo A, Akbar MR. Active prescription of low-dose aspirin during or prior to hospitalization and mortality in COVID-19: A systematic review and meta-analysis of adjusted effect estimates. Int J Infect Dis. 2021;108:6-12. doi: 10.1016/j.ijid.2021.05.016
- Liuzzo G, Patrono C. Can low-dose aspirin help the RECOVERY of patients hospitalized with COVID-19? Eur Heart J. 2022;43(8):714-715. doi: 10.1093/eurheartj/ehab907
- Liu Q, Huang N, Li A, et al. Effect of low-dose aspirin on mortality and viral duration of the hospitalized adults with COVID-19. Medicine (Baltimore). 2021;100(6):e24544. doi: 10.1097/MD.0000000000024544
- Santoro F, Núñez‐Gil IJ, Vitale E, et al. Aspirin therapy on prophylactic anticoagulation for patients hospitalized with COVID‐19: A propensity score‐matched cohort analysis of the HOPE‐COVID‐19 registry. J Am Heart Assoc. 2022;11(13):e024530. doi: 10.1161/JAHA.121.024530
- Srivastava R, Kumar A. Use of aspirin in reduction of mortality of COVID-19 patients: A meta-analysis. Int J Clin Pract. 2021;75(11):e14515. doi: 10.1111/ijcp.14515
- Son M, Noh MG, Lee JH, Seo J, Park H, Yang S. Effect of aspirin on coronavirus disease 2019: A nationwide case-control study in South Korea. Medicine (Baltimore). 2021;100(30):e26670. doi: 10.1097/MD.0000000000026670
- Ali RM, Tharwat AI, Labib HA. Effect of aspirin use on clinical outcome among critically ill patients with COVID- 19. Egypt J Anaesth. 2022;38(1):629-635. doi: 10.1080/11101849.2022.2139104
- Kumar GS, Vadgaonkar A, Purunaik S, et al. Efficacy and safety of aspirin, promethazine, and micronutrients for rapid clinical recovery in mild to moderate COVID-19 patients: A randomized controlled clinical trial. Cureus. 2022;14(5):e25467. doi: 10.7759/cureus.25467
- Azizi R, Dehghani Mobarakeh M, Goujani R, Nabi-Afjadi M, Mousavi Rizi S, Maghsoudi A. A study on the effect of aspirin on clinical symptoms, laboratory indices, and outcomes in patients with COVID-19. J Nephropharmacol. 2023;12(2):e10506. doi: 10.34172/npj.2023.10506
- Ghati N, Bhatnagar S, Mahendran M, et al. Statin and aspirin as adjuvant therapy in hospitalised patients with SARS-CoV-2 infection: A randomised clinical trial (RESIST trial). BMC Infect Dis. 2022;22(1):606. doi: 10.1186/s12879-022-07570-5
- Gogtay M, Singh Y, Bullappa A, Scott J. Retrospective analysis of aspirin’s role in the severity of COVID-19 pneumonia. World J Crit Care Med. 2022;11(2):92-101. doi: 10.5492/wjccm.v11.i2.92
- Campbell HM, Murata AE, Conner TA, Fotieo G. Chronic use of non-steroidal anti-inflammatory drugs (NSAIDs) or acetaminophen and relationship with mortality among United States Veterans after testing positive for COVID-19. PLoS One. 2022;17(5):e0267462. doi: 10.1371/journal.pone.0267462
- Abani O, Abbas A, Abbas F, et al. Aspirin in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet. 2022;399(10320):143-151. doi: 10.1016/S0140-6736(21)01825-0
- Mina J, Fleifel M, Haykal T, et al. Effect of combination of prophylactic or therapeutic anticoagulation with aspirin on the outcomes of hospitalized COVID-19 patients: An observational retrospective study. Medicine (Baltimore). 2023;102(25):e34040. doi: 10.1097/MD.0000000000034040
- Yuan S, Chen P, Li H, Chen C, Wang F, Wang DW. Mortality and pre-hospitalization use of low-dose aspirin in COVID-19 patients with coronary artery disease. J Cell Mol Med. 2021;25(2):1263-1273. doi: 10.1111/jcmm.16198
- Sahai A, Bhandari R, Godwin M, et al. Effect of aspirin on short-term outcomes in hospitalized patients with COVID-19. Vasc Med. 2021;26(6):626-632. doi: 10.1177/1358863X211012754
- Botton J, Semenzato L, Dupouy J, et al. No association of low‐dose aspirin with severe COVID‐19 in France: A cohort of 31.1 million people without cardiovascular disease. Res Pract Thromb Haemost. 2022;6(4):e12743. doi: 10.1002/rth2.12743
- Vinod P, Krishnappa V, Rathell W, et al. Effect of aspirin use on the adverse outcomes in patients hospitalized for COVID-19. Cardiol Res. 2024;15(3):179-188. doi: 10.14740/cr1645
- Xue L, Qi Y, Zou Y. Short-term safety and efficacy of aspirin in patients with COVID-19: A systematic review and meta-analysis of randomized controlled trials. PeerJ. 2025;13:e19466. doi: 10.7717/peerj.19466
- Elgendy H, Ganaw A, Kumari V, et al. Risk factors influence the arterial line patency in ICU-bound patients during COVID-19 pandemic: An observational cohort study. Egypt J Anaesth. 2023;39(1):401-411. doi: 10.1080/11101849.2023.2209411
- Sullerot C, Bouiller K, Laborde C, et al. Premorbid aspirin use is not associated with lower mortality in older inpatients with SARS-CoV-2 pneumonia. GeroScience. 2022;44(2): 573-583. doi: 10.1007/s11357-021-00499-8
- Zekri-Nechar K, Barberán J, Zamorano-León JJ, et al. Analysis of prior aspirin treatment on in-hospital outcome of geriatric COVID-19 infected patients. Medicina. 2022;58(11):1649. doi: 10.3390/medicina58111649
- Kim I, Yoon S, Kim M, et al. Aspirin is related to worse clinical outcomes of COVID-19. Medicina (Kaunas). 2021;57(9):931. doi: 10.3390/medicina57090931
- Morrison FJ, Su M, Turchin A. COVID-19 outcomes in patients taking cardioprotective medications. PLoS One. 2022;17(10):e0275787. doi: 10.1371/journal.pone.0275787
- Ware AD, Veigulis ZP, Hoover PJ, et al. Incidence and risk of post-COVID-19 thromboembolic disease and the impact of aspirin prescription; nationwide observational cohort at the US Department of Veteran Affairs. PLoS One. 2024;19(9):e0302612. doi: 10.1371/journal.pone.0302612
- Eikelboom JW, Jolly SS, Belley-Cote EP, et al. Colchicine and the combination of rivaroxaban and aspirin in patients hospitalised with COVID-19 (ACT): An open-label, factorial, randomised, controlled trial. Lancet Respir Med. 2022;10(12):1169-1177. doi: 10.1016/S2213-2600(22)00298-3
- Basheer M, Saad E, Hagai R, Assy N. Clinical predictors of mortality and critical illness in patients with COVID-19 pneumonia. Metabolites. 2021;11(10):679. doi: 10.3390/metabo11100679
- Merzon E, Green I, Vinker S, et al. The use of aspirin for primary prevention of cardiovascular disease is associated with a lower likelihood of COVID-19 infection. FEBS J. 2021;288(17):5179-5189. doi: 10.1111/febs.15784
- Paules CI, Nordwall JA, Shaw-Saliba K, et al. Blood absolute lymphocyte count and trajectory are important in understanding severe COVID-19. BMC Infect Dis. 2025;25(1):67. doi: 10.1186/s12879-024-10428-7
- Yan X, Hao Q, Mu Y, et al. Retraction notice to “Nucleocapsid protein of SARS-CoV activates the expression of cyclooxygenase-2 by binding directly to regulatory elements for nuclear factor-kappa B and CCAAT/enhancer binding protein” [Int J Biochem Cell Biol. 2006;38:1417-1428]. Int J Biochem Cell Biol. 2024;176:106674. doi: 10.1016/j.biocel.2024.106674
- Liu M, Yang Y, Gu C, et al. RETRACTED: Spike protein of SARS-CoV stimulates cyclooxygenase-2 expression via both calcium-dependent and calcium-independent protein kinase C pathways. FASEB J. 2007;21(7):1586-1596. doi: 10.1096/fj.06-6589com
- Wang X, Lu J, Ge S, et al. Astemizole as a drug to inhibit the effect of SARS-COV-2 in vitro. Microb Pathog. 2021;156:104929. doi: 10.1016/j.micpath.2021.104929
- Konrat R, Papp H, Kimpel J, et al. The anti-histamine azelastine, identified by computational drug repurposing, inhibits infection by major variants of SARS-CoV-2 in cell cultures and reconstituted human nasal tissue. Front Pharmacol. 2022;13:861295. doi: 10.3389/fphar.2022.861295
- Fischhuber K, Bánki Z, Kimpel J, et al. Antiviral potential of azelastine against major respiratory viruses. Viruses. 2023;15(12):2300. doi: 10.3390/v15122300
- Ge S, Lu J, Hou Y, Lv Y, Wang C, He H. Azelastine inhibits viropexis of SARS-CoV-2 spike pseudovirus by binding to SARS-CoV-2 entry receptor ACE2. Virology. 2021;560: 110-115. doi: 10.1016/j.virol.2021.05.009
- Westover JB, Ferrer G, Vazquez H, Bethencourt-Mirabal A, Go CC. In vitro virucidal effect of intranasally delivered chlorpheniramine maleate compound against severe acute respiratory syndrome coronavirus 2. Cureus. 2020;12(9):e10501. doi: 10.7759/cureus.10501
- Yang H, George SJ, Thompson DA, et al. Famotidine activates the vagus nerve inflammatory reflex to attenuate cytokine storm. Mol Med. 2022;28(1):57. doi: 10.1186/s10020-022-00483-8
- Rivas MD, Maria J, Zamorano J. Hydroxyzine Inhibits SARS-CoV-2 Spike Protein Binding to ACE2 in a Qualitative in Vitro Assay. bioRxiv. New York: Cold Spring Harbor Laboratory; 2021. doi: 10.1101/2021.01.04.424792
- Kiani P, Scholey A, Dahl TA, McMann L, Iversen JM, Verster JC. In vitro assessment of the antiviral activity of ketotifen, indomethacin and naproxen, alone and in combination, against SARS-CoV-2. Viruses. 2021;13(4):559. doi: 10.3390/v13040558
- Hou Y, Ge S, Li X, Wang C, He H, He L. Testing of the inhibitory effects of loratadine and desloratadine on SARS-CoV-2 spike pseudotyped virus viropexis. Chem Biol Interact. 2021;338:109420. doi: 10.1016/j.cbi.2021.109420
- Morin-Dewaele M, Bartier S, Berry F, et al. Desloratadine, an FDA-approved cationic amphiphilic drug, inhibits SARS-CoV-2 infection in cell culture and primary human nasal epithelial cells by blocking viral entry. Sci Rep. 2022;12(1):21053. doi: 10.1038/s41598-022-25399-5
- Di Petrillo A, Orrù G, Fais A, Fantini MC. Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytother Res. 2022;36(1):266-278. doi: 10.1002/ptr.7309
- Cagno V, Magliocco G, Tapparel C, Daali Y. The tyrosine kinase inhibitor nilotinib inhibits SARS-CoV-2 in vitro. Basic Clin Pharmacol Toxicol. 2021;128(4):621-624. doi: 10.1111/bcpt.13537
