AccScience Publishing / IMO / Online First / DOI: 10.36922/imo.8111
REVIEW ARTICLE

The role of open-source bioinformatics tools in resource-limited African settings

Shandirai Mbisva1*
Show Less
1 Department of Biotechnology, School of Industrial Sciences, Harare Institute of Technology, Harare, Zimbabwe
Received: 21 December 2024 | Revised: 31 March 2025 | Accepted: 1 April 2025 | Published online: 2 May 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Bioinformatics is revolutionizing biological research and healthcare worldwide, yet many African countries face significant challenges due to limited access to registered tools and infrastructure. Despite these challenges, open-source bioinformatics tools provide a cost-effective alternative, driving scientific progress. This systematic review examines their impact and applications in resource-limited African settings, particularly in genomics, drug discovery, disease surveillance, and structural biology. A comprehensive literature search of PubMed, Google Scholar, and African Journals Online was conducted using keywords such as “open-source bioinformatics,” “Africa,” and “genomics,” covering studies from 2015 to 2024. The findings highlight significant contributions across multiple fields. In genomics, studies on sickle cell anemia in Nigeria identified novel single nucleotide polymorphisms using FastQC and Burrow–Wheeler alignment, improving genetic counseling and personalized treatments. Crop genomics research in Kenya pinpointed drought-resistance genes, enhancing food security. In disease surveillance, Nextstrain facilitated real-time tracking of viral mutations during the Ebola and COVID-19 outbreaks, shaping public health responses and vaccination strategies. In drug discovery, computational docking with AutoDock identified promising antimalarial and multidrug-resistant tuberculosis drug candidates in Uganda and South Africa, wherease molecular dynamics simulation and binding free energy analysis refined drug-target interactions. Structural biology contributions from African researchers to the Protein Data Bank have provided crucial insights for disease-specific treatments, such as targeting malaria-related proteins. In addition, absorption, distribution, metabolism, excretion, and toxicity predictive models have been employed to assess the pharmacokinetics and toxicity profiles of novel drug candidates, reducing reliance on costly experimental studies. These findings underscore the transformative potential of open-source bioinformatics tools in enabling high-quality research and innovation in Africa.

Graphical abstract
Keywords
Bioinformatics
Open-source tools
Genomics
Resource-limited settings
African research
Computational biology
Disease surveillance
Funding
None.
Conflict of interest
The author declares no conflicts of interest.
References
  1. De Villiers E, Smith J, Adewale P, et al. The impact of limited computational resources on bioinformatics in Africa. Comput Biol Chem. 2022;98:107611. doi: 10.1016/j.compbiolchem.2021.107611

 

  1. Masiga DK, Ouma JO, Okoth S, et al. Addressing bioinformatics capacity gaps in sub-Saharan Africa. Nat Biotechnol. 2020;38(9):999-1002. doi: 10.1038/s41587-020-0695-4

 

  1. Tekle Y, Abebe E, Nega B, et al. Computational tools in antimicrobial resistance research: Applications in Africa. Microb Genom. 2022;8(3):000750. doi: 10.1099/mgen.0.000750

 

  1. Achidi EA, Mbanya D, Tangwa GB, et al. Strengthening bioinformatics capacity for genomics research in Africa. PLoS Comput Biol. 2019;15(4):e1006753. doi: 10.1371/journal.pcbi.1006753

 

  1. Juma C, Njeri R, Mwangi P, et al. Overcoming barriers to bioinformatics adoption in Africa: A policy perspective. Afr J Sci. 2022;18(3):231-250.

 

  1. Nanfack A, Tchamga P, Fokunang C, et al. Sustainable strategies for advancing bioinformatics research in Africa. PLoS Comput Biol. 2021;17(6):e1008974. doi: 10.1371/journal.pcbi.1008974

 

  1. Okello D, Adebayo A, Kamau G, et al. Machine learning approaches for drug repurposing in Africa. BMC Bioinformatics. 2021;22(1):302. doi: 10.1186/s12859-021-04197-3

 

  1. Ibrahim ME, Zekri AR, El-Khairy L, et al. Recommendations for improving bioinformatics education in the developing world. Appl Transl Genom. 2015;6:23-29. doi: 10.1016/j.atg.2015.02.004

 

  1. Choudhury A, Ramsay M, Hazelhurst S, et al. African genomics: Insights, challenges, and future perspectives. Nature. 2020;586(7831):567-574. doi: 10.1038/s41586-020-2859-7

 

  1. Makoni M. How Africa is tackling bioinformatics infrastructure challenges. Nature. 2021;592(7855):428-429. doi: 10.1038/d41586-021-00912-9

 

  1. Bonkoungou B, Traore K, Zongo D, et al. Bridging the digital divide in African bioinformatics research. BMC Bioinformatics. 2021;22(1):123. doi: 10.1186/s12859-021-04088-7

 

  1. Ilori MO, Adeyemo AO, Oluwaseun A, et al. Cloud-based bioinformatics solutions for African researchers. BMC Res Notes. 2021;14(1):89. doi: 10.1186/s13104-021-05508-5

 

  1. Abimiku AG, Adebiyi E, Yakubu AA, et al. Role of bioinformatics in Africa’s response to emerging infectious diseases. PLoS Pathog. 2021;17(12):e1009912. doi: 10.1371/journal.ppat.1009912

 

  1. Fatumo S, Carstensen T, Nashiru O, et al. Open-source tools and resources for African genomic research. Nat Genet. 2022;54(5):601-610. doi: 10.1038/s41588-022-01025-7

 

  1. Ojo OO, Akinwale OP, Oladipo EK, et al. Integrating bioinformatics education in Africa: The role of open-source resources. BMC Med Educ. 2022;22(1):234. doi: 10.1186/s12909-022-03252-5

 

  1. Adoga MP, Fatumo S, Agwale SM. H3ABioNet: A sustainable pan-African bioinformatics network for human heredity and health in Africa. Source Code Biol Med. 2014;9:10. doi: 10.1186/1751-0473-9-10

 

  1. Tchagang AB, Nguimkeu P, Mboumba Bouassa RS, et al. Cloud-based bioinformatics: An opportunity for African genomics. BMC Genomics. 2021;22(1):102. doi: 10.1186/s12864-021-07427-0

 

  1. Ngugi N, Wekesa C, Kamau J, Chege M. Genomic selection and identification of drought-resistance genes in Kenyan maize varieties. Plant Genome Res. 2020;13(2):e20043. doi: 10.3835/plantgenome2020.06.0034

 

  1. Alako BTF, Folarin OA, Adewale B, et al. Enabling open-source bioinformatics for African genomics. Genome Biol. 2020;21(1):1-10. doi: 10.1186/s13059-020-02030-4

 

  1. Beckmann ND, Blankenberg D, He K, et al. Expanding African bioinformatics infrastructure: Challenges and strategies. Front Genet. 2022;13:1234. doi: 10.3389/fgene.2022.1234

 

  1. Nwafor C, Okeke MI, Olayemi A, et al. The role of education in building Africa’s bioinformatics workforce. BMC Med Educ. 2021;21(1):276-289. doi: 10.1186/s12909-021-02757-1

 

  1. Mulder NJ, Adebiyi E. The H3Africa bioinformatics network: Enhancing capacity for genomics research in Africa. Nat Rev Genet. 2017;18(7):53-61. doi: 10.1038/nrg.2017.28

 

  1. Oladipo A, Adewumi S, Akinyemi K, et al. Empowering African scientists through open-source bioinformatics training. Front Genet. 2022;13:876324. doi: 10.3389/fgene.2022.876324

 

  1. Tegally H, San JE, Everatt J, et al. Phylogenetic analysis of SARS-CoV-2 in Africa: Open-access tools and challenges. Science. 2021;372(6541):eabj9843. doi: 10.1126/science.abj9843

 

  1. Siddle KJ, Spiro DJ, Sng J, et al. Real-time genomic epidemiology in Africa: Lessons from Ebola and COVID-19. Nature. 2020;588(7837):354-358. doi: 10.1038/s41586-020-3012-3

 

  1. Ariyo OE, Adeleye A, Olayemi A, et al. Open-source bioinformatics pipelines for genomic surveillance of COVID-19 in Africa. Nat Med. 2022;28(2):127-140. doi: 10.1038/s41591-021-01619-w

 

  1. Githinji G, Otieno PA, Odondi W, et al. Tracking SARS-CoV-2 variants in Africa using open-source genomic tools. Lancet Microbe. 2021;2(12):e654-e661. doi: 10.1016/S2666-5247(21)00222-9

 

  1. Oyekanmi O, Akinmoladun O, Ojo D, et al. The role of Nextstrain in tracking Ebola outbreaks in Africa. Infect Dis Rep. 2021;13(2):345-359. doi: 10.3390/idr13020034

 

  1. Mulder N, De Villiers S, Okeke MI, et al. Challenges in omics and bioinformatics in Africa. Front Genet. 2017;8:463.

 

  1. Chibale K, Olaniran A, Olorundare I, et al. The impact of computational chemistry on drug discovery in Africa. Chem Soc Rev. 2021;50(8):460-479. doi: 10.1039/d0cs00868a

 

  1. Mambwe B, Kayembe T, Zimba F, et al. Open-source software for in silico drug screening in Africa. Front Pharmacol. 2021;12:678543. doi: 10.3389/fphar.2021.678543

 

  1. Nnadi CO, Ezeokonkwo O, Anike J, et al. Drug discovery for neglected tropical diseases using open-access bioinformatics tools. Parasit Vectors. 2020;13(1):567-579. doi: 10.1186/s13071-020-04376-w

 

  1. Tiffin N, Otieno A, Ndegwa N, et al. Leveraging African open-access resources for biomedical informatics. BMC Med Inform Decis Mak. 2020;20(1):1-13. doi: 10.1186/s12911-020-01210-1

 

  1. Joubert F, Aron S. Open data-sharing in African genomics: A roadmap for success. BMC Genomics. 2023;24(1):78-91. doi: 10.1186/s12864-023-09623-7

 

  1. Diallo A, Manneh J, Keita M, et al. Developing computational biology expertise in Africa: Lessons from H3ABioNet. Brief Bioinform. 2021;22(2):146-160. doi: 10.1093/bib/bbaa257

 

  1. Wilkinson E, Smout C, Barbera M, et al. African genomic surveillance of infectious diseases: Challenges and progress. Nat Commun. 2021;12(1):567-581. doi: 10.1038/s41467-021-20942-x

 

  1. Yemi T, Adeyemi O, Olayemi A, et al. The future of open-source bioinformatics in Africa: Opportunities and risks. PLoS Digit Health. 2022;1(5):e0000015. doi: 10.1371/journal.pdig.0000015

 

  1. Mkhize S, Ndlovu S, Molefe T. Harnessing the PDB for tuberculosis research: A focus on drug resistance in Southern Africa. BMC Bioinformatics. 2020;21(1):105. doi: 10.1186/s12859-020-3377-x

 

  1. Mkhize S, Zungu L, Ngcobo S. Molecular docking of antimicrobial compounds against multidrug-resistant tuberculosis: Insights from South Africa. BMC Pharmacol Toxicol. 2020;21(1):24. doi: 10.1186/s40360-020-00426-4

 

  1. Ogunrinde TJ, Adeyemo WL, Balogun WG. Genomic analysis of sickle cell anemia in Nigeria: Implications for personalized medicine. BMC Genomics. 2019;20(1):1-10. doi: 10.1186/s12864-019-6125-4

 

  1. Wonkam A, Makani J. Sickle cell disease in Africa: An overview of the integrated approach to health, research, education and advocacy. South African Med J. 2019;109(1):40-46. doi: 10.7196/SAMJ.2019.v109i1.13757

 

  1. Ngugi R, Kimenju S, Wang Z. Genomic insights into drought tolerance in maize: A case study from Kenya. Afr J Biotechnol. 2020;19(8):543-552. doi: 10.5897/AJB2020.17219

 

  1. Gire SK, Goba A, Andersen KG, et al. Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science. 2014;345(6202):1369-1372. doi: 10.1126/science.1259657

 

  1. Faye O, Boëlle PY, Heleze E, et al. Chains of transmission and control of Ebola virus disease in Conakry, Guinea, in 2014: An observational study. Lancet Infect Dis. 2015;15(3): 320-326. doi: 10.1016/S1473-3099(14)71075-8

 

  1. Sahin A, Conteh S, Koroma B, Marah L. Real-time tracking of the Ebola virus outbreak in Sierra Leone using Nextstrain. Infect Dis Rep. 2019;11(4):320-327. doi: 10.3390/idr11040034

 

  1. World Health Organization. Ebola Virus Disease-Democratic Republic of the Congo. World Health Organization; 2019. Available from: https://www.who.int/emergencies/disease-outbreak-news/item/06-june-2019-ebola-drc [Last accessed on 2024 Apr 09].

 

  1. Tegally H, Wilkinson E, Giovanetti M, et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature. 2021;592(7854):438-443. doi: 10.1038/s41586-020-03106-7

 

  1. Eshun-Wilson I, Smith J, Moyo L. Genomic surveillance of SARS-CoV-2 in South Africa: Early detection of variants. Nat Genet. 2021;53(2):270-275. doi: 10.1038/s41588-020-00779-5

 

  1. Ndounga M, Ntoumi F, Mbacham WF. Genetic markers of artemisinin resistance in Plasmodium falciparum: Implications for malaria control in Africa. Malar J. 2020;19(1):1-10. doi: 10.1186/s12936-020-03331-4

 

  1. Lwanga J, Kyeyune R, Namugenyi P, Oloya J, Tumwine J. In silico discovery of novel antimalarial compounds using AutoDock: Insights from Ugandan medicinal plants. Afr J Biotechnol. 2018;17(25):783-794. doi: 10.5897/AJB2018.16594

 

  1. Mkhize N, Dlamini S, Pillay M. Molecular dynamics simulations in tuberculosis drug discovery: A South African perspective. J Mol Graph Model. 2020;98:107-115. doi: 10.1016/j.jmgm.2019.107110

 

  1. Kibet CK, Macharia JM, Ngugi CW. Computational drug discovery for HIV in Africa: Challenges and opportunities. Front Pharmacol. 2021;12:678. doi: 10.3389/fphar.2021.00678

 

  1. Amoah LE, Kusi KA, Ofori MF. Computational approaches to antimalarial drug discovery in Africa. J Bioinform Comput Biol. 2020;18(3):1-15. doi: 10.1142/S0219720020500197

 

  1. Mushi MF, Mshana SE, Kidenya BR. ADMET analysis of natural compounds for drug discovery in Tanzania. J Ethnopharmacol. 2019;245:112-120.

 

  1. Ogunrinde SA, Adeyemi OO, Oladipo AO, Adetunji AT, Onanuga O. Genetic variations associated with sickle cell anemia in Nigeria: Insights from genome sequencing analysis. Hum Genet. 2019;138(11-12):1385-1395.

 

  1. Tiemessen CT, Shalekoff S, Kuhn L. PLINK-based genomic analysis of HIV resistance in South Africa. AIDS Res Hum Retroviruses. 2018;34(5):1-10.

 

  1. Ndounga M, Ouedraogo R, Kaboré B, Tchinda J, Tekou G. Phylogenetic analysis and drug resistance mapping of Plasmodium falciparum in African populations. Malar J. 2020;19(1):147-159.

 

  1. Happi AN, Oluniyi PE, Olawoye IB. Evolution and genetic diversity of SARS-CoV-2 in Africa using whole genome sequences. Int J Infect Dis. 2021;103:282-289. doi: 10.1016/j.ijid.2020.11.190

 

  1. Faye O, Faye O, Diallo M, Diallo D, Weidmann M, Sall AA. SARS-CoV-2 genomic analysis from Senegal. Emerg Infect Dis. 2020;26(11):2762-2764. doi: 10.3201/eid2611.202615

 

  1. Molefe P, Masamba P, Oyola SO. Structural biology and drug discovery in Africa: The case of Plasmodium falciparum DHFR. Nat Rev Drug Discov. 2022;21(4):1-15.

 

  1. Smith K, Torres A, Ellis P. Advancements in bioinformatics tools for disease surveillance in Africa. Front Genomics. 2021;6(1):99-113.

 

  1. Ochieng D, Mutiga S, Wanyama S. Barriers to bioinformatics adoption in sub-Saharan Africa: The role of infrastructure and training. Bioinformatics Glob Health. 2022;14(5):301-317.

 

  1. Kamau M, Mwangi M, Ochieng D. Harnessing open-source bioinformatics platforms for genomic epidemiology in Africa. Afr J Bioinform. 2020;15(2):56-72.

 

  1. Lwanga M, Ntale M, Odoi A. Computational docking and molecular dynamics simulations in antimalarial drug discovery. J Chem Inf Model. 2018;58(5):1025-1035.

 

  1. Mkhize N, Zuma K, Mthembu N, Khumalo Z, Dlamini B. Virtual screening and molecular docking studies for the identification of potential MDR-TB therapeutic candidates. J Comput Chem. 2020;41(12):1075-1086.

 

  1. Bayer A, Zhang L, Johnson S. Access to open-source bioinformatics tools in low-resource settings: A comprehensive review. J Bioinform Comput Biol. 2023;21(3):234-249.

 

  1. Wang Y, Qian J. Integration of bioinformatics tools for global health: A case study of phylogenetic analysis in Africa. Bioinformatics Rev. 2022;19(3):210-220.

 

  1. Moyo T, Phiri M, Ncube Z. Impact of Starlink communications in advancing research in remote areas of Africa. Int J Inf Commun Technol. 2024;9(4):112-123.

 

  1. De Vergès M. Starlink Conquers the African Internet Market. Le Monde; 2025. Available from: https://www.lemonde.fr/en/economy/article/2025/02/22/starlink-conquers-the-african-internet-market_6738434_19.html [Last accessed on 2025 Apr 09].

 

  1. H3Africa Consortium. Human Heredity and Health in Africa Initiative. Nat Rev Genet. 2014;15(12):767-772. doi: 10.1038/nrg3791

 

Share
Back to top
Innovative Medicines & Omics, Electronic ISSN: 3060-8740 Print ISSN: 3060-8910, Published by AccScience Publishing