News and Announcements
RESEARCH ARTICLE
Analysis and analytical solution of incommensurate fuzzy fractional nabla difference systems in neural networks
Show Less
1 Key Laboratory of Numerical Simulation for Sichuan Provincial Universities, College of Mathematics and Information Science, Neijiang Normal University, Neijang,
China
2 Faculty of Civil Engineering, University of Tabriz, Tabriz,
Iran
3 Department of Computer Science and Mathematics, Lebanese American University, Beirut,
Lebanon
4 Institute of Space Sciences-subsidiary of INFLPR, Magurele-Bucharest,
Romania
IJOCTA, 025130067 https://doi.org/10.36922/IJOCTA025130067
Received: 30 March 2025 | Revised: 12 June 2025 | Accepted: 25 June 2025 | Published online: 18 July 2025

© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract
Uncertain incommensurate fractional nabla difference systems (IFDSs) in recurrent neural networks (RNNs) are analyzed using fuzzy number theory to address input uncertainties. Fuzzy number theory and its operations are reinvestigated, and the H-differenceable concept is introduced. The existence of a unique H-differenceable solution for incommensurate RNNs is proved. A recursive algorithm is proposed to obtain fuzzy solutions. Illustrative examples with 2-dimensional IFDSs are provided to validate the framework for integrating fractional calculus, fuzzy dynamics and incommensurate RNNs.
Keywords
Fuzzy numbers
Fuzzy neural networks
Incommensurate systems
Nabla fractional difference
Recurrent neural networks
Uncertainty analysis
Funding
This research is supported by the Neijiang Normal University school-level science and technology project (key project, No. XJ2024008301) and Sharestan retrofit design co.
Conflict of interest
The authors declare that they have no conflict of interest to disclose.
References
- Shiri B, Guang Y, Baleanu D. Inverse problems for discrete Hermite nabla difference equation. Appl Math Sci Eng. 2025;33(1):2431000. http://dx.doi.org/10.1080/27690911.2024.2431000
- Beig Mohamadi R, Khastan A, Nieto JJ, Rodr´ıguez-L´opez R. Discrete fractional calculus for fuzzy-number-valued functions and some results on initial value problems for fuzzy fractional difference equations. Inf Sci. 2022;618:1–13. http://dx.doi.org/ 10.1016/j.ins.2022.10.062
- Huang LL, Baleanu D, Mo ZW, Wu GC. Fractional discrete-time diffusion equation with uncertainty: applications of fuzzy discrete fractional calculus. Phys A Stat Mech Appl. 2018;508:166–175. http://dx.doi.org/ 10.1016/j.physa.2018.03.092
- Dassios IK. Stability and robustness of singular systems of fractional nabla difference equations. Circuits Syst Signal Process. 2017;36:49–64. http://dx.doi.org/ 10.1007/s00034-016-0291-x
- Dassios IK. A practical formula of solutions for a family of linear nonautonomous fractional nabla difference equations. J Comput Appl Math. 2018;339:317–328. http://dx.doi.org/10.1016/j.cam.2017.09.030
- Shiri B, Shi YG, Baleanu D. The well-posedness of incommensurate FDEs in the space of continuous functions. 2024;16(8):1058. http://dx.doi.org/ 10.3390/sym16081058
- Shiri B. Well-posedness of the mild solutions for incommensurate systems of delay fractional differential equations. Fractal Fract. 2025;9(2):60. http://dx.doi.org/ 10.3390/fractalfract9020060
- Akram M, Muhammad G, Allahviranloo T, Pedrycz W. Incommensurate non-homogeneous system of fuzzy linear fractional differential equations using the fuzzy bunch of real functions. Fuzzy Sets Syst. 2023;473:108725. http://dx.doi.org/ 10.1016/j.fss.2023.108725
- Abbes A, Ouannas A, Shawagfeh N. An incommensurate fractional discrete macroeconomic sys- tem: bifurcation, chaos, and complexity. Chin Phys B. 2023;32(3):030203. http://dx.doi.org//10.1088/1674-1056/ac7296
- Al-Taani H, Abu Hammad MM, Abudayah M, Diabi L, Ouannas A. On fractional discrete memristive model with incommensurate orders: symmetry, asymmetry, hidden chaos and control approaches. Symmetry. 2025;17(1):143. http://dx.doi.org/ 10.3390/sym17010143
- Shatnawi MT, Djenina N, Ouannas A, Batiha IM, Grassi G. Novel convenient conditions for the stability of nonlinear incommensurate fractional-order difference systems. Alex Eng J. 2022;61(2):1655–1663.http://dx.doi.org/ 10.1016/j.aej.2021.06.073
- Cort´es Campos HM, G´omez-Aguilar JF, Zu´n˜iga- Aguilar CJ, Avalos-Ruiz LF, Lav´ın-Delgado JE. Application of fractional-order integral transforms in the diagnosis of electrical system conditions. Fractals. 2024;32(03):2450059. http://dx.doi.org/ 10.1142/S0218348X24500592
- Gong D, Wang Y. Fuzzy adaptive command-filter control of incommensurate fractional-order non- linear systems. Entropy. 2023;25(6):893. http://dx.doi.org/ 10.3390/e25060893
- Boulkroune A, Bouzeriba A, Bouden T. Fuzzy generalized projective synchronization of incommensurate fractional-order chaotic systems. Neurocomputing. 2016;173:606–614. http://dx.doi.org/ 10.1016/j.neucom.2015.08.003
- Tavazoei M, Asemani MH. Robust stability analysis of incommensurate fractional-order systems with time-varying interval uncertainties. J Frank Inst. 2020;357(18):13800–13815. http://dx.doi.org/ 10.1016/j.jfranklin.2020.09.044
- Zouari F, Boulkroune A, Ibeas A. Neural adaptive quantized output-feedback control- based synchronization of uncertain time-delay incommensurate fractional-order chaotic systems with input nonlinearities. Neurocomputing. 2017;237:200–225.http://dx.doi.org/ 10.1016/j.neucom.2016.11.036
- Oliva-Gonzalez LJ, Mart´ınez-Guerra R, Flores- Flores JP. A fractional PI observer for incommensurate fractional order systems under parametric uncertainties. ISA Trans. 2023;137:275–287. http://dx.doi.org/ 10.1016/j.isatra.2023.01.016
- Muhammad G, Akram M, Hussain N, Allahviran- loo T. Fuzzy Langevin fractional delay differential equations under granular derivative. Inf Sci. 2024;681:121250. http://dx.doi.org/ 10.1016/j.ins.2024.121250
- Muhammad G, Akram M. Fuzzy fractional generalized Bagley–Torvik equation with fuzzy Caputo gH-differentiability. Eng Appl Artif Intell. 2024;133:108265. http://dx.doi.org/ 10.1016/j.engappai.2024.108265
- Muhammad G, Akram M. Fuzzy fractional epidemiological model for Middle East respiratory syndrome coronavirus on complex heterogeneous network using Caputo derivative. Inf Sci. 2024;659:120046. http://dx.doi.org/ 10.1016/j.ins.2023.120046
- Shiri B, Baleanu D, Ma CY. Pathological study on uncertain numbers and proposed solutions for discrete fuzzy fractional order calculus. Open Phys. 2023;21(1):20230135. http://dx.doi.org/ 10.1515/phys-2023-0135
- Shiri B. A unified generalization for Hukuhara types differences and derivatives: solid analysis and comparisons. AIMS Math. 2023;8(1)2168–2190. http://dx.doi.org/ 10.3934/math.2023112
- Dubois D, Prade H. Fuzzy numbers: an overview. Read Fuzzy Sets Intell Syst. 1993;112–148. http://dx.doi.org/ 10.1016/B978-1-4832-1450-4.50015-8
- Zadeh LA. Fuzzy sets. Inf Control. 1965;8(3):338–353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X
- Gao S, Zhang Z, Cao C. Multiplication operation on fuzzy numbers. J Softw. 2009;4(4):331–338. http://dx.doi.org/ 10.17706/JSW
- Guerra ML, Stefanini L. Approximate fuzzy arithmetic operations using monotonic interpolations. Fuzzy Sets Syst. 2005;150(1):5–33. http://dx.doi.org/ 10.1016/j.fss.2004.06.007
- Mukherjee AK, Gazi KH, Salahshour S, Ghosh A, Mondal SP. A brief analysis and interpretation on arithmetic operations of fuzzy numbers. Results Control Optim. 2023;13:100312. http://dx.doi.org/ 10.1016/j.rico.2023.100312
- Stefanini L. A generalization of Hukuhara difference. In: Soft Methods for Handling Variability and Imprecision. Berlin, Heidelberg: Springer; 2008: 203–210. http://dx.doi.org/ 10.1007/978-3-540-85027-425
- Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016.