AccScience Publishing / IJOCTA / Online First / DOI: 10.36922/IJOCTA025080034
RESEARCH ARTICLE

Proportional integral derivative plus control for nonlinear discrete-time state-dependent parameter: Industrial applications

E. M. Shaban1,2*
Show Less
1 Department of Mechanical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan, Saudi Arabia
2 On leave from Faculty of Engineering (Mataria), Helwan University, Cairo, Egypt
Received: 21 February 2025 | Revised: 20 March 2025 | Accepted: 11 April 2025 | Published online: 16 July 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

In modern industrial automation, control of nonlinear systems with complex dynamics poses significant challenges, especially when dealing with discrete time models that incorporate state-dependent parameters. Addressing this need, this paper explores the Proportional-integral-derivative-plus (PID+) control approach applied to nonlinear systems characterized by state-dependent parameter (SDP) discrete-time models. Two industrial applications are demonstrated as follows: a bitumen tank system and a reeling/packing machine used in a bitumen membrane sheet production line. Both systems are modeled using discrete-time transfer functions with SDP structures. The present work extends the novel SDP-PID+ approach by formulating its control algorithms and integrating additional proportional and input compensators. This enhancement enables effective and intuitive handling of processes characterized by discrete-time transfer functions with any order and sampling time delay. The approach enables a straightforward implementation of the SDP-PID+ algorithm across two distinct industrial applications, considering their varying response times. The approach reduces the time required to design the SDP-PID+ method for the selected applications while also demonstrating enhanced robustness and performance. It effectively mitigates disturbances and accommodates nonlinearities, higher-order dynamics, and delays.

Keywords
Proportional-integral-derivative control
State-dependent parameter models
Non-minimal state space
State variable feedback
Funding
None.
Conflict of interest
The author has no relevant financial or nonfinancial interests to disclose.
References
  1. Borase RP, Maghade DK, Sondkar SY, Pawar SN. A review of PID control, tuning methods, and applications. Int J Dyn Control. 2021;9:818–827. http://dx.doi.org/10.1007/s40435-020-00665-4

 

  1. Bennett S. Development of the PID controller. IEEE Control Syst Mag. 1993;13(6):58–62. https://doi.org/10.1109/37.248006

 

  1. Liu L, Lv W, Liu J, et al. Performance of active- quenching SPAD array based on the tri-state gates of FPGA and packaged with bare chip stacking. Sensors, 2023;23(9):4314. https://doi.org/10.3390/s23094314

 

  1. Vega P, Prada C, Aleixandre V. Self-tuning predictive PID controller. IEE Proc D: Control Theory Appl. 1991;138:303–312. http://dx.doi.org/10.1049/ip-d.1991.0041

 

  1. Porter B, Jones AH. Genetic tuning of digital PID controllers. Electron Lett. 1992;28(9):843–844. IET Digital Library.

 

  1. ˚Astr¨om KJ, H¨agglund T, Hang CC, Ho WK, Automatic tuning and adaptation for PID controllers: a survey. Control Eng Pract. 1993;1(4):699–714.http://dx.doi.org/10.1016/0967-0661(93)91394-

 

  1. Leva A. PID autotuning algorithm based on relay feedback. IEEE Proc D Control Theory Appl. 1993;140:328–338. http://dx.doi.org/10.1049/ip-d.1993.0044.

 

  1. Khodadadi H, Ghadiri H. Self-tuning PID con- troller design using fuzzy logic for half-car active suspension system. Int J Dyn Control. 2018;6(1):224–232. http://dx.doi.org/10.1007/s40435-016-0291-5.

 

  1. Loiseau J-J, Boudana M, Ladaci S. Fractional order PIDµ control design for a Class of cyber- physical systems with fractional order time-delay models. Int J Cyber Phys Syst. 2019;1(2):1–18. http://dx.doi.org/10.4018/IJCPS.2019070101.

 

  1. Hamed AR, Shaban EM, Darwish RR, Abdel Ghany AM. Design and implementation of discrete PID control applied to Bitumen tank based on a new approach of pole placement technique. J of Dyn Control. 2017;5(3):604–613. https://doi.org/10.1007/s40435-015-0199-

 

  1. Shaban EM, Sayed H, Abdelhamid A. A novel discrete PID+ controller applied to higher-order/time-delayed nonlinear  systems with practical implementation. J Dyn Control. 2019;7(3):888–900. https://doi.org/10.1007/s40435-018-0472-5

 

  1. Sayed H, Shaban EM, Abdelhamid A. State dependent parameter PID+ control applied to a nonlinear manipulator arm. In: RAEMP 2019 International Conference on Recent Advances in Engineering Mathematics and Physics, Dec 24–26. Springer, Cairo, Egypt; 2019. http://dx.doi.org/10.1007/978-3-030-39847-71

 

  1. Hamed AR, Shaban EM, Abdelhaleem, Abdel Ghany AM. Industrial implementation of state dependent parameter PID+control for nonlinear time-delayed Bitumen tank system. Iran J Sci Technol - Trans Electr. 2022;46(11):743–751. https://doi.org/10.1007/s40998-022-00488-3

 

  1. Bashiri AH. Empirical study of robust/developed PID control for nonlinear time-delayed dynamical system in discrete time domain. Heliyon, 2024;10(9). http://dx.doi.org/10.1016/j.heliyon.2024.e11935

 

  1. Shaban EM, Hamed AR, Bassiuny AM, Abdelghany AM. On implementation of nonlinear PID+controller embedded on FPGA mod- ule for industrial system. Int J Dyn Contr. 2023;12(7):2331–2340. https://doi.org/10.1007/s40435-023-01338-8

 

  1. Taylor CJ, Young PC, Chotai A. State- space control system design based on non-minimal state-variable feedback: further generalization and unification results. Int J Control. 2000;73:1329–1345. http://dx.doi.org/10.1080/00207170010004698.

 

  1. Shaban EM, Hamed AR, Darwish RR, Abdel Ghany AM. New tuning approach of discrete PI/PID controller applied to Bitumen system based on non-minimal state-space formulation. In: ICCTA 2015, IEEE 25th International Conference, Oct 24–26, Alexandria, Egypt. IEEE Xplore Digital Library; 2015:52–57.

 

  1. Shaban EM, Ako S, Taylor CJ, Seward DW. Development of an automated verticality alignment system for a vibro-lance. Autom Constr. 2008;17(5):645–655. http://dx.doi.org/10.1016/j.autcon.2007.08.001

 

  1. Taylor CJ, Shaban EM, Stables MA, Ako S. Proportional-integral-plus control applications of state-dependent parameter models. Part I: J Syst Control Eng. 2007;221(7):1019–1031. https://doi.org/10.1243/09596518JSCE366

 

  1. Stables MA, James CJ. Non-linear Control of Ventilation Rate using State-dependent Parameter Models. Biosyst Eng. 2006;95(1):7–18, ISSN 1537–5110. https://doi.org/10.1016/j.biosystemseng.2006.05.015

 

  1. Taylor CJ,  Robertson    State-dependent control of a hydraulically actuated nuclear decommissioning robot. Control Eng Pract. 2013;21(12):1716–1725. http://dx.doi.org/10.1016/j.conengprac.2013.06.003

 

  1. Deepa SN, Sugumaran G. Design of PID controller for higher-order continuous systems using MPSO-based model formulation technique. Int J Electr Electron Eng. 2011;5(4):289–295. http://dx.doi.org/10.5281/zenodo.1056472

 

  1. Young PC. Stochastic, dynamic modelling and signal processing: Time variable and state dependent parameter estimation. In: Fitzgerald WJ, ed. Nonlinear and Nonstationary Signal Processing. Cambridge University Press; 2000. http://dx.doi.org/10.1016/B978-0-7506-7359-4.50015-9

 

  1. Shaban EM, James CJ, Chotai A. State dependent parameter, proportional-Integral-Plus (SDP-PIP) control of a Nonlinear Robot Digger Arm. In: UKACC Control 2004, University of Bath, Bath, UK, ID–059. 2004; http://dx.doi.org/10.1016/j.ifacol.2005.10.053

 

  1. Dixon R, Taylor CJ, Shaban EM. Comparison of classical and modern control applied to an excavator-arm. International Federation of Automatic Control 16th Triennial World Congress (IFAC-05), Prague, Czech Republic. 2005;38(1):589–594. http://dx.doi.org/10.3182/20050703-6-CZ- 1902.01368

 

  1. Shaban EM, Zied K, Taylor CJ, Seward DW. Nonlinear control system design for construction robots: estimation, partial linearization by feedback and state-dependent-parameter control, 22nd International Symposium on Automation and Robotics in Construction (ISARC-05), Fer- rara, Italy; 2005. https://doi.org/10.22260/ISARC2005/0041.

 

  1. Shaban EM, Nada AA. On linearization of nonlinear dynamic systems described by state- dependent-Parameter (SDP) Discrete-Time Model. In: 5th European Conference on Computational Mechanics (ECCM V), Barcelona, Spain. CIMNE - ECCM V Proceedings; 2014: 538–547.

 

  1. Young PC. Recursive Estimation and Time Series Analysis. Springer-Verlag; 1984. http://dx.doi.org/10.1007/978-3-642-21981-8

 

  1. Young PC. Simplified Refined Instrumental Variable (SRIV) estimation and True Digital Control (TDC): A tutorial introduction. 1st European Control Conference: Grenoble, France.1991;1295–1306.

 

  1. Janot A, Young PC, Gautier M. Identification and control of electro-mechanical systems using state dependent parameter estimation. Int J Control. 2017;90(4):643–660. http://dx.doi.org/10.1080/00207179.2016.1209565

 

  1. Taylor CJ, Pedregal DJ, Young PC, Tych W. Environmental time series analysis and forecasting with the Captain Toolbox. Environ Model Softw. 2007;22:797–814. http://dx.doi.org/10.1016/j.envsoft.2006.06.002

 

  1. Young PC, Taylor CJ, Tych W, Pedregal DJ. The Captain Toolbox. Center for Research on Environmental Systems and Statistics, Lancaster Uni- versity:UK. 2007. http://www.es.lancs.ac.uk/cres/captain

 

  1. He J-B, Wang Q-G, Lee T-H. PI/PID controller tuning via LQR approach. Chem Eng Sci. 2000;55(13):2429–2439. http://dx.doi.org/10.1016/S0009-2509(99)00512-6

 

  1. Das S, Pan I, Halder K, Das S, Gupta A. Optimum weight selection-based LQR formulation for the design of fractional-order PID controllers to handle a class of fractional-order systems. In: International Conference on Computer Communication and Informatics (ICCCI), Jan 4, IEEE; 2013: pp. 1–6; http://dx.doi.org/10.1109/ICCCI.2013.6466137

 

  1. Young PC, Behzadi MA, Wang CL, Chotai A. Direct digital and adaptive control by input-output, state-variable feedback pole assignment. Int J Control. 1987;46:1867–1881. http://dx.doi.org/10.1080/00207178708934274

 

  1. McCabe AP, Young PC, Chotai A, Taylor CJ. Proportional-Integral-Plus (PIP) control of non- linear systems. Syst Sci. 2000;26:25–46. http://dx.doi.org/10.1002/sys.10004

 

  1. ˚Astr¨om KJ, Wittenmark B. Computer Controlled Systems: Theory and Design. Prentice-Hall Information and System Sciences Series. 1984.

 

  1. Shaban EM. Deadbeat response of nonlinear systems described by discrete-time state dependent parameter using exact linearization by local coordinate transformation. J Am Sci. 2012;8(10):355–366. http://dx.doi.org/10.7537/j.issn.1545-1003.2012.10.053

 

  1. Shaban EM, Taylor CJ. Proportional-Integral- Plus control of a class of nonlinear systems using exact and partial linearization by feed- back. ICGST Int J Autom Control Syst Eng. 2006;6:55–70. http://dx.doi.org/10.1109/ICCCI.2013.6466137

 

  1. Hamed AR, Darwish RR, Shaban EM, Abdel Ghany AM. Hardware synthesis and dynamic modeling of Bitumen tank. J Am Sci. 2014;10(12):183–189. http://dx.doi.org/10.7537/j.issn.1545-1003.2014.12.021
Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing