AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025380389
RESEARCH ARTICLE

Integrated 3D printing of cementless CoCrMo femoral condyles optimizes trabecular surfaces and material performance

Jiawei Wu1† Zhiwei Zhou1† Tianbai Yu1,2 Wei Wang1 Brian Y. Chang3,4*
Show Less
1 Suzhou Microport Orthorecon Co., Ltd., Suzhou, Jiangsu, China
2 School of Health Science and Engineering, University of Shanghai for Science & Technology, Shanghai, China
3 Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
4 Miracle Point Global LLC, Irvine, CA, United States of America
†These authors contributed equally to this work.
Received: 19 September 2025 | Accepted: 3 November 2025 | Published online: 11 November 2025
(This article belongs to the Special Issue 3D-Printed Biomedical Devices)
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Conventional cementless femoral condyles in artificial knee systems are commonly manufactured by casting followed by a surface treatment using plasma spraying or metallic sintering. However, both techniques suffer from weak coating-substrate interfaces that contribute to early loosening and higher revision rates. To overcome this limitation, we employed integrated 3D printing (I3P), an additive manufacturing strategy based on laser powder bed fusion, to fabricate monolithic cobalt-chromium-molybdenum femoral condyles with trabecular-inspired porous architectures. Compared with cast-sintered counterparts, I3P substrates exhibited refined microstructures and superior mechanical performance after hot isostatic pressing, reaching a yield strength of 637.33 MPa, ultimate tensile strength of 1140.00 MPa, and elongation of 27.33%. The I3P femoral condyles also showed enhanced fatigue resistance, withstanding 10 million cycles under a 3000 N load, and demonstrated improved wear behavior against ultrahigh-molecular-weight polyethylene liners. Furthermore, the trabecular-inspired lattice achieved stronger integration with the substrate than sintered coatings, with tensile and shear strengths of 56.09 and 49.97 MPa, respectively. Together, these findings establish I3P as a robust manufacturing strategy that integrates substrate and surface in a single step, enabling the production of durable, osteointegrative femoral condyles with significant potential to improve implant longevity and clinical outcomes in knee joint reconstruction.

Graphical abstract
Keywords
Additive manufacturing
Cementless femoral condyles
Cobalt-chromium-molybdenum alloys
Fatigue and wear resistance
Integrated 3D printing
Osteointegration
Total knee arthroplasty
Trabecular surface architecture
Funding
All materials, products, equipment, and funding for this study were provided by Suzhou Microport Orthorecon Co., Ltd.
Conflict of interest
J.W., Z.Z., T.Y., and W.W. are employees of Suzhou Microport Orthorecon, a subsidiary of MicroPort Orthopedics which produces and markets the commercial EVOLUTION femoral condyle implant examined in this study. B.Y.C. is an employee of MicroPort at the time of publication of this work.
References
  1. Batailler C, Swan J, Sappey Marinier E, Servien E, Lustig S. New technologies in knee arthroplasty: Current concepts. J Clin Med. 2020;10(1):47. doi: 10.3390/jcm10010047
  2. Mukartihal R, Das R, Chandan S, et al. Technologies in total knee arthroplasty. J Karnataka Orth Assc. 2023; 11(1):5-12. doi: 10.13107/jkoa.2023.v11i01.057
  3. Prakash R, Agrawal Y. Robotic technology in total knee arthroplasty. Br J Hosp Med. 2023;84(6):1-9. doi: 10.12968/hmed.2022.0491
  4. Haslhofer DJ, Kraml N, Stadler C, Gotterbarm T, Klotz MC, Klasan A. Cementless fixation in total knee arthroplasty: Current evidence and future perspective. Arch Orthop Trauma Surg. 2024;145(1):101. doi: 10.1007/s00402-024-05670-2
  5. Lohberger B, Eck N, Glaenzer D, Lichtenegger H, Ploszczanski L, Leithner A. Cobalt chromium molybdenum surface modifications alter the osteogenic differentiation potential of human mesenchymal stem cells. Materials (Basel). 2020;13(19):4292. doi: 10.3390/ma13194292
  6. Anselme K, Linez P, Bigerelle M, et al. The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour. Biomaterials. 2000;21(15):1567-1577. doi: 10.1016/S0142-9612(00)00042-9
  7. Logan N, Sherif A, Cross AJ, et al. TiO2‐coated CoCrMo: Improving the osteogenic differentiation and adhesion of mesenchymal stem cells in vitro. J Biomed Mater Res. 2015;103(3):1208-1217. doi: 10.1002/jbm.a.35264
  8. Saroya M, Singh N, Singh A. Thermal spray coating technology – A review. Int J Multidiscip Res. 2023;5(3):2990. doi: 10.36948/ijfmr.2023.v05i03.2990
  9. Heimann RB. Thermal spraying of biomaterials. Surf Coat Technol. 2006;201(5):2012-2019. doi: 10.1016/j.surfcoat.2006.04.052
  10. Kumari R, Majumdar JD. Microstructure and surface mechanical properties of plasma spray deposited and post spray heat treated hydroxyapatite (HA) based composite coating on titanium alloy (Ti-6Al-4V) substrate. Mater Charact. 2017;131:12-20. doi: 10.1016/j.matchar.2017.06.011
  11. Mittal M, Nath S, Prakash S. Splat formation and degradation of hydroxyapatite during plasma spraying process. Adv Mater Sci. 2011;11(2). doi: 10.2478/v10077-011-0008-6
  12. Patel B, Inam F, Reece M, et al. A novel route for processing cobalt–chromium–molybdenum orthopaedic alloys. J R Soc Interface. 2010;7(52):1641-1645. doi: 10.1098/rsif.2010.0036
  13. Minouei H, Fathi M, Meratin M, Ghazvinizadeh H. Heat treatment of cobalt-base alloy surgical implants with hydroxyapatite-bioglass for surface bioactivation. Iran J Mater Sci Eng. 2012;9(3):33-39.
  14. Das A, Rajkumar P. Metal 3D printing of biometals for prostheses and implants: A review. Explor BioMat X. 2025;2:101338. doi: 10.37349/ebmx.2025.101338
  15. Chowdhury S, Yadaiah N, Prakash C, et al. Laser powder bed fusion: A state-of-the-art review of the technology, materials, properties & defects, and numerical modelling. J Mater Res Technol. 2022;20:2109-2172. doi: 10.1016/j.jmrt.2022.07.121
  16. Archaryagie KCS, Tang Y. Enhancing powder bed quality in laser powder bed fusion: A review of monitoring, data processing, and adaptive control strategies. J Manuf Process. 2025;149:276-304. doi: 10.1016/j.jmapro.2025.05.058
  17. Walker J, Middendorf JR, Lesko CCC, Gockel J. Multi-material laser powder bed fusion additive manufacturing in 3-dimensions. Manuf Lett. 2022;31:74-77. doi: 10.1016/j.mfglet.2021.07.011
  18. Hasan N, Habibor Rahman M, Wessman A, Smith T, Shafae M. Process defects knowledge modeling in laser powder bed fusion additive manufacturing: An ontological framework. Manuf Lett. 2023;35:822-833. doi: 10.1016/j.mfglet.2023.08.132
  19. Sandu AV, Baltatu MS, Nabialek M, Savin A, Vizureanu P. Characterization and mechanical proprieties of new TiMo alloys used for medical applications. Materials (Basel). 2019;12(18):2973. doi: 10.3390/ma12182973
  20. Baltatu MS, Tugui CA, Perju MC, et al. Biocompatible titanium alloys used in medical applications. Rev Chim. 2019;70(4):1302-1306. doi: 10.37358/RC.19.4.7114
  21. Jiao J, Hong Q, Zhang D, et al. Influence of porosity on osteogenesis, bone growth and osteointegration in trabecular tantalum scaffolds fabricated by additive manufacturing. Front Bioeng Biotechnol. 2023;11: 1117954. doi: 10.3389/fbioe.2023.1117954
  22. Zhou Y, Ning F, Zhang P, Sharma A. Geometrical, microstructural, and mechanical properties of curved-surface AlSi10Mg parts fabricated by powder bed fusion additive manufacturing. Mater Des. 2021;198:109360. doi: 10.1016/j.matdes.2020.109360
  23. Ramavath D, Yeole SN, Kode JP, Pothula N, Devana SR. Development of patient-specific 3D printed implants for total knee arthroplasty. Explor Med. Published online December 28, 2023:1033-1047. doi: 10.37349/emed.2023.00193
  24. Velásquez-García LF, Kornbluth Y. Biomedical applications of metal 3D printing. Annu Rev Biomed Eng. 2021;23(1):307-338. doi: 10.1146/annurev-bioeng-082020-032402
  25. Chowdhury MS, Oliullah MS, Hossen MZ, et al. Additive manufacturing in bone science: A cutting-edge review of its potential and progress. Med Nov Technol Devices. 2025;27:100379. doi: 10.1016/j.medntd.2025.100379
  26. Li Y, Jiang D, Zhu R, Yang C, Wang L, Zhang LC. Revolutionizing medical implant fabrication: Advances in additive manufacturing of biomedical metals. Int J Extrem Manuf. 2025;7(2):022002. doi: 10.1088/2631-7990/ad92cc
  27. Li G, Wang L, Pan W, et al. In vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects. Sci Rep. 2016;6(1):34072. doi: 10.1038/srep34072
  28. Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: Three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials. 2006;27(35):5892-5900. doi: 10.1016/j.biomaterials.2006.08.013
  29. Wang X, Zhang D, Peng H, Yang J, Li Y, Xu J. Optimize the pore size-pore distribution-pore geometry-porosity of 3D-printed porous tantalum to obtain optimal critical bone defect repair capability. Biomater Adv. 2023;154:213638. doi: 10.1016/j.bioadv.2023.213638
  30. Jones A, Arns C, Sheppard A, Hutmacher D, Milthorpe B, Knackstedt M. Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials. 2007;28(15):2491-2504. doi: 10.1016/j.biomaterials.2007.01.046
  31. Li J, Yang Y, Sun Z, et al. Integrated evaluation of biomechanical and biological properties of the biomimetic structural bone scaffold: Biomechanics, simulation analysis, and osteogenesis. Materials Today Bio. 2024;24:100934. doi: 10.1016/j.mtbio.2023.100934
  32. Qu Z, Yue J, Song N, Li S. Innovations in three-dimensional-printed individualized bone prosthesis materials: Revolutionizing orthopedic surgery: A review. Int J Surg. 2024;110(10):6748-6762. doi: 10.1097/JS9.0000000000001842

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing