Integrated 3D printing of cementless CoCrMo femoral condyles optimizes trabecular surfaces and material performance
Conventional cementless femoral condyles in artificial knee systems are commonly manufactured by casting followed by a surface treatment using plasma spraying or metallic sintering. However, both techniques suffer from weak coating-substrate interfaces that contribute to early loosening and higher revision rates. To overcome this limitation, we employed integrated 3D printing (I3P), an additive manufacturing strategy based on laser powder bed fusion, to fabricate monolithic cobalt-chromium-molybdenum femoral condyles with trabecular-inspired porous architectures. Compared with cast-sintered counterparts, I3P substrates exhibited refined microstructures and superior mechanical performance after hot isostatic pressing, reaching a yield strength of 637.33 MPa, ultimate tensile strength of 1140.00 MPa, and elongation of 27.33%. The I3P femoral condyles also showed enhanced fatigue resistance, withstanding 10 million cycles under a 3000 N load, and demonstrated improved wear behavior against ultrahigh-molecular-weight polyethylene liners. Furthermore, the trabecular-inspired lattice achieved stronger integration with the substrate than sintered coatings, with tensile and shear strengths of 56.09 and 49.97 MPa, respectively. Together, these findings establish I3P as a robust manufacturing strategy that integrates substrate and surface in a single step, enabling the production of durable, osteointegrative femoral condyles with significant potential to improve implant longevity and clinical outcomes in knee joint reconstruction.

- Batailler C, Swan J, Sappey Marinier E, Servien E, Lustig S. New technologies in knee arthroplasty: Current concepts. J Clin Med. 2020;10(1):47. doi: 10.3390/jcm10010047
- Mukartihal R, Das R, Chandan S, et al. Technologies in total knee arthroplasty. J Karnataka Orth Assc. 2023; 11(1):5-12. doi: 10.13107/jkoa.2023.v11i01.057
- Prakash R, Agrawal Y. Robotic technology in total knee arthroplasty. Br J Hosp Med. 2023;84(6):1-9. doi: 10.12968/hmed.2022.0491
- Haslhofer DJ, Kraml N, Stadler C, Gotterbarm T, Klotz MC, Klasan A. Cementless fixation in total knee arthroplasty: Current evidence and future perspective. Arch Orthop Trauma Surg. 2024;145(1):101. doi: 10.1007/s00402-024-05670-2
- Lohberger B, Eck N, Glaenzer D, Lichtenegger H, Ploszczanski L, Leithner A. Cobalt chromium molybdenum surface modifications alter the osteogenic differentiation potential of human mesenchymal stem cells. Materials (Basel). 2020;13(19):4292. doi: 10.3390/ma13194292
- Anselme K, Linez P, Bigerelle M, et al. The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour. Biomaterials. 2000;21(15):1567-1577. doi: 10.1016/S0142-9612(00)00042-9
- Logan N, Sherif A, Cross AJ, et al. TiO2‐coated CoCrMo: Improving the osteogenic differentiation and adhesion of mesenchymal stem cells in vitro. J Biomed Mater Res. 2015;103(3):1208-1217. doi: 10.1002/jbm.a.35264
- Saroya M, Singh N, Singh A. Thermal spray coating technology – A review. Int J Multidiscip Res. 2023;5(3):2990. doi: 10.36948/ijfmr.2023.v05i03.2990
- Heimann RB. Thermal spraying of biomaterials. Surf Coat Technol. 2006;201(5):2012-2019. doi: 10.1016/j.surfcoat.2006.04.052
- Kumari R, Majumdar JD. Microstructure and surface mechanical properties of plasma spray deposited and post spray heat treated hydroxyapatite (HA) based composite coating on titanium alloy (Ti-6Al-4V) substrate. Mater Charact. 2017;131:12-20. doi: 10.1016/j.matchar.2017.06.011
- Mittal M, Nath S, Prakash S. Splat formation and degradation of hydroxyapatite during plasma spraying process. Adv Mater Sci. 2011;11(2). doi: 10.2478/v10077-011-0008-6
- Patel B, Inam F, Reece M, et al. A novel route for processing cobalt–chromium–molybdenum orthopaedic alloys. J R Soc Interface. 2010;7(52):1641-1645. doi: 10.1098/rsif.2010.0036
- Minouei H, Fathi M, Meratin M, Ghazvinizadeh H. Heat treatment of cobalt-base alloy surgical implants with hydroxyapatite-bioglass for surface bioactivation. Iran J Mater Sci Eng. 2012;9(3):33-39.
- Das A, Rajkumar P. Metal 3D printing of biometals for prostheses and implants: A review. Explor BioMat X. 2025;2:101338. doi: 10.37349/ebmx.2025.101338
- Chowdhury S, Yadaiah N, Prakash C, et al. Laser powder bed fusion: A state-of-the-art review of the technology, materials, properties & defects, and numerical modelling. J Mater Res Technol. 2022;20:2109-2172. doi: 10.1016/j.jmrt.2022.07.121
- Archaryagie KCS, Tang Y. Enhancing powder bed quality in laser powder bed fusion: A review of monitoring, data processing, and adaptive control strategies. J Manuf Process. 2025;149:276-304. doi: 10.1016/j.jmapro.2025.05.058
- Walker J, Middendorf JR, Lesko CCC, Gockel J. Multi-material laser powder bed fusion additive manufacturing in 3-dimensions. Manuf Lett. 2022;31:74-77. doi: 10.1016/j.mfglet.2021.07.011
- Hasan N, Habibor Rahman M, Wessman A, Smith T, Shafae M. Process defects knowledge modeling in laser powder bed fusion additive manufacturing: An ontological framework. Manuf Lett. 2023;35:822-833. doi: 10.1016/j.mfglet.2023.08.132
- Sandu AV, Baltatu MS, Nabialek M, Savin A, Vizureanu P. Characterization and mechanical proprieties of new TiMo alloys used for medical applications. Materials (Basel). 2019;12(18):2973. doi: 10.3390/ma12182973
- Baltatu MS, Tugui CA, Perju MC, et al. Biocompatible titanium alloys used in medical applications. Rev Chim. 2019;70(4):1302-1306. doi: 10.37358/RC.19.4.7114
- Jiao J, Hong Q, Zhang D, et al. Influence of porosity on osteogenesis, bone growth and osteointegration in trabecular tantalum scaffolds fabricated by additive manufacturing. Front Bioeng Biotechnol. 2023;11: 1117954. doi: 10.3389/fbioe.2023.1117954
- Zhou Y, Ning F, Zhang P, Sharma A. Geometrical, microstructural, and mechanical properties of curved-surface AlSi10Mg parts fabricated by powder bed fusion additive manufacturing. Mater Des. 2021;198:109360. doi: 10.1016/j.matdes.2020.109360
- Ramavath D, Yeole SN, Kode JP, Pothula N, Devana SR. Development of patient-specific 3D printed implants for total knee arthroplasty. Explor Med. Published online December 28, 2023:1033-1047. doi: 10.37349/emed.2023.00193
- Velásquez-García LF, Kornbluth Y. Biomedical applications of metal 3D printing. Annu Rev Biomed Eng. 2021;23(1):307-338. doi: 10.1146/annurev-bioeng-082020-032402
- Chowdhury MS, Oliullah MS, Hossen MZ, et al. Additive manufacturing in bone science: A cutting-edge review of its potential and progress. Med Nov Technol Devices. 2025;27:100379. doi: 10.1016/j.medntd.2025.100379
- Li Y, Jiang D, Zhu R, Yang C, Wang L, Zhang LC. Revolutionizing medical implant fabrication: Advances in additive manufacturing of biomedical metals. Int J Extrem Manuf. 2025;7(2):022002. doi: 10.1088/2631-7990/ad92cc
- Li G, Wang L, Pan W, et al. In vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects. Sci Rep. 2016;6(1):34072. doi: 10.1038/srep34072
- Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: Three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials. 2006;27(35):5892-5900. doi: 10.1016/j.biomaterials.2006.08.013
- Wang X, Zhang D, Peng H, Yang J, Li Y, Xu J. Optimize the pore size-pore distribution-pore geometry-porosity of 3D-printed porous tantalum to obtain optimal critical bone defect repair capability. Biomater Adv. 2023;154:213638. doi: 10.1016/j.bioadv.2023.213638
- Jones A, Arns C, Sheppard A, Hutmacher D, Milthorpe B, Knackstedt M. Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials. 2007;28(15):2491-2504. doi: 10.1016/j.biomaterials.2007.01.046
- Li J, Yang Y, Sun Z, et al. Integrated evaluation of biomechanical and biological properties of the biomimetic structural bone scaffold: Biomechanics, simulation analysis, and osteogenesis. Materials Today Bio. 2024;24:100934. doi: 10.1016/j.mtbio.2023.100934
- Qu Z, Yue J, Song N, Li S. Innovations in three-dimensional-printed individualized bone prosthesis materials: Revolutionizing orthopedic surgery: A review. Int J Surg. 2024;110(10):6748-6762. doi: 10.1097/JS9.0000000000001842
