AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025270261
REVIEW ARTICLE

Biomimetic and personalized optimization of additively manufactured metallic bone implants: Design, simulation, and clinical outcomes

Lamiae Jaouher1 Abdelwahed Barkaoui1,2* Khalil Aouadi3 Haifa Sallem4
Show Less
1 LERMA Lab, International University of Rabat, Parc Technopolis, Rocade de Rabat-Sale, Morocco
2 LMAI Lab, Ecole Nationale d’Ingénieurs de Tunis, Université de Tunis El Manar, Tunisia
3 Engineering and Durability of Materials Center, Moroccan Foundation for Advanced Science, Innovation & Research (MAScIR), Mohammed VI Polytechnic University, Hay Moulay Rachid, Ben Guerir, Morocco
4 Institute of Systems Engineering (HEI), HES-SO Valais-Wallis, University of Applied Sciences and Arts Western Switzerland (HES-SO), Sion, Switzerland
Received: 1 July 2025 | Accepted: 6 August 2025 | Published online: 25 August 2025
(This article belongs to the Special Issue 3D Printing for Advancing Orthopedic Applications)
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Additive manufacturing (AM) has transformed the field of metallic bone implants by enabling the production of patient-specific, biomimetic, and high-performance devices. This review focuses on the personalized design of bone implants using AM technologies, particularly selective laser melting and electron beam melting, which allow the fabrication of complex lattice structures that replicate the trabecular architecture of native bone. These architectures enhance load transfer, reduce stress shielding, and promote osseointegration. The review also explores current strategies and digital tools for biomimetic design, as well as numerical simulation methods—including finite element analysis, computational fluid dynamics, and multi-field coupling models—used to optimize implant geometry, porosity, and mechanical performance. Furthermore, recent clinical and preclinical data on in vivo functionality and biological integration are synthesized, with emphasis on the latest advancements to enhance functional outcomes. Altogether, the work provides a comprehensive roadmap for researchers and clinicians seeking to advance implant innovation and improve skeletal tissue repair.

Graphical abstract
Keywords
Additive manufacturing
Biomimetic implants
Electron beam melting
Lattice structures
Numerical simulation
Personalized bone implants
Selective laser melting
Funding
This work was supported by the Morocco–Switzerland bilateral program within the framework of the Memorandum of Understanding between the Ministry of Higher Education, Scientific Research and Innovation of the Kingdom of Morocco and the State Secretariat for Education, Research and Innovation of the Swiss Confederation.
Conflict of interest
The authors declare no competing interests.
References
  1. Musculoskeletal health. https://www.who.int/news-room/ fact-sheets/detail/musculoskeletal-conditions. Accessed December 24, 2024.
  2. Fortune Business Insights. Orthopedic Implants Market Size, Share & Industry Analysis, by Product (Joint Reconstruction, Spinal Implants, Trauma Implants, and Others), by End-user (Hospitals & Ambulatory Surgery Centers, Orthopedic Clinics & Others), and Regional Forecast, 2024-2032. Fortune Business Insights; 2025. Accessed May 10, 2025. https://www.fortunebusinessinsights.com/industry-reports/ orthopedic-implants-market-101659
  3. Healthcare Additive Manufacturing Market Size Report, 2030. https://www.grandviewresearch.com/industry-analysis/healthcare-additive-manufacturing-market. Accessed December 24, 2024.
  4. Kumar R, Kumar M, Chohan JS. The role of additive manufacturing for biomedical applications: a critical review. J Manuf Process. 2021;64:828-850. doi: 10.1016/j.jmapro.2021.02.022
  5. Hull CW, Gabriel S. National Center for Biotechnology Information. PubChem Patent Summary for US-6027324-A, Apparatus for production of three dimensional objects by stereolithography. https://pubchem.ncbi.nlm.nih.gov/ patent/US-6027324-A. Accessed June 3, 2025.
  6. Zhou L, Miller J, Vezza J, et al. Additive manufacturing: a comprehensive review. Sensors. 2024;24(9):2668. doi: 10.3390/s24092668
  7. Amaya-Rivas JL, Perero BS, Helguero CG, et al. Future trends of additive manufacturing in medical applications: an overview. Heliyon. 2024;10(5):e26641. doi: 10.1016/j.heliyon.2024.e26641
  8. Li W, Li J, Pan C, Lee JS, Kim BS, Gao G. Light-based 3D bioprinting techniques for illuminating the advances of vascular tissue engineering. Mater Today Bio. 2024;29:101286. doi: 10.1016/j.mtbio.2024.101286
  9. Hajare DM, Gajbhiye TS. Additive manufacturing (3D printing): recent progress on advancement of materials and challenges. Mater Today Proc. 2022;58(Part 2):736-743. doi: 10.1016/j.matpr.2022.02.391
  10. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng. 2018;143:172-196. doi: 10.1016/j.compositesb.2018.02.012
  11. Aufa AN, Hassan MZ, Ismail Z, et al. Current trends in additive manufacturing of selective laser melting for biomedical implant applications. J Mater Res Technol. 2024;31:213-243. doi: 10.1016/j.jmrt.2024.06.041
  12. Zhao L, Wang Y, Wang Q, Zhang Y, Yang G. Optimization design and SLM manufacturing of porous titanium alloy femoral stem. Materials. 2024;17(19):4896. doi: 10.3390/ma17194896
  13. Razzaq MH, Zaheer MU, Asghar H, Aktas OC, Aycan MF, Mishra YK. Additive manufacturing for biomedical bone implants: shaping the future of bones. Mater Sci Eng R Rep. 2025;163:100931. doi: 10.1016/j.mser.2025.100931
  14. Osipovich K, Kalashnikov K, Chumaevskii A, et al. Wire-feed electron beam additive manufacturing: a review. Metals. 2023;13(2):279. doi: 10.3390/met13020279
  15. Javaid M, Haleem A. 4D printing applications in medical field: a brief review. Clin Epidemiol Glob Health. 2019;7(3):317-321. doi: 10.1016/j.cegh.2018.09.007
  16. Amukarimi S, Mozafari M. 4D bioprinting of tissues and organs. Bioprinting. 2021;23:e00161. doi: 10.1016/j.bprint.2021.e00161
  17. Haleem A, Javaid M, Vaishya R. 5D printing and its expected applications in orthopaedics. J Clin Orthop Trauma. 2019;10(4):809-810. doi: 10.1016/j.jcot.2018.11.014
  18. Cheng Y, Fu Y, Ma L, et al. Rheology of edible food inks from 2D/3D/4D printing, and its role in future 5D/6D printing. Food Hydrocoll. 2022;132:107855. doi: 10.1016/j.foodhyd.2022.107855
  19. Vasiliadis AV, Koukoulias N, Katakalos K. From three-dimensional (3D)- to 6D-printing technology in orthopedics: science fiction or scientific reality? JFB. 2022;13(3):101. doi: 10.3390/jfb13030101
  20. Georgantzinos SK, Giannopoulos GI, Bakalis PA. Additive manufacturing for effective smart structures: the idea of 6D printing. J Compos Sci. 2021;5(5):119. doi: 10.3390/jcs5050119
  21. Gao B, Zhao H, Peng L, Sun Z. A review of research progress in selective laser melting (SLM). Micromachines. 2022;14(1):57. doi: 10.3390/mi14010057
  22. Bandyopadhyay A, Ghosh S, Boccaccini AR, Bose S. 3D printing of biomedical materials and devices. J Mater Res. 2021;36(19):3713-3724. doi: 10.1557/s43578-021-00407-y
  23. Salem H, Carter LN, Attallah MM, Salem HG. Influence of processing parameters on internal porosity and types of defects formed in Ti-6Al-4V lattice structure fabricated by selective laser melting. Mater Sci Eng A. 2019;767:138387. doi: 10.1016/j.msea.2019.138387
  24. Zhai Y, Zhang H, Wang J, Zhao D. Research progress of metal-based additive manufacturing in medical implants. Rev Adv Mater Sci. 2023;62(1):20230148. doi: 10.1515/rams-2023-0148
  25. Xiong W, Hao L, Li Y, et al. Effect of selective laser melting parameters on morphology, microstructure, densification and mechanical properties of supersaturated silver alloy. Mater Des. 2019;170:107697. doi: 10.1016/j.matdes.2019.107697
  26. Eldesouky I, Harrysson O, West H, Elhofy H. Electron beam melted scaffolds for orthopedic applications. Addit Manuf. 2017;17:169-175. doi: 10.1016/j.addma.2017.08.005
  27. Wu Y, Wang Y, Liu M, Shi D, Hu N, Feng W. Mechanical properties and in vivo assessment of electron beam melted porous structures for orthopedic applications. Metals. 2023;13(6):1034. doi: 10.3390/met13061034
  28. Herzog D, Seyda V, Wycisk E, Emmelmann C. Additive manufacturing of metals. Acta Mater. 2016;117:371-392. doi: 10.1016/j.actamat.2016.07.019
  29. Amato KN, Gaytan SM, Murr LE, et al. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Mater. 2012;60(5):2229-2239. doi: 10.1016/j.actamat.2011.12.032
  30. Ni J, Ling H, Zhang S, et al. Three-dimensional printing of metals for biomedical applications. Mater Today Bio. 2019;3:100024. doi: 10.1016/j.mtbio.2019.100024
  31. Kennedy SM, A V, K A. Exploring the frontiers of metal additive manufacturing in orthopaedic implant development. MethodsX. 2024;13:103056. doi: 10.1016/j.mex.2024.103056
  32. Pei X, Wu L, Lei H, et al. Fabrication of customized Ti6AI4V heterogeneous scaffolds with selective laser melting: optimization of the architecture for orthopedic implant applications. Acta Biomater. 2021;126:485-495. doi: 10.1016/j.actbio.2021.03.040
  33. Gao C, Wang C, Jin H, et al. Additive manufacturing technique-designed metallic porous implants for clinical application in orthopedics. RSC Adv. 2018;8(44):25210-25227. doi: 10.1039/C8RA04815K
  34. Tan XP, Tan YJ, Chow CSL, Tor SB, Yeong WY. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater Sci Eng C. 2017;76:1328-1343. doi: 10.1016/j.msec.2017.02.094
  35. Liu X, Chu P, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep. 2004;47(3-4):49-121. doi: 10.1016/j.mser.2004.11.001
  36. Wauthle R, Van Der Stok J, Amin Yavari S, et al. Additively manufactured porous tantalum implants. Acta Biomater. 2015;14:217-225. doi: 10.1016/j.actbio.2014.12.003
  37. Dewidar MM, Khalil KA, Lim JK. Processing and mechanical properties of porous 316L stainless steel for biomedical applications. Trans Nonferrous Met Soc China. 2007;17(3):468-473. doi: 10.1016/S1003-6326(07)60117-4
  38. Bai L, Gong C, Chen X, et al. Additive manufacturing of customized metallic orthopedic implants: materials, structures, and surface modifications. Metals. 2019;9(9):1004. doi: 10.3390/met9091004
  39. Jin W, Wu G, Gao A, Feng H, Peng X, Chu PK. Hafnium implanted WE43 magnesium alloy for enhanced corrosion protection and biocompatibility. Surf Coat Technol. 2016;306 (Part A):11-15. doi: 10.1016/j.surfcoat.2016.02.055
  40. Wataha JC. Alloys for prosthodontic restorations. J Prosthet Dent. 2002;87(4):351-363. doi: 10.1067/mpr.2002.123817
  41. Nicholson JW. Titanium alloys for dental implants: a review. Prosthesis. 2020;2(2):100-116. doi: 10.3390/prosthesis2020011
  42. Zhou K, Wang M, Zhang S, et al. Titanium alloys for orthopedic applications: a review on the osteointegration induced by physicomechanical stimuli. J Mater Res Technol. 2024;30:8260-8276. doi: 10.1016/j.jmrt.2024.05.207
  43. Combres Y. Properties of Titanium and Its Alloys [in French]. In: Study and Properties of Metals (Dossier M4780). Techniques de l’Ingénieur; Published online March 2010. Accessed May 24, 2025 https://www.techniques-ingenieur.fr/base-documentaire/materiaux-th11/metaux-et-alliages-non-ferreux-42357210/proprietes-du-titane-et-de-ses-alliages-m4780/
  44. Aherwar A, Singh AK, Patnaik A. Current and future biocompatibility aspects of biomaterials for hip prosthesis. AIMS Bioeng. 2015;3(1):23-43. doi: 10.3934/bioeng.2016.1.23
  45. Morano C, Garofalo S, Bertuccio P, Sposato A, Zappone I, Pagnotta L. A comprehensive literature review of total hip arthroplasty (THA): part 1—biomaterials. JFB. 2025;16(5):179. doi: 10.3390/jfb16050179
  46. Brüggemann A, Hailer NP. Concentrations of cobalt, chromium and titanium and immunological changes after primary total knee arthroplasty—a cohort study with an 18- year follow-up. JCM. 2024;13(4):951. doi: 10.3390/jcm13040951
  47. Kurtz PW, Aslani S, Kurtz MA, et al. Cobalt-chromium-molybdenum femoral knee implant damage correlates with elevated periprosthetic metal concentrations. J Arthroplasty. 2025;40(7):S315-S323. doi: 10.1016/j.arth.2025.02.075
  48. Wang N, Meenashisundaram GK, Chang S, Fuh JYH, Dheen ST, Senthil Kumar A. A comparative investigation on the mechanical properties and cytotoxicity of Cubic, Octet, and TPMS gyroid structures fabricated by selective laser melting of stainless steel 316L. J Mech Behav Biomed Mater. 2022;129:105151. doi: 10.1016/j.jmbbm.2022.105151
  49. Han Q, Wang C, Chen H, Zhao X, Wang J. Porous tantalum and titanium in orthopedics: a review. ACS Biomater Sci Eng. 2019;5(11):5798-5824. doi: 10.1021/acsbiomaterials.9b00493
  50. Guo Y, Xie K, Jiang W, et al. In vitro and in vivo study of 3D-printed porous tantalum scaffolds for repairing bone defects. ACS Biomater Sci Eng. 2019;5(2):1123-1133. doi: 10.1021/acsbiomaterials.8b01094
  51. Qu X, Yang H, Jia B, et al. Zinc alloy-based bone internal fixation screw with antibacterial and anti-osteolytic properties. Bioact Mater. 2021;6(12):4607-4624. doi: 10.1016/j.bioactmat.2021.05.023
  52. Salama M, Vaz MF, Colaço R, Santos C, Carmezim M. Biodegradable iron and porous iron: mechanical properties, degradation behaviour, manufacturing routes and biomedical applications. JFB. 2022;13(2):72. doi: 10.3390/jfb13020072
  53. Moura De Souza Soares F, Barbosa DM, Reis Corado HP, De Carvalho Santana AI, Elias CN. Surface morphology, roughness, and corrosion resistance of dental implants produced by additive manufacturing. J Mater Res Technol. 2022;21:3844-3855. doi: 10.1016/j.jmrt.2022.10.114
  54. Bandyopadhyay A, Ciliveri S, Guariento S, Zuckschwerdt N, Hogg WW. Fatigue behavior of additively manufactured Ti3Al2V alloy. MSAM. 2023;2(3):1705. doi: 10.36922/msam.1705
  55. Ednie L, Antonysamy AA, Parimi L, Mani M, Thomas M, Lancaster RJ. Understanding the fatigue behaviour of Ti–6Al–4V manufactured via various additive processes. J Mater Res Technol. 2024;31:1337-1354. doi: 10.1016/j.jmrt.2024.06.168
  56. Charkaluk E, Chastand V. Fatigue of additive manufacturing specimens: a comparison with casting processes. In: The 18th International Conference on Experimental Mechanics. MDPI; 2018:474. doi: 10.3390/ICEM18-05352
  57. Zarei MA, Shabestari MG, Shabestari SG, Abedi H. Microstructural heterogeneity and anisotropic mechanical propertiers of titanium alloys manufactured by wire arc additive manufacturing: a review. J Mater Res Technol. 2025;36:8381-8409. doi: 10.1016/j.jmrt.2025.05.106
  58. Ge MZ, Tang Y, Zhang YK, Wang Y. Enhancement in fatigue property of Ti-6Al-4V alloy remanufactured by combined laser cladding and laser shock peening processes. Surf Coat Technol. 2022;444:128671. doi: 10.1016/j.surfcoat.2022.128671
  59. Tunchel S, Blay A, Kolerman R, Mijiritsky E, Shibli JA. 3D printing/additive manufacturing single titanium dental implants: a prospective multicenter study with 3 years of follow-up. Int J Dent. 2016;2016:8590971. doi: 10.1155/2016/8590971
  60. Shu T, Shi H, Li M, Lin YC, Li A, Pei D. Microscale bone interlocking enhances osseointegration strength on the rough surface of 3D-printed titanium implants: experimental and finite element analysis. BMC Oral Health. 2025;25(1):208. doi: 10.1186/s12903-025-05586-2
  61. Gu Y, Sun Y, Shujaat S, Braem A, Politis C, Jacobs R. 3D-printed porous Ti-6Al-4V scaffolds for long bone repair in animal models: a systematic review. J Orthop Surg Res. 2022;17(1):68. doi: 10.1186/s13018-022-02960-6
  62. Park S, Lee J, Kim JJ, et al. Osseointegrative and immunomodulative 3D-Printing Ti-6Al-4V-based implants embedded with biogenic hydroxyapatite. Mater Des. 2024;240:112822. doi: 10.1016/j.matdes.2024.112822
  63. Matsko A, França R. Design, manufacturing and clinical outcomes for additively manufactured titanium dental implants: a systematic review. Dent Rev. 2022;2(1):100041. doi: 10.1016/j.dentre.2022.100041
  64. Onică N, Budală DG, Baciu ER, et al. Long-term clinical outcomes of 3D-printed subperiosteal titanium implants: a 6-year follow-up. JPM. 2024;14(5):541. doi: 10.3390/jpm14050541
  65. Raisz LG. Physiology and pathophysiology of bone remodeling. Clin Chem. 1999;45(8Pt2):1353-1358. Erratum in: Clin Chem. 1999;45(10):1885 doi: 10.1093/clinchem/45.8.1353
  66. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21(7):667-681. doi: 10.1016/S0142-9612(99)00242-2
  67. Barkaoui A, Chamekh A, Merzouki T, Hambli R, Mkaddem A. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method. Int J Numer Method Biomed Eng. 2014;30(3):318-338. Epub 2013. doi: 10.1002/cnm.2604

 

  1. Germaini MM, Belhabib S, Guessasma S, Deterre R, Corre P, Weiss P. Additive manufacturing of biomaterials for bone tissue engineering – a critical review of the state of the art and new concepts. Prog Mater Sci. 2022;130:100963. doi: 10.1016/j.pmatsci.2022.100963
  2. Bigi A, Cojazzi G, Panzavolta S, et al. Chemical and structural characterization of the mineral phase from cortical and trabecular bone. J Inorg Biochem. 1997;68(1): 45-51. doi: 10.1016/S0162-0134(97)00007-X
  3. Curtis DA, Sharma AB, Finzen FC. The use of dental implants to improve quality of life for edentulous patients. J Calif Dent Assoc. 2008;36(4):275-280. doi: 10.1080/19424396.2008.12221490
  4. Hierl T, Wollny G, Schulze FP, et al. CAD-CAM implants in esthetic and reconstructive craniofacial surgery. CIT. 2006;14(1):65. doi: 10.2498/cit.2006.01.07
  5. Mishchenko O, Kopchak A, Chernohorskyi D, et al. Craniofacial reconstruction using 3D personalized implants with enhanced surface properties: technological and clinical aspects. Appl Surf Sci Adv. 2023;16:100437. doi: 10.1016/j.apsadv.2023.100437
  6. Ackland DC, Robinson D, Redhead M, Lee PVS, Moskaljuk A, Dimitroulis G. A personalized 3D-printed prosthetic joint replacement for the human temporomandibular joint: from implant design to implantation. J Mech Behav Biomed Mater. 2017;69:404-411. doi: 10.1016/j.jmbbm.2017.01.048
  7. Lee CC, Lin SC, Kang MJ, Wu SW, Fu PY. Effects of implant threads on the contact area and stress distribution of marginal bone. J Dent Sci. 2010;5(3):156-165. doi: 10.1016/S1991-7902(10)60023-2
  8. Marcián P, Borák L, Valášek J, Kaiser J, Florian Z, Wolff J. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone – a feasibility study. J Biomech. 2014;47(16):3830-3836. doi: 10.1016/j.jbiomech.2014.10.019
  9. Meena VK, Kumar P, Kalra P, Sinha RK. Additive manufacturing for metallic spinal implants: A systematic review. Ann 3D Print Med. 2021;3:100021. doi: 10.1016/j.stlm.2021.100021
  10. Silva-Correia J, Correia SI, Oliveira JM, Reis RL. Tissue engineering strategies applied in the regeneration of the human intervertebral disk. Biotechnol Adv. 2013;31(8):1514-1531. doi: 10.1016/j.biotechadv.2013.07.010
  11. Saini A, Elhattab K, Gummadi SK, Nadkarni GR, Sikder P. Fused filament fabrication-3D printing of poly-ether-ether-ketone (PEEK) spinal fusion cages. Mater Lett. 2022;328:133206. doi: 10.1016/j.matlet.2022.133206
  12. Bandyopadhyay A, Traxel KD, Bose S. Nature-inspired materials and structures using 3D printing. Mater Sci Eng R Rep. 2021;145:100609. doi: 10.1016/j.mser.2021.100609
  13. Zhang B, Pei X, Zhou C, et al. The biomimetic design and 3D printing of customized mechanical properties porous Ti-6Al-4V scaffold for load-bearing bone reconstruction. Mater Des. 2018;152:30-39. doi: 10.1016/j.matdes.2018.04.065
  14. Kladovasilakis N, Tsongas K, Tzetzis D. Finite element analysis of orthopedic hip implant with functionally graded bioinspired lattice structures. Biomimetics. 2020;5(3):44. doi: 10.3390/biomimetics5030044
  15. Zhang B, Myers D, Wallace G, Brandt M, Choong P. Bioactive coatings for orthopaedic implants—recent trends in development of implant coatings. IJMS. 2014;15(7): 11878-11921. doi: 10.3390/ijms150711878
  16. Fadzil AFBA, Pramanik A, Basak AK, Prakash C, Shankar S. Role of surface quality on biocompatibility of implants—a review. Ann 3D Print Med. 2022;8:100082. doi: 10.1016/j.stlm.2022.100082
  17. Apostu D, Lucaciu O, Berce C, Lucaciu D, Cosma D. Current methods of preventing aseptic loosening and improving osseointegration of titanium implants in cementless total hip arthroplasty: a review. J Int Med Res. 2018;46(6):2104-2119. doi: 10.1177/0300060517732697
  18. Shah FA, Thomsen P, Palmquist A. Osseointegration and current interpretations of the bone-implant interface. Acta Biomater. 2019;84:1-15. doi: 10.1016/j.actbio.2018.11.018
  19. Parithimarkalaignan S, Padmanabhan TV. Osseointegration: an update. J Indian Prosthodont Soc. 2013;13(1):2-6. doi: 10.1007/s13191-013-0252-z
  20. Koppunur R, Dama KK, Rokkala U, Thirupathi B, Sagar NVSS, Gugulothu B. Design and fabrication of patient-specific implant for maxillofacial surgery using additive manufacturing. Adv Mater Sci Eng. 2022;2022:1-7. doi: 10.1155/2022/7145732
  21. Khan N, Riccio A. A systematic review of design for additive manufacturing of aerospace lattice structures: Current trends and future directions. Prog Aerosp Sci. 2024;149:101021. doi: 10.1016/j.paerosci.2024.101021
  22. Korkmaz ME, Gupta MK, Robak G, Moj K, Krolczyk GM, Kuntoğlu M. Development of lattice structure with selective laser melting process: a state of the art on properties, future trends and challenges. J Manuf Process. 2022;81:1040-1063. doi: 10.1016/j.jmapro.2022.07.051
  23. Skrzat A, Eremeyev VA. On the effective properties of foams in the framework of the couple stress theory. Continuum Mech Thermodyn. 2020;32(6):1779-1801. doi: 10.1007/s00161-020-00880-6
  24. Li Z, Lu M, Zhang Y, et al. 3D‐printed personalized lattice implant as an innovative strategy to reconstruct geographic defects in load-bearing bones. Orthop Surg. 2024;16(4): 821-829. doi: 10.1111/os.14003
  25. Sienkiewicz J, Płatek P, Jiang F, Sun X, Rusinek A. Investigations on the mechanical response of gradient lattice structures manufactured via SLM. Metals. 2020;10(2):213. doi: 10.3390/met10020213
  26. Chao L, Jiao C, Liang H, Xie D, Shen L, Liu Z. Analysis of mechanical properties and permeability of trabecular-like porous scaffold by additive manufacturing. Front Bioeng Biotechnol. 2021;9:779854. doi: 10.3389/fbioe.2021.779854
  27. Huang X, Tang H, Wang L. Effect of residual stress on mechanical properties of triply periodic minimal surface lattice structures in additive manufacturing. Comput Mater Sci. 2024;245:113318. doi: 10.1016/j.commatsci.2024.113318
  28. Malekan M, Sigurjónsson B. On the mechanical behavior of polymeric lattice structures fabricated by stereolithography 3D printing. Eng Rep. 2024;6(12):e13003. doi: 10.1002/eng2.13003
  29. Park JW, Seo E, Park H, et al. Hybrid solid mesh structure for electron beam melting customized implant to treat bone cancer. IJB. 2024;9(4):716. doi: 10.18063/ijb.716
  30. Caiti G, Dobbe JGG, Bervoets E, et al. Biomechanical considerations in the design of patient-specific fixation plates for the distal radius. Med Biol Eng Comput. 2019; 57(5):1099-1107. doi: 10.1007/s11517-018-1945-6
  31. Milovanovic JR, Stojkovic MS, Husain KN, Korunovic ND, Arandjelovic J. Holistic approach in designing the personalized bone scaffold: the case of reconstruction of large missing piece of mandible caused by congenital anatomic anomaly. J Healthc Eng. 2020;2020:1-13. doi: 10.1155/2020/6689961
  32. Wang J, Min L, Lu M, et al. Three-dimensional-printed custom-made hemipelvic endoprosthesis for primary malignancies involving acetabulum: the design solution and surgical techniques. J Orthop Surg Res. 2019;14(1):389. doi: 10.1186/s13018-019-1455-8
  33. Martinez-Marquez D, Mirnajafizadeh A, Carty CP, Stewart RA. Application of quality by design for 3D printed bone prostheses and scaffolds. PLoS One. 2018;13(4):e0195291. doi: 10.1371/journal.pone.0195291
  34. Wähnert D, Greiner J, Brianza S, Kaltschmidt C, Vordemvenne T, Kaltschmidt B. Strategies to improve bone healing: innovative surgical implants meet nano-/ micro-topography of bone scaffolds. Biomedicines. 2021; 9(7):746. doi: 10.3390/biomedicines9070746
  35. Maietta S, Gloria A, Improta G, Richetta M, De Santis R, Martorelli M. A further analysis on Ti-6Al-4V lattice structures manufactured by selective laser melting. J Healthc Eng. 2019;2019:3212594. doi: 10.1155/2019/3212594
  36. Rogala P, Uklejewski R, Winiecki M, Dąbrowski M, Gołańczyk J, Patalas A. First biomimetic fixation for resurfacing arthroplasty: investigation in swine of a prototype partial knee endoprosthesis. Biomed Res Int. 2019;2019:6952649. doi: 10.1155/2019/6952649
  37. Omigbodun FT, Oladapo BI. AI-optimized lattice structures for biomechanics scaffold design. Biomimetics. 2025;10(2):88. doi: 10.3390/biomimetics10020088
  38. Xu M, Zhang Y, Wang S, Jiang G. Genetic-based optimization of 3D Burch–Schneider cage with functionally graded lattice material. Front Bioeng Biotechnol. 2022;10:819005. doi: 10.3389/fbioe.2022.819005
  39. Mello-Machado RC, Sartoretto SC, Granjeiro JM, et al. Osseodensification enables bone healing chambers with improved low-density bone site primary stability: an in vivo study. Sci Rep. 2021;11(1):15436. doi: 10.1038/s41598-021-94886-y
  40. Olmedo-Gaya MV, Romero-Olid MN, Ocaña-Peinado FM, Vallecillo-Rivas M, Vallecillo C, Reyes-Botella C. Influence of different surgical techniques on primary implant stability in the posterior maxilla: a randomized controlled clinical trial. Clin Oral Invest. 2023;27(7):3499-3508. doi: 10.1007/s00784-023-04962-y
  41. Dong Y, Zhang Z, Dong W, Hu G, Wang B, Mou Z. An optimization method for implantation parameters of individualized TKA tibial prosthesis based on finite element analysis and orthogonal experimental design. BMC Musculoskelet Disord. 2020;21(1):165. doi: 10.1186/s12891-020-3189-5
  42. Kang Y, Kim S, Kim J, Lee JW, Park JC. Evaluating the validity of lightweight talar replacement designs: rational models and topologically optimized models. Biomater Res. 2022;26(1):10. doi: 10.1186/s40824-022-00256-8
  43. Deng J, Cohen DJ, Berger MB, et al. Osseointegration of titanium implants in a botox-induced muscle paralysis rat model is sensitive to surface topography and semaphorin 3A treatment. Biomimetics. 2023;8(1):93. doi: 10.3390/biomimetics8010093
  44. Kim DH, Byun JY, Kim D, Kim B, Lim W. Geometric evaluation of biomimetic 3D printed rat femur. J Hard Tissue Biol. 2023;32(2):133-138. doi: 10.2485/jhtb.32.133
  45. Verma A, Jain A, Sekhar Sethy S, et al. Finite element analysis and its application in orthopaedics: a narrative review. J Clin Orthop Trauma. 2024;58:102803. doi: 10.1016/j.jcot.2024.102803
  46. Caouette C, Yahia L, Bureau MN. Reduced stress shielding with limited micromotions using a carbon fibre composite biomimetic hip stem: a finite element model. Proc Inst Mech Eng H. 2011;225(9):907-919. doi: 10.1177/0954411911412465
  47. Ceddia M, Trentadue B, De Giosa G, Solarino G. Topology optimization of a femoral stem in titanium and carbon to reduce stress shielding with the FEM method. J Compos Sci. 2023;7(7):298. doi: 10.3390/jcs7070298
  48. Rezapourian M, Kamboj N, Jasiuk I, Hussainova I. Biomimetic design of implants for long bone critical-sized defects. J Mech Behav Biomed Mater. 2022;134:105370. doi: 10.1016/j.jmbbm.2022.105370
  49. Munteanu S, Munteanu D, Gheorghiu B, et al. Additively manufactured femoral stem topology optimization: case study. Materials Today: Proceedings. 2019;19(Part 3): 1019-1025. doi: 10.1016/j.matpr.2019.08.016
  50. Alemayehu DB, Todoh M, Huang SJ. Advancing 3D dental implant finite element analysis: incorporating biomimetic trabecular bone with varied pore sizes in voronoi lattices. JFB. 2024;15(4):94. doi: 10.3390/jfb15040094
  51. Simoneau C, Terriault P, Jetté B, Dumas M, Brailovski V. Development of a porous metallic femoral stem: Design, manufacturing, simulation and mechanical testing. Mater Des. 2017;114:546-556. doi: 10.1016/j.matdes.2016.10.064
  52. Mehboob H, Tarlochan F, Mehboob A, Chang SH. Finite element modelling and characterization of 3D cellular microstructures for the design of a cementless biomimetic porous hip stem. Mater Des. 2018;149:101-112. doi: 10.1016/j.matdes.2018.04.002
  53. Pei X, Wang L, Zhou C, et al. Ti-6Al-4V orthopedic implant with biomimetic heterogeneous structure via 3D printing for improving osteogenesis. Mater Des. 2022;221:110964. doi: 10.1016/j.matdes.2022.110964
  54. Li Y, Hu Y, Chen H, et al. A novel conceptual design of a biomimetic oral implant and its biomechanical effect on the repairment of a large mandibular defect. Med Nov Technol Dev. 2022;15:100147. doi: 10.1016/j.medntd.2022.100147
  55. Chatzigeorgiou C, Piotrowski B, Meraghni F, Chemisky Y. Multiscale mechanical analysis for biomimetic implant design based on triply periodic minimal surfaces (TPMS) lattices: application to partial replacement of femoral bone. Res Eng. 2025;25:103984. doi: 10.1016/j.rineng.2025.103984
  56. Soro N, Brodie EG, Abdal-hay A, Alali AQ, Kent D, Dargusch MS. Additive manufacturing of biomimetic Titanium- Tantalum lattices for biomedical implant applications. Mater Des. 2022;218:110688. doi: 10.1016/j.matdes.2022.110688
  57. Salaha ZFM, Ammarullah MI, Abdullah NNAA, et al. Biomechanical effects of the porous structure of gyroid and voronoi hip implants: a finite element analysis using an experimentally validated model. Materials. 2023;16(9):3298. doi: 10.3390/ma16093298
  58. Ali D, Ozalp M, Blanquer SBG, Onel S. Permeability and fluid flow-induced wall shear stress in bone scaffolds with TPMS and lattice architectures: a CFD analysis. Eur J Mech B Fluids. 2020;79:376-385. doi: 10.1016/j.euromechflu.2019.09.015
  59. Karuna C, Poltue T, Khrueaduangkham S, Promoppatum P. Mechanical and fluid characteristics of triply periodic minimal surface bone scaffolds under various functionally graded strategies. J Comput Des Eng. 2022;9(4):1258-1278. doi: 10.1093/jcde/qwac052
  60. Lai R, Jiang J, Huo Y, et al. Design of novel graded bone scaffolds based on triply periodic minimal surfaces with multi-functional pores. Front Bioeng Biotechnol. 2025;13:1503582. doi: 10.3389/fbioe.2025.1503582
  61. Ma X, Diao X, Li Z, et al. Simulation analysis of impact damage to the bone tissue surrounding a dental implant. Sci Rep. 2020;10(1):6927. doi: 10.1038/s41598-020-63666-5
  62. Jin ZH, Peng MD, Li Q. The effect of implant neck microthread design on stress distribution of peri-implant bone with different level: a finite element analysis. J Dent Sci. 2020;15(4):466-471. doi: 10.1016/j.jds.2019.12.003
  63. Medina-Galvez R, Cantó-Navés O, Marimon X, Cerrolaza M, Ferrer M, Cabratosa-Termes J. Bone stress evaluation with and without cortical bone using several dental restorative materials subjected to impact load: a fully 3D transient finite-element study. Materials. 2021;14(19):5801. doi: 10.3390/ma14195801
  64. Ogawa M, Tohma Y, Ohgushi H, Takakura Y, Tanaka Y. Early fixation of cobalt-chromium based alloy surgical implants to bone using a tissue-engineering approach. IJMS. 2012;13(5):5528-5541. doi: 10.3390/ijms13055528
  65. Rappe KS, Ortiz-Hernandez M, Punset M, et al. On-growth and in-growth osseointegration enhancement in PM porous Ti-scaffolds by two different bioactivation strategies: alkali thermochemical treatment and RGD peptide coating. IJMS. 2022;23(3):1750. doi: 10.3390/ijms23031750
  66. Hafizh M, Soliman M, Qiblawey Y, et al. Surface acoustic wave (SAW) sensors for hip implant: a numerical and computational feasibility investigation using finite element methods. Biosensors. 2023;13(1):79. doi: 10.3390/bios13010079
  67. Makarov S, Noetscher G, Nummenmaa A, eds. Brain and Human Body Modelling 2021: Selected Papers Presented at 2021 BHBM Conference at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital. Cham, Switzerland: Springer International Publishing; 2023. doi: 10.1007/978-3-031-15451-5

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing