Biomimetic and personalized optimization of additively manufactured metallic bone implants: Design, simulation, and clinical outcomes

Additive manufacturing (AM) has transformed the field of metallic bone implants by enabling the production of patient-specific, biomimetic, and high-performance devices. This review focuses on the personalized design of bone implants using AM technologies, particularly selective laser melting and electron beam melting, which allow the fabrication of complex lattice structures that replicate the trabecular architecture of native bone. These architectures enhance load transfer, reduce stress shielding, and promote osseointegration. The review also explores current strategies and digital tools for biomimetic design, as well as numerical simulation methods—including finite element analysis, computational fluid dynamics, and multi-field coupling models—used to optimize implant geometry, porosity, and mechanical performance. Furthermore, recent clinical and preclinical data on in vivo functionality and biological integration are synthesized, with emphasis on the latest advancements to enhance functional outcomes. Altogether, the work provides a comprehensive roadmap for researchers and clinicians seeking to advance implant innovation and improve skeletal tissue repair.

- Musculoskeletal health. https://www.who.int/news-room/ fact-sheets/detail/musculoskeletal-conditions. Accessed December 24, 2024.
- Fortune Business Insights. Orthopedic Implants Market Size, Share & Industry Analysis, by Product (Joint Reconstruction, Spinal Implants, Trauma Implants, and Others), by End-user (Hospitals & Ambulatory Surgery Centers, Orthopedic Clinics & Others), and Regional Forecast, 2024-2032. Fortune Business Insights; 2025. Accessed May 10, 2025. https://www.fortunebusinessinsights.com/industry-reports/ orthopedic-implants-market-101659
- Healthcare Additive Manufacturing Market Size Report, 2030. https://www.grandviewresearch.com/industry-analysis/healthcare-additive-manufacturing-market. Accessed December 24, 2024.
- Kumar R, Kumar M, Chohan JS. The role of additive manufacturing for biomedical applications: a critical review. J Manuf Process. 2021;64:828-850. doi: 10.1016/j.jmapro.2021.02.022
- Hull CW, Gabriel S. National Center for Biotechnology Information. PubChem Patent Summary for US-6027324-A, Apparatus for production of three dimensional objects by stereolithography. https://pubchem.ncbi.nlm.nih.gov/ patent/US-6027324-A. Accessed June 3, 2025.
- Zhou L, Miller J, Vezza J, et al. Additive manufacturing: a comprehensive review. Sensors. 2024;24(9):2668. doi: 10.3390/s24092668
- Amaya-Rivas JL, Perero BS, Helguero CG, et al. Future trends of additive manufacturing in medical applications: an overview. Heliyon. 2024;10(5):e26641. doi: 10.1016/j.heliyon.2024.e26641
- Li W, Li J, Pan C, Lee JS, Kim BS, Gao G. Light-based 3D bioprinting techniques for illuminating the advances of vascular tissue engineering. Mater Today Bio. 2024;29:101286. doi: 10.1016/j.mtbio.2024.101286
- Hajare DM, Gajbhiye TS. Additive manufacturing (3D printing): recent progress on advancement of materials and challenges. Mater Today Proc. 2022;58(Part 2):736-743. doi: 10.1016/j.matpr.2022.02.391
- Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng. 2018;143:172-196. doi: 10.1016/j.compositesb.2018.02.012
- Aufa AN, Hassan MZ, Ismail Z, et al. Current trends in additive manufacturing of selective laser melting for biomedical implant applications. J Mater Res Technol. 2024;31:213-243. doi: 10.1016/j.jmrt.2024.06.041
- Zhao L, Wang Y, Wang Q, Zhang Y, Yang G. Optimization design and SLM manufacturing of porous titanium alloy femoral stem. Materials. 2024;17(19):4896. doi: 10.3390/ma17194896
- Razzaq MH, Zaheer MU, Asghar H, Aktas OC, Aycan MF, Mishra YK. Additive manufacturing for biomedical bone implants: shaping the future of bones. Mater Sci Eng R Rep. 2025;163:100931. doi: 10.1016/j.mser.2025.100931
- Osipovich K, Kalashnikov K, Chumaevskii A, et al. Wire-feed electron beam additive manufacturing: a review. Metals. 2023;13(2):279. doi: 10.3390/met13020279
- Javaid M, Haleem A. 4D printing applications in medical field: a brief review. Clin Epidemiol Glob Health. 2019;7(3):317-321. doi: 10.1016/j.cegh.2018.09.007
- Amukarimi S, Mozafari M. 4D bioprinting of tissues and organs. Bioprinting. 2021;23:e00161. doi: 10.1016/j.bprint.2021.e00161
- Haleem A, Javaid M, Vaishya R. 5D printing and its expected applications in orthopaedics. J Clin Orthop Trauma. 2019;10(4):809-810. doi: 10.1016/j.jcot.2018.11.014
- Cheng Y, Fu Y, Ma L, et al. Rheology of edible food inks from 2D/3D/4D printing, and its role in future 5D/6D printing. Food Hydrocoll. 2022;132:107855. doi: 10.1016/j.foodhyd.2022.107855
- Vasiliadis AV, Koukoulias N, Katakalos K. From three-dimensional (3D)- to 6D-printing technology in orthopedics: science fiction or scientific reality? JFB. 2022;13(3):101. doi: 10.3390/jfb13030101
- Georgantzinos SK, Giannopoulos GI, Bakalis PA. Additive manufacturing for effective smart structures: the idea of 6D printing. J Compos Sci. 2021;5(5):119. doi: 10.3390/jcs5050119
- Gao B, Zhao H, Peng L, Sun Z. A review of research progress in selective laser melting (SLM). Micromachines. 2022;14(1):57. doi: 10.3390/mi14010057
- Bandyopadhyay A, Ghosh S, Boccaccini AR, Bose S. 3D printing of biomedical materials and devices. J Mater Res. 2021;36(19):3713-3724. doi: 10.1557/s43578-021-00407-y
- Salem H, Carter LN, Attallah MM, Salem HG. Influence of processing parameters on internal porosity and types of defects formed in Ti-6Al-4V lattice structure fabricated by selective laser melting. Mater Sci Eng A. 2019;767:138387. doi: 10.1016/j.msea.2019.138387
- Zhai Y, Zhang H, Wang J, Zhao D. Research progress of metal-based additive manufacturing in medical implants. Rev Adv Mater Sci. 2023;62(1):20230148. doi: 10.1515/rams-2023-0148
- Xiong W, Hao L, Li Y, et al. Effect of selective laser melting parameters on morphology, microstructure, densification and mechanical properties of supersaturated silver alloy. Mater Des. 2019;170:107697. doi: 10.1016/j.matdes.2019.107697
- Eldesouky I, Harrysson O, West H, Elhofy H. Electron beam melted scaffolds for orthopedic applications. Addit Manuf. 2017;17:169-175. doi: 10.1016/j.addma.2017.08.005
- Wu Y, Wang Y, Liu M, Shi D, Hu N, Feng W. Mechanical properties and in vivo assessment of electron beam melted porous structures for orthopedic applications. Metals. 2023;13(6):1034. doi: 10.3390/met13061034
- Herzog D, Seyda V, Wycisk E, Emmelmann C. Additive manufacturing of metals. Acta Mater. 2016;117:371-392. doi: 10.1016/j.actamat.2016.07.019
- Amato KN, Gaytan SM, Murr LE, et al. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Mater. 2012;60(5):2229-2239. doi: 10.1016/j.actamat.2011.12.032
- Ni J, Ling H, Zhang S, et al. Three-dimensional printing of metals for biomedical applications. Mater Today Bio. 2019;3:100024. doi: 10.1016/j.mtbio.2019.100024
- Kennedy SM, A V, K A. Exploring the frontiers of metal additive manufacturing in orthopaedic implant development. MethodsX. 2024;13:103056. doi: 10.1016/j.mex.2024.103056
- Pei X, Wu L, Lei H, et al. Fabrication of customized Ti6AI4V heterogeneous scaffolds with selective laser melting: optimization of the architecture for orthopedic implant applications. Acta Biomater. 2021;126:485-495. doi: 10.1016/j.actbio.2021.03.040
- Gao C, Wang C, Jin H, et al. Additive manufacturing technique-designed metallic porous implants for clinical application in orthopedics. RSC Adv. 2018;8(44):25210-25227. doi: 10.1039/C8RA04815K
- Tan XP, Tan YJ, Chow CSL, Tor SB, Yeong WY. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater Sci Eng C. 2017;76:1328-1343. doi: 10.1016/j.msec.2017.02.094
- Liu X, Chu P, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep. 2004;47(3-4):49-121. doi: 10.1016/j.mser.2004.11.001
- Wauthle R, Van Der Stok J, Amin Yavari S, et al. Additively manufactured porous tantalum implants. Acta Biomater. 2015;14:217-225. doi: 10.1016/j.actbio.2014.12.003
- Dewidar MM, Khalil KA, Lim JK. Processing and mechanical properties of porous 316L stainless steel for biomedical applications. Trans Nonferrous Met Soc China. 2007;17(3):468-473. doi: 10.1016/S1003-6326(07)60117-4
- Bai L, Gong C, Chen X, et al. Additive manufacturing of customized metallic orthopedic implants: materials, structures, and surface modifications. Metals. 2019;9(9):1004. doi: 10.3390/met9091004
- Jin W, Wu G, Gao A, Feng H, Peng X, Chu PK. Hafnium implanted WE43 magnesium alloy for enhanced corrosion protection and biocompatibility. Surf Coat Technol. 2016;306 (Part A):11-15. doi: 10.1016/j.surfcoat.2016.02.055
- Wataha JC. Alloys for prosthodontic restorations. J Prosthet Dent. 2002;87(4):351-363. doi: 10.1067/mpr.2002.123817
- Nicholson JW. Titanium alloys for dental implants: a review. Prosthesis. 2020;2(2):100-116. doi: 10.3390/prosthesis2020011
- Zhou K, Wang M, Zhang S, et al. Titanium alloys for orthopedic applications: a review on the osteointegration induced by physicomechanical stimuli. J Mater Res Technol. 2024;30:8260-8276. doi: 10.1016/j.jmrt.2024.05.207
- Combres Y. Properties of Titanium and Its Alloys [in French]. In: Study and Properties of Metals (Dossier M4780). Techniques de l’Ingénieur; Published online March 2010. Accessed May 24, 2025 https://www.techniques-ingenieur.fr/base-documentaire/materiaux-th11/metaux-et-alliages-non-ferreux-42357210/proprietes-du-titane-et-de-ses-alliages-m4780/
- Aherwar A, Singh AK, Patnaik A. Current and future biocompatibility aspects of biomaterials for hip prosthesis. AIMS Bioeng. 2015;3(1):23-43. doi: 10.3934/bioeng.2016.1.23
- Morano C, Garofalo S, Bertuccio P, Sposato A, Zappone I, Pagnotta L. A comprehensive literature review of total hip arthroplasty (THA): part 1—biomaterials. JFB. 2025;16(5):179. doi: 10.3390/jfb16050179
- Brüggemann A, Hailer NP. Concentrations of cobalt, chromium and titanium and immunological changes after primary total knee arthroplasty—a cohort study with an 18- year follow-up. JCM. 2024;13(4):951. doi: 10.3390/jcm13040951
- Kurtz PW, Aslani S, Kurtz MA, et al. Cobalt-chromium-molybdenum femoral knee implant damage correlates with elevated periprosthetic metal concentrations. J Arthroplasty. 2025;40(7):S315-S323. doi: 10.1016/j.arth.2025.02.075
- Wang N, Meenashisundaram GK, Chang S, Fuh JYH, Dheen ST, Senthil Kumar A. A comparative investigation on the mechanical properties and cytotoxicity of Cubic, Octet, and TPMS gyroid structures fabricated by selective laser melting of stainless steel 316L. J Mech Behav Biomed Mater. 2022;129:105151. doi: 10.1016/j.jmbbm.2022.105151
- Han Q, Wang C, Chen H, Zhao X, Wang J. Porous tantalum and titanium in orthopedics: a review. ACS Biomater Sci Eng. 2019;5(11):5798-5824. doi: 10.1021/acsbiomaterials.9b00493
- Guo Y, Xie K, Jiang W, et al. In vitro and in vivo study of 3D-printed porous tantalum scaffolds for repairing bone defects. ACS Biomater Sci Eng. 2019;5(2):1123-1133. doi: 10.1021/acsbiomaterials.8b01094
- Qu X, Yang H, Jia B, et al. Zinc alloy-based bone internal fixation screw with antibacterial and anti-osteolytic properties. Bioact Mater. 2021;6(12):4607-4624. doi: 10.1016/j.bioactmat.2021.05.023
- Salama M, Vaz MF, Colaço R, Santos C, Carmezim M. Biodegradable iron and porous iron: mechanical properties, degradation behaviour, manufacturing routes and biomedical applications. JFB. 2022;13(2):72. doi: 10.3390/jfb13020072
- Moura De Souza Soares F, Barbosa DM, Reis Corado HP, De Carvalho Santana AI, Elias CN. Surface morphology, roughness, and corrosion resistance of dental implants produced by additive manufacturing. J Mater Res Technol. 2022;21:3844-3855. doi: 10.1016/j.jmrt.2022.10.114
- Bandyopadhyay A, Ciliveri S, Guariento S, Zuckschwerdt N, Hogg WW. Fatigue behavior of additively manufactured Ti3Al2V alloy. MSAM. 2023;2(3):1705. doi: 10.36922/msam.1705
- Ednie L, Antonysamy AA, Parimi L, Mani M, Thomas M, Lancaster RJ. Understanding the fatigue behaviour of Ti–6Al–4V manufactured via various additive processes. J Mater Res Technol. 2024;31:1337-1354. doi: 10.1016/j.jmrt.2024.06.168
- Charkaluk E, Chastand V. Fatigue of additive manufacturing specimens: a comparison with casting processes. In: The 18th International Conference on Experimental Mechanics. MDPI; 2018:474. doi: 10.3390/ICEM18-05352
- Zarei MA, Shabestari MG, Shabestari SG, Abedi H. Microstructural heterogeneity and anisotropic mechanical propertiers of titanium alloys manufactured by wire arc additive manufacturing: a review. J Mater Res Technol. 2025;36:8381-8409. doi: 10.1016/j.jmrt.2025.05.106
- Ge MZ, Tang Y, Zhang YK, Wang Y. Enhancement in fatigue property of Ti-6Al-4V alloy remanufactured by combined laser cladding and laser shock peening processes. Surf Coat Technol. 2022;444:128671. doi: 10.1016/j.surfcoat.2022.128671
- Tunchel S, Blay A, Kolerman R, Mijiritsky E, Shibli JA. 3D printing/additive manufacturing single titanium dental implants: a prospective multicenter study with 3 years of follow-up. Int J Dent. 2016;2016:8590971. doi: 10.1155/2016/8590971
- Shu T, Shi H, Li M, Lin YC, Li A, Pei D. Microscale bone interlocking enhances osseointegration strength on the rough surface of 3D-printed titanium implants: experimental and finite element analysis. BMC Oral Health. 2025;25(1):208. doi: 10.1186/s12903-025-05586-2
- Gu Y, Sun Y, Shujaat S, Braem A, Politis C, Jacobs R. 3D-printed porous Ti-6Al-4V scaffolds for long bone repair in animal models: a systematic review. J Orthop Surg Res. 2022;17(1):68. doi: 10.1186/s13018-022-02960-6
- Park S, Lee J, Kim JJ, et al. Osseointegrative and immunomodulative 3D-Printing Ti-6Al-4V-based implants embedded with biogenic hydroxyapatite. Mater Des. 2024;240:112822. doi: 10.1016/j.matdes.2024.112822
- Matsko A, França R. Design, manufacturing and clinical outcomes for additively manufactured titanium dental implants: a systematic review. Dent Rev. 2022;2(1):100041. doi: 10.1016/j.dentre.2022.100041
- Onică N, Budală DG, Baciu ER, et al. Long-term clinical outcomes of 3D-printed subperiosteal titanium implants: a 6-year follow-up. JPM. 2024;14(5):541. doi: 10.3390/jpm14050541
- Raisz LG. Physiology and pathophysiology of bone remodeling. Clin Chem. 1999;45(8Pt2):1353-1358. Erratum in: Clin Chem. 1999;45(10):1885 doi: 10.1093/clinchem/45.8.1353
- Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21(7):667-681. doi: 10.1016/S0142-9612(99)00242-2
- Barkaoui A, Chamekh A, Merzouki T, Hambli R, Mkaddem A. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method. Int J Numer Method Biomed Eng. 2014;30(3):318-338. Epub 2013. doi: 10.1002/cnm.2604
- Germaini MM, Belhabib S, Guessasma S, Deterre R, Corre P, Weiss P. Additive manufacturing of biomaterials for bone tissue engineering – a critical review of the state of the art and new concepts. Prog Mater Sci. 2022;130:100963. doi: 10.1016/j.pmatsci.2022.100963
- Bigi A, Cojazzi G, Panzavolta S, et al. Chemical and structural characterization of the mineral phase from cortical and trabecular bone. J Inorg Biochem. 1997;68(1): 45-51. doi: 10.1016/S0162-0134(97)00007-X
- Curtis DA, Sharma AB, Finzen FC. The use of dental implants to improve quality of life for edentulous patients. J Calif Dent Assoc. 2008;36(4):275-280. doi: 10.1080/19424396.2008.12221490
- Hierl T, Wollny G, Schulze FP, et al. CAD-CAM implants in esthetic and reconstructive craniofacial surgery. CIT. 2006;14(1):65. doi: 10.2498/cit.2006.01.07
- Mishchenko O, Kopchak A, Chernohorskyi D, et al. Craniofacial reconstruction using 3D personalized implants with enhanced surface properties: technological and clinical aspects. Appl Surf Sci Adv. 2023;16:100437. doi: 10.1016/j.apsadv.2023.100437
- Ackland DC, Robinson D, Redhead M, Lee PVS, Moskaljuk A, Dimitroulis G. A personalized 3D-printed prosthetic joint replacement for the human temporomandibular joint: from implant design to implantation. J Mech Behav Biomed Mater. 2017;69:404-411. doi: 10.1016/j.jmbbm.2017.01.048
- Lee CC, Lin SC, Kang MJ, Wu SW, Fu PY. Effects of implant threads on the contact area and stress distribution of marginal bone. J Dent Sci. 2010;5(3):156-165. doi: 10.1016/S1991-7902(10)60023-2
- Marcián P, Borák L, Valášek J, Kaiser J, Florian Z, Wolff J. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone – a feasibility study. J Biomech. 2014;47(16):3830-3836. doi: 10.1016/j.jbiomech.2014.10.019
- Meena VK, Kumar P, Kalra P, Sinha RK. Additive manufacturing for metallic spinal implants: A systematic review. Ann 3D Print Med. 2021;3:100021. doi: 10.1016/j.stlm.2021.100021
- Silva-Correia J, Correia SI, Oliveira JM, Reis RL. Tissue engineering strategies applied in the regeneration of the human intervertebral disk. Biotechnol Adv. 2013;31(8):1514-1531. doi: 10.1016/j.biotechadv.2013.07.010
- Saini A, Elhattab K, Gummadi SK, Nadkarni GR, Sikder P. Fused filament fabrication-3D printing of poly-ether-ether-ketone (PEEK) spinal fusion cages. Mater Lett. 2022;328:133206. doi: 10.1016/j.matlet.2022.133206
- Bandyopadhyay A, Traxel KD, Bose S. Nature-inspired materials and structures using 3D printing. Mater Sci Eng R Rep. 2021;145:100609. doi: 10.1016/j.mser.2021.100609
- Zhang B, Pei X, Zhou C, et al. The biomimetic design and 3D printing of customized mechanical properties porous Ti-6Al-4V scaffold for load-bearing bone reconstruction. Mater Des. 2018;152:30-39. doi: 10.1016/j.matdes.2018.04.065
- Kladovasilakis N, Tsongas K, Tzetzis D. Finite element analysis of orthopedic hip implant with functionally graded bioinspired lattice structures. Biomimetics. 2020;5(3):44. doi: 10.3390/biomimetics5030044
- Zhang B, Myers D, Wallace G, Brandt M, Choong P. Bioactive coatings for orthopaedic implants—recent trends in development of implant coatings. IJMS. 2014;15(7): 11878-11921. doi: 10.3390/ijms150711878
- Fadzil AFBA, Pramanik A, Basak AK, Prakash C, Shankar S. Role of surface quality on biocompatibility of implants—a review. Ann 3D Print Med. 2022;8:100082. doi: 10.1016/j.stlm.2022.100082
- Apostu D, Lucaciu O, Berce C, Lucaciu D, Cosma D. Current methods of preventing aseptic loosening and improving osseointegration of titanium implants in cementless total hip arthroplasty: a review. J Int Med Res. 2018;46(6):2104-2119. doi: 10.1177/0300060517732697
- Shah FA, Thomsen P, Palmquist A. Osseointegration and current interpretations of the bone-implant interface. Acta Biomater. 2019;84:1-15. doi: 10.1016/j.actbio.2018.11.018
- Parithimarkalaignan S, Padmanabhan TV. Osseointegration: an update. J Indian Prosthodont Soc. 2013;13(1):2-6. doi: 10.1007/s13191-013-0252-z
- Koppunur R, Dama KK, Rokkala U, Thirupathi B, Sagar NVSS, Gugulothu B. Design and fabrication of patient-specific implant for maxillofacial surgery using additive manufacturing. Adv Mater Sci Eng. 2022;2022:1-7. doi: 10.1155/2022/7145732
- Khan N, Riccio A. A systematic review of design for additive manufacturing of aerospace lattice structures: Current trends and future directions. Prog Aerosp Sci. 2024;149:101021. doi: 10.1016/j.paerosci.2024.101021
- Korkmaz ME, Gupta MK, Robak G, Moj K, Krolczyk GM, Kuntoğlu M. Development of lattice structure with selective laser melting process: a state of the art on properties, future trends and challenges. J Manuf Process. 2022;81:1040-1063. doi: 10.1016/j.jmapro.2022.07.051
- Skrzat A, Eremeyev VA. On the effective properties of foams in the framework of the couple stress theory. Continuum Mech Thermodyn. 2020;32(6):1779-1801. doi: 10.1007/s00161-020-00880-6
- Li Z, Lu M, Zhang Y, et al. 3D‐printed personalized lattice implant as an innovative strategy to reconstruct geographic defects in load-bearing bones. Orthop Surg. 2024;16(4): 821-829. doi: 10.1111/os.14003
- Sienkiewicz J, Płatek P, Jiang F, Sun X, Rusinek A. Investigations on the mechanical response of gradient lattice structures manufactured via SLM. Metals. 2020;10(2):213. doi: 10.3390/met10020213
- Chao L, Jiao C, Liang H, Xie D, Shen L, Liu Z. Analysis of mechanical properties and permeability of trabecular-like porous scaffold by additive manufacturing. Front Bioeng Biotechnol. 2021;9:779854. doi: 10.3389/fbioe.2021.779854
- Huang X, Tang H, Wang L. Effect of residual stress on mechanical properties of triply periodic minimal surface lattice structures in additive manufacturing. Comput Mater Sci. 2024;245:113318. doi: 10.1016/j.commatsci.2024.113318
- Malekan M, Sigurjónsson B. On the mechanical behavior of polymeric lattice structures fabricated by stereolithography 3D printing. Eng Rep. 2024;6(12):e13003. doi: 10.1002/eng2.13003
- Park JW, Seo E, Park H, et al. Hybrid solid mesh structure for electron beam melting customized implant to treat bone cancer. IJB. 2024;9(4):716. doi: 10.18063/ijb.716
- Caiti G, Dobbe JGG, Bervoets E, et al. Biomechanical considerations in the design of patient-specific fixation plates for the distal radius. Med Biol Eng Comput. 2019; 57(5):1099-1107. doi: 10.1007/s11517-018-1945-6
- Milovanovic JR, Stojkovic MS, Husain KN, Korunovic ND, Arandjelovic J. Holistic approach in designing the personalized bone scaffold: the case of reconstruction of large missing piece of mandible caused by congenital anatomic anomaly. J Healthc Eng. 2020;2020:1-13. doi: 10.1155/2020/6689961
- Wang J, Min L, Lu M, et al. Three-dimensional-printed custom-made hemipelvic endoprosthesis for primary malignancies involving acetabulum: the design solution and surgical techniques. J Orthop Surg Res. 2019;14(1):389. doi: 10.1186/s13018-019-1455-8
- Martinez-Marquez D, Mirnajafizadeh A, Carty CP, Stewart RA. Application of quality by design for 3D printed bone prostheses and scaffolds. PLoS One. 2018;13(4):e0195291. doi: 10.1371/journal.pone.0195291
- Wähnert D, Greiner J, Brianza S, Kaltschmidt C, Vordemvenne T, Kaltschmidt B. Strategies to improve bone healing: innovative surgical implants meet nano-/ micro-topography of bone scaffolds. Biomedicines. 2021; 9(7):746. doi: 10.3390/biomedicines9070746
- Maietta S, Gloria A, Improta G, Richetta M, De Santis R, Martorelli M. A further analysis on Ti-6Al-4V lattice structures manufactured by selective laser melting. J Healthc Eng. 2019;2019:3212594. doi: 10.1155/2019/3212594
- Rogala P, Uklejewski R, Winiecki M, Dąbrowski M, Gołańczyk J, Patalas A. First biomimetic fixation for resurfacing arthroplasty: investigation in swine of a prototype partial knee endoprosthesis. Biomed Res Int. 2019;2019:6952649. doi: 10.1155/2019/6952649
- Omigbodun FT, Oladapo BI. AI-optimized lattice structures for biomechanics scaffold design. Biomimetics. 2025;10(2):88. doi: 10.3390/biomimetics10020088
- Xu M, Zhang Y, Wang S, Jiang G. Genetic-based optimization of 3D Burch–Schneider cage with functionally graded lattice material. Front Bioeng Biotechnol. 2022;10:819005. doi: 10.3389/fbioe.2022.819005
- Mello-Machado RC, Sartoretto SC, Granjeiro JM, et al. Osseodensification enables bone healing chambers with improved low-density bone site primary stability: an in vivo study. Sci Rep. 2021;11(1):15436. doi: 10.1038/s41598-021-94886-y
- Olmedo-Gaya MV, Romero-Olid MN, Ocaña-Peinado FM, Vallecillo-Rivas M, Vallecillo C, Reyes-Botella C. Influence of different surgical techniques on primary implant stability in the posterior maxilla: a randomized controlled clinical trial. Clin Oral Invest. 2023;27(7):3499-3508. doi: 10.1007/s00784-023-04962-y
- Dong Y, Zhang Z, Dong W, Hu G, Wang B, Mou Z. An optimization method for implantation parameters of individualized TKA tibial prosthesis based on finite element analysis and orthogonal experimental design. BMC Musculoskelet Disord. 2020;21(1):165. doi: 10.1186/s12891-020-3189-5
- Kang Y, Kim S, Kim J, Lee JW, Park JC. Evaluating the validity of lightweight talar replacement designs: rational models and topologically optimized models. Biomater Res. 2022;26(1):10. doi: 10.1186/s40824-022-00256-8
- Deng J, Cohen DJ, Berger MB, et al. Osseointegration of titanium implants in a botox-induced muscle paralysis rat model is sensitive to surface topography and semaphorin 3A treatment. Biomimetics. 2023;8(1):93. doi: 10.3390/biomimetics8010093
- Kim DH, Byun JY, Kim D, Kim B, Lim W. Geometric evaluation of biomimetic 3D printed rat femur. J Hard Tissue Biol. 2023;32(2):133-138. doi: 10.2485/jhtb.32.133
- Verma A, Jain A, Sekhar Sethy S, et al. Finite element analysis and its application in orthopaedics: a narrative review. J Clin Orthop Trauma. 2024;58:102803. doi: 10.1016/j.jcot.2024.102803
- Caouette C, Yahia L, Bureau MN. Reduced stress shielding with limited micromotions using a carbon fibre composite biomimetic hip stem: a finite element model. Proc Inst Mech Eng H. 2011;225(9):907-919. doi: 10.1177/0954411911412465
- Ceddia M, Trentadue B, De Giosa G, Solarino G. Topology optimization of a femoral stem in titanium and carbon to reduce stress shielding with the FEM method. J Compos Sci. 2023;7(7):298. doi: 10.3390/jcs7070298
- Rezapourian M, Kamboj N, Jasiuk I, Hussainova I. Biomimetic design of implants for long bone critical-sized defects. J Mech Behav Biomed Mater. 2022;134:105370. doi: 10.1016/j.jmbbm.2022.105370
- Munteanu S, Munteanu D, Gheorghiu B, et al. Additively manufactured femoral stem topology optimization: case study. Materials Today: Proceedings. 2019;19(Part 3): 1019-1025. doi: 10.1016/j.matpr.2019.08.016
- Alemayehu DB, Todoh M, Huang SJ. Advancing 3D dental implant finite element analysis: incorporating biomimetic trabecular bone with varied pore sizes in voronoi lattices. JFB. 2024;15(4):94. doi: 10.3390/jfb15040094
- Simoneau C, Terriault P, Jetté B, Dumas M, Brailovski V. Development of a porous metallic femoral stem: Design, manufacturing, simulation and mechanical testing. Mater Des. 2017;114:546-556. doi: 10.1016/j.matdes.2016.10.064
- Mehboob H, Tarlochan F, Mehboob A, Chang SH. Finite element modelling and characterization of 3D cellular microstructures for the design of a cementless biomimetic porous hip stem. Mater Des. 2018;149:101-112. doi: 10.1016/j.matdes.2018.04.002
- Pei X, Wang L, Zhou C, et al. Ti-6Al-4V orthopedic implant with biomimetic heterogeneous structure via 3D printing for improving osteogenesis. Mater Des. 2022;221:110964. doi: 10.1016/j.matdes.2022.110964
- Li Y, Hu Y, Chen H, et al. A novel conceptual design of a biomimetic oral implant and its biomechanical effect on the repairment of a large mandibular defect. Med Nov Technol Dev. 2022;15:100147. doi: 10.1016/j.medntd.2022.100147
- Chatzigeorgiou C, Piotrowski B, Meraghni F, Chemisky Y. Multiscale mechanical analysis for biomimetic implant design based on triply periodic minimal surfaces (TPMS) lattices: application to partial replacement of femoral bone. Res Eng. 2025;25:103984. doi: 10.1016/j.rineng.2025.103984
- Soro N, Brodie EG, Abdal-hay A, Alali AQ, Kent D, Dargusch MS. Additive manufacturing of biomimetic Titanium- Tantalum lattices for biomedical implant applications. Mater Des. 2022;218:110688. doi: 10.1016/j.matdes.2022.110688
- Salaha ZFM, Ammarullah MI, Abdullah NNAA, et al. Biomechanical effects of the porous structure of gyroid and voronoi hip implants: a finite element analysis using an experimentally validated model. Materials. 2023;16(9):3298. doi: 10.3390/ma16093298
- Ali D, Ozalp M, Blanquer SBG, Onel S. Permeability and fluid flow-induced wall shear stress in bone scaffolds with TPMS and lattice architectures: a CFD analysis. Eur J Mech B Fluids. 2020;79:376-385. doi: 10.1016/j.euromechflu.2019.09.015
- Karuna C, Poltue T, Khrueaduangkham S, Promoppatum P. Mechanical and fluid characteristics of triply periodic minimal surface bone scaffolds under various functionally graded strategies. J Comput Des Eng. 2022;9(4):1258-1278. doi: 10.1093/jcde/qwac052
- Lai R, Jiang J, Huo Y, et al. Design of novel graded bone scaffolds based on triply periodic minimal surfaces with multi-functional pores. Front Bioeng Biotechnol. 2025;13:1503582. doi: 10.3389/fbioe.2025.1503582
- Ma X, Diao X, Li Z, et al. Simulation analysis of impact damage to the bone tissue surrounding a dental implant. Sci Rep. 2020;10(1):6927. doi: 10.1038/s41598-020-63666-5
- Jin ZH, Peng MD, Li Q. The effect of implant neck microthread design on stress distribution of peri-implant bone with different level: a finite element analysis. J Dent Sci. 2020;15(4):466-471. doi: 10.1016/j.jds.2019.12.003
- Medina-Galvez R, Cantó-Navés O, Marimon X, Cerrolaza M, Ferrer M, Cabratosa-Termes J. Bone stress evaluation with and without cortical bone using several dental restorative materials subjected to impact load: a fully 3D transient finite-element study. Materials. 2021;14(19):5801. doi: 10.3390/ma14195801
- Ogawa M, Tohma Y, Ohgushi H, Takakura Y, Tanaka Y. Early fixation of cobalt-chromium based alloy surgical implants to bone using a tissue-engineering approach. IJMS. 2012;13(5):5528-5541. doi: 10.3390/ijms13055528
- Rappe KS, Ortiz-Hernandez M, Punset M, et al. On-growth and in-growth osseointegration enhancement in PM porous Ti-scaffolds by two different bioactivation strategies: alkali thermochemical treatment and RGD peptide coating. IJMS. 2022;23(3):1750. doi: 10.3390/ijms23031750
- Hafizh M, Soliman M, Qiblawey Y, et al. Surface acoustic wave (SAW) sensors for hip implant: a numerical and computational feasibility investigation using finite element methods. Biosensors. 2023;13(1):79. doi: 10.3390/bios13010079
- Makarov S, Noetscher G, Nummenmaa A, eds. Brain and Human Body Modelling 2021: Selected Papers Presented at 2021 BHBM Conference at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital. Cham, Switzerland: Springer International Publishing; 2023. doi: 10.1007/978-3-031-15451-5