AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025210204
REVIEW ARTICLE

A multidisciplinary review on footwear 3D printing: From biomechanics to therapeutics

Kijung Kim1† Hyunji Kim2† Wonjae Hwang3,4,5 Yoonseo Choi1 Keewon Kim3,4* Jooeun Ahn2,6* Howon Lee1*
Show Less
1 Department of Mechanical Engineering, Institute of Advanced Machines and Design, Seoul National University, Seoul, Republic of Korea
2 Department of Physical Education, Seoul National University, Seoul, Republic of Korea
3 Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
4 Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
5 Department of Rehabilitation Medicine, The Armed Forces Daejeon Hospital, Daejeon, Republic of Korea
6 Institute of Sport Science, Seoul National University, Seoul, Republic of Korea
†These authors contributed equally to this work.
Received: 19 May 2025 | Accepted: 7 July 2025 | Published online: 1 August 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Advancements in three-dimensional (3D) printing have expanded design freedom across various fields, including footwear. Driven by recent progress in biomechanics, footwear has increasingly adopted complex structural designs to meet diverse functional demands, ranging from personal activity to competitive athletics and medical rehabilitation. Accordingly, the role of 3D printing in footwear development has become increasingly significant. This review categorizes the functions of footwear into protection, performance enhancement, and therapeutic applications, and systematically explores the impact of 3D printing on each of these primary functions. 3D printing technology enables the fabrication of complex but mechanically efficient structures, while the 3D scanning method facilitates the application of optimal, personalized designs tailored to individual biomechanics, which significantly impact all three functional areas of footwear. Such design advantages offered by 3D printing have been demonstrated across various fields, with both commercial and academic examples presented to support these findings. This review highlights interdisciplinary insights from biomechanics, ergonomics, and clinical studies to discuss the current status, limitations, and future potential of 3D-printed footwear. We conclude that continuous advancements in design methodology, material science, and printing technology will accelerate the adoption of 3D printing in next-generation footwear.  

Graphical abstract
Keywords
3D printing
3D printed shoes
Footwear
Foot protection
Running efficiency
Foot orthotics
Funding
This work was supported by Seoul National University Research Grant in 2021. The authors also acknowledge the financial support from the National Research Foundation of Korea (NRF) Grants funded by the Korean Government (MSIT) (RS-2022-NR070098, RS-2023-00208052, and RS-2023-00218543).
Conflict of interest
The authors have no conflicts of interest to declare.
References
  1. Nigg BM, Baltich J, Hoerzer S, Enders H. Running shoes and running injuries: mythbusting and a proposal for two new paradigms: ‘preferred movement path’ and ‘comfort filter’. Br J Sports Med. 2015;49(20):1290. doi: 10.1136/bjsports-2015-095054
  2. Karimi Z, Allahyari T, Azghani MR, Khalkhali H. Influence of unstable footwear on lower leg muscle activity, volume change and subjective discomfort during prolonged standing. Appl Ergon. 2016;53(partA):95-102. doi: 10.1016/j.apergo.2015.09.003
  3. MacKinnon CD. Sensorimotor anatomy of gait, balance, and falls. Handb Clin Neurol. 2018;159:3-26. doi: 10.1016/b978-0-444-63916-5.00001-x
  4. Petersen E, Zech A, Hamacher D. Walking barefoot vs. with minimalist footwear - influence on gait in younger and older adults. BMC Geriatr. 2020;20(1):88. doi: 10.1186/s12877-020-1486-3
  5. Nigg B, Mohr M, Nigg S. Muscle tuning and preferred movement path – a paradigm shift. Curr Issues Sport Sci. 2017;2:1-12. doi: 10.15203/CISS_2017.007
  6. Nigg BM, Nigg S, Hoitz F, et al. Highlighting the present state of biomechanics in shoe research (2000–2023). Footwear Sci. 2023;15(2):133-143. doi: 10.1080/19424280.2023.2209044
  7. Ceyssens L, Vanelderen R, Barton C, Malliaras P, Dingenen B. Biomechanical risk factors associated with running-related injuries: a systematic review. Sports Med. 2019;49(7):1095-1115. doi: 10.1007/s40279-019-01110-z
  8. Franz J, Wierzbinski C, Kram R. Metabolic cost of running barefoot versus shod: is lighter better? Med Sci Sports Exerc. 2012;44(8):1519-1525. doi: 10.1249/MSS.0b013e3182514a88
  9. Marsh RL, Ellerby DJ, Carr JA, Henry HT, Buchanan CI. Partitioning the energetics of walking and running: swinging the limbs is expensive. Science. 2004;303(5654):80-83. doi: 10.1126/science.1090704
  10. Perl DP, Daoud AI, Lieberman DE. Effects of footwear and strike type on running economy. Med Sci Sports Exerc. 2012;44(7):1335-1343. doi: 10.1249/MSS.0b013e318247989e
  11. Tung KD, Franz JR, Kram R. A test of the metabolic cost of cushioning hypothesis during unshod and shod running. Med Sci Sports Exerc. 2014;46(2):324-329. doi: 10.1249/MSS.0b013e3182a63b81
  12. Worobets J, Wannop JW, Tomaras E, Stefanyshyn D. Softer and more resilient running shoe cushioning properties enhance running economy. Footwear Sci. 2014;6(3):147-153. doi: 10.1080/19424280.2014.918184
  13. Oh K, Park S. The bending stiffness of shoes is beneficial to running energetics if it does not disturb the natural MTP joint flexion. J Biomech. 2017;53:127-135. doi: 10.1016/j.jbiomech.2017.01.014
  14. Ortega JA, Healey LA, Swinnen W, Hoogkamer W. Energetics and biomechanics of running footwear with increased longitudinal bending stiffness: a narrative review. Sports Med. 2021;51(5):873-894. doi: 10.1007/s40279-020-01406-5
  15. Willwacher S, König M, Braunstein B, Goldmann JP, Brüggemann GP. The gearing function of running shoe longitudinal bending stiffness. Gait Posture. 2014;40(3):386-90. doi: 10.1016/j.gaitpost.2014.05.005
  16. Cigoja S, Asmussen MJ, Firminger CR, Fletcher JR, Edwards WB, Nigg BM. The effects of increased midsole bending stiffness of sport shoes on muscle-tendon unit shortening and shortening velocity: a randomised crossover trial in recreational male runners. Sports Med Open. 2020;6(1):9. doi: 10.1186/s40798-020-0241-9
  17. Chollet M, Michelet S, Horvais N, Pavailler S, Giandolini M. Individual physiological responses to changes in shoe bending stiffness: a cluster analysis study on 96 runners. Eur J Appl Physiol. 2023;123(1):169-177. doi: 10.1007/s00421-022-05060-9
  18. Girard O, Morin JB, Ryu JH, Van Alsenoy K. Custom foot orthoses improve performance, but do not modify the biomechanical manifestation of fatigue, during repeated treadmill sprints. Eur J Appl Physiol. 2020;120(9):2037-2045. doi: 10.1007/s00421-020-04427-0
  19. Van Alsenoy K, Ryu JH, Girard O. The effect of EVA and TPU custom foot orthoses on running economy, running mechanics, and comfort. Front Sports Act Living. 2019;1:34. doi: 10.3389/fspor.2019.00034
  20. Cheng J, Zeng Q, Lai J, Zhang X. Effects of arch support doses on the center of pressure and pressure distribution of running using statistical parametric mapping. Front Bioeng Biotechnol. 2022;10:1051747. doi: 10.3389/fbioe.2022.1051747
  21. Harris EJ. The natural history and pathophysiology of flexible flatfoot. Clin Podiatr Med Surg. 2010;27(1):1-23. doi: 10.1016/j.cpm.2009.09.002
  22. Banwell HA, Mackintosh S, Thewlis D. Foot orthoses for adults with flexible pes planus: a systematic review. J Foot Ankle Res. 2014;7(1):1-18. doi: 10.1186/1757-1146-7-23
  23. Dars S, Uden H, Banwell HA, Kumar S. The effectiveness of non-surgical intervention (foot orthoses) for paediatric flexible pes planus: a systematic review: update. PloS One. 2018;13(2):e0193060. doi: 10.1371/journal.pone.0193060
  24. Daryabor A, Kobayashi T, Saeedi H, Lyons SM, Maeda N, Naimi SS. Effect of 3D printed insoles for people with flatfeet: a systematic review. Assist Technol. 2022;35(2):169-179. doi: 10.1080/10400435.2022.2105438
  25. Hsu C-Y, Wang C-S, Lin K-W, Chien M-J, Wei S-H, Chen C-S. Biomechanical analysis of the flatfoot with different 3D-printed insoles on the lower extremities. Bioengineering. 2022;9(10):563. doi: 10.3390/bioengineering9100563
  26. Choi JY, Lee DJ, Kim SJ, Suh JS. Does the long-term use of medial arch support insole induce the radiographic structural changes for pediatric flexible flat foot? — A prospective comparative study. Foot Ankle Surg. 2020;26(4):449-456. doi: 10.1016/j.fas.2019.05.017
  27. Lee SY, McKeon P, Hertel J. Does the use of orthoses improve self-reported pain and function measures in patients with plantar fasciitis? A meta-analysis. Phys Ther Sport. 2009;10(1):12-18. doi: 10.1016/j.ptsp.2008.09.002
  28. Banwell HA, Mackintosh S, Thewlis D, Landorf KB. Consensus-based recommendations of Australian podiatrists for the prescription of foot orthoses for symptomatic flexible pes planus in adults. J Foot Ankle Res. 2014;7(1):1-13. doi: 10.1186/s13047-014-0049-2
  29. Li L, Yang L, Yu F, et al. 3D printing individualized heel cup for improving the self-reported pain of plantar fasciitis. J Transl Med. 2018;16:167. doi: 10.1186/s12967-018-1547-y
  30. Pfeffer G, Bacchetti P, Deland J, et al. Comparison of custom and prefabricated orthoses in the initial treatment of proximal plantar fasciitis. Foot Ankle Int. 1999;20(4):214-221. doi: 10.1177/107110079902000402
  31. Ho M, Nguyen J, Heales L, Stanton R, Kong PW, Kean C. The biomechanical effects of 3D printed and traditionally made foot orthoses in individuals with unilateral plantar fasciopathy and flat feet. Gait Posture. 2022;96:257-264. doi: 10.1016/j.gaitpost.2022.06.006
  32. Singh N, Armstrong DG, Lipsky BA. Preventing foot ulcers in patients with diabetes. Jama. 2005;293(2):217-228. doi: 10.1001/jama.293.2.217
  33. Katoulis E, Boulton A, Raptis S. The role of diabetic neuropathy and high plantar pressures in the pathogenesis of foot ulceration. Horm Metab Res. 1996;28(04):159-164. doi: 10.1055/s-2007-979152
  34. Tang L, Wang L, Bao W, Zhu S, Li D, Liu C. Functional gradient structural design of customized diabetic insoles. J Mech Behav Biomed Mater. 2019;94:279-287. doi: 10.1016/j.jmbbm.2019.03.003
  35. Janisse D, Janisse E. Pedorthic management of the diabetic foot. Prosthet Orthot Int. 2015;39(1):40-47. doi: 10.1177/0309364614535233
  36. Telfer S, Woodburn J, Collier A, Cavanagh P. Virtually optimized insoles for offloading the diabetic foot: a randomized crossover study. J Biomech. 2017;60:157-161. doi: 10.1016/j.jbiomech.2017.06.028
  37. Bus SA, Lavery LA, Monteiro‐Soares M, et al. Guidelines on the prevention of foot ulcers in persons with diabetes (IWGDF 2019 update). Diabetes Metab Res Rev. 2020;36:e3269. doi: 10.1002/dmrr.3269
  38. Chakraborty PP, Ray S, Biswas D, et al. A comparative study between total contact cast and pressure-relieving ankle foot orthosis in diabetic neuropathic foot ulcers. J Diabetes Sci Technol. 2014;9(2):302-308. doi: 10.1177/1932296814560788
  39. Hinman RS, Bowles KA, Metcalf BB, Wrigley TV, Bennell KL. Lateral wedge insoles for medial knee osteoarthritis: effects on lower limb frontal plane biomechanics. Clin Biomech. 2012;27(1):27-33. doi: 10.1016/j.clinbiomech.2011.07.010
  40. Parkes MJ, Maricar N, Lunt M, et al. Lateral wedge insoles as a conservative treatment for pain in patients with medial knee osteoarthritis: a meta-analysis. Jama. 2013;310(7): 722-730. doi: 10.1001/jama.2013.243229
  41. Allan R, Woodburn J, Telfer S, Abbott M, Steultjens MP. Knee joint kinetics in response to multiple three-dimensional printed, customised foot orthoses for the treatment of medial compartment knee osteoarthritis. Proc Inst Mech Eng H J Eng Med. 2017;231(6):487-498. doi: 10.1177/0954411917691318
  42. Mannisi M, Dell’Isola A, Andersen MS, Woodburn J. Effect of lateral wedged insoles on the knee internal contact forces in medial knee osteoarthritis. Gait Posture. 2019; 68:443-448. doi: 10.1016/j.gaitpost.2018.12.030
  43. Jin H, Xu R, Wang S, Wang J. Use of 3D-printed heel support insoles based on arch lift improves foot pressure distribution in healthy people. Med Sci Monit. 2019;25:7175-7181. doi: 10.12659/msm.918763
  44. Hudak YF, Li J-S, Cullum S, et al. A novel workflow to fabricate a patient-specific 3D printed accommodative foot orthosis with personalized latticed metamaterial. Med Eng Phys. 2022;104:103802. doi: 10.1016/j.medengphy.2022.103802
  45. Ma Z, Lin J, Xu X, et al. Design and 3D printing of adjustable modulus porous structures for customized diabetic foot insoles. Int J Lightweight Mater Manuf. 2019;2(1):57-63. doi: 10.1016/j.ijlmm.2018.10.003
  46. Jiang Y, Wang D, Ying J, Chu P, Qian Y, Chen W. Design and preliminary validation of individual customized insole for adults with flexible flatfeet based on the plantar pressure redistribution. Sensors. 2021;21(5):1780. doi: 10.3390/s21051780
  47. Cheng K-W, Peng Y, Chen TL-W, et al. A three-dimensional printed foot orthosis for flexible flatfoot: an exploratory biomechanical study on arch support reinforcement and undercut. Materials. 2021;14(18):5297. doi: 10.3390/ma14185297
  48. Surmen K, Ortes F, Arslan YZ. Design and production of subject specific insole using reverse engineering and 3D printing technology. Int J Eng Sci Invent. 2016;5(12): 11-15. doi: 10.6084/m9.figshare.19729495
  49. Peker A, Aydin L, Kucuk S, et al. Additive manufacturing and biomechanical validation of a patient‐specific diabetic insole. Polym Adv Technol. 2020;31(5):988-996. doi: 10.1002/pat.4832
  50. Mavroidis C, Ranky RG, Sivak ML, et al. Patient specific ankle–foot orthoses using rapid prototyping. J Neuroeng Rehabil. 2011;8(1):1-11. doi: 10.1186/1743-0003-8-1
  51. Creylman V, Muraru L, Pallari J, Vertommen H, Peeraer L. Gait assessment during the initial fitting of customized selective laser sintering ankle foot orthoses in subjects with drop foot. Prosthet Orthot Int. 2013;37(2):132-138. doi: 10.1177/0309364612451269
  52. Faustini MC, Neptune RR, Crawford RH, Stanhope SJ. Manufacture of passive dynamic ankle–foot orthoses using selective laser sintering. IEEE Trans Biomed Eng. 2008;55(2):784-790. doi: 10.1109/TBME.2007.912638
  53. Hamill J, Bates BT. Biomechanics and footwear research 1970–2000. Footwear Sci. 2023;15(2):123-131. doi: 10.1080/19424280.2023.2209045
  54. Werd MB, Knight EL, Langer PR. Athletic Footwear and Orthoses in Sports Medicine. New York, USA: Springer; 2010.
  55. Hicks JH. The mechanics of the foot. II. The plantar aponeurosis and the arch. J Anat. 1954;88(1):25-30.
  56. Stolwijk NM, Koenraadt KLM, Louwerens JWK, Grim D, Duysens J, Keijsers NLW. Foot lengthening and shortening during gait: a parameter to investigate foot function? Gait Posture. 2014;39(2):773-777. doi: 10.1016/j.gaitpost.2013.10.014
  57. McKeon PO, Hertel J, Bramble D, Davis I. The foot core system: a new paradigm for understanding intrinsic foot muscle function. Br J Sports Med. 2015;49(5):290-290. doi: 10.1136/bjsports-2013-092690
  58. Gil-Calvo M, Jimenez-Perez I, Priego-Quesada JI, Lucas- Cuevas ÁG, Pérez-Soriano P. Effect of custom-made and prefabricated foot orthoses on kinematic parameters during an intense prolonged run. PLoS One. 2020;15(3):e0230877. doi: 10.1371/journal.pone.0230877
  59. Stewart L, Gibson JNA, Thomson CE. In-shoe pressure distribution in “unstable” (MBT) shoes and flat-bottomed training shoes: a comparative study. Gait Posture. 2007;25(4):648-651. doi: 10.1016/j.gaitpost.2006.06.012
  60. Hutchins S, Bowker P, Geary N, Richards J. The biomechanics and clinical efficacy of footwear adapted with rocker profiles—evidence in the literature. Foot. 2009;19(3):165-170. doi: 10.1016/j.foot.2009.01.001
  61. Zhang X, Li B, Hu K, Wan Q, Ding Y, Vanwanseele B. Adding an arch support to a heel lift improves stability and comfort during gait. Gait Posture. 2017;58:94-97. doi: 10.1016/j.gaitpost.2017.07.110
  62. Chen W-M, Lee S-J, Lee PVS. Plantar pressure relief under the metatarsal heads – therapeutic insole design using three-dimensional finite element model of the foot. J Biomech. 2015;48(4):659-665. doi: 10.1016/j.jbiomech.2014.12.043
  63. Agresta C, Giacomazzi C, Harrast M, Zendler J. Running injury paradigms and their influence on footwear design features and runner assessment methods: a focused review to advance evidence-based practice for running medicine clinicians. Front Sports Act Living. 2022;4:815675. doi: 10.3389/fspor.2022.815675
  64. Stoneham R, Barry G, Saxby L, Waters L, Wilkinson M. Differences in stride length and lower limb moments of recreational runners during over-ground running while barefoot, in minimalist and in maximalist running shoes. Footwear Sci. 2021;13(2):133-141. doi: 10.1080/19424280.2021.1878285
  65. Richards CE, Magin PJ, Callister R. Is your prescription of distance running shoes evidence-based? Br J Sports Med. 2009;43(3):159-62. doi: 10.1136/bjsm.2008.046680
  66. Robbins S, Waked E. Foot position awareness: the effect of footwear on instability, excessive impact, and ankle spraining. Crit Rev Phys Rehabil Med. 1997;9(1):53-74. doi: 10.1615/CritRevPhysRehabilMed.v9.i1.30
  67. Mai P, Robertz L, Robbin J, et al. Towards functionally individualised designed footwear recommendation for overuse injury prevention: a scoping review. BMC Sports Sci Med Rehabil. 2023;15(1):152. doi: 10.1186/s13102-023-00760-x
  68. Mohammadi MM, Nourani A. Testing the effects of footwear on biomechanics of human body: a review. Heliyon. 2025. doi: 10.1016/j.heliyon.2025;11(4):e42870
  69. Clermont C, Barrons ZB, Esposito M, et al. The influence of midsole shear on running economy and smoothness with a 3D-printed midsole. Sports Biomech. 2023;22(3):410-421. doi: 10.1080/14763141.2022.2029936
  70. Carbon3d. Carbon Lattice Innovation — The Adidas Story. https://www.carbon3d.com/resources/whitepaper/the-adidas-story. Accessed March 21, 2025.
  71. Paoletti I, Ceccon L. The evolution of 3D printing in AEC: from experimental to consolidated techniques. In: Cvetković D, ed. 3D Printing. London, UK: IntechOpen; 2018.
  72. Ali M, Nazir A, Jeng J-Y. Mechanical performance of additive manufactured shoe midsole designed using variable-dimension helical springs. Int J Adv Manuf Technol. 2020;111:3273-3292. doi: 10.1007/s00170-020-06227-4
  73. Desmyttere G, Hajizadeh M, Bleau J, Leteneur S, Begon M. Anti-pronator components are essential to effectively alter lower-limb kinematics and kinetics in individuals with flexible flatfeet. Clin Biomech. 2021;86:105390. doi: 10.1016/j.clinbiomech.2021.105390
  74. Zhou Q, Niu W, Yick K-L, Gu B, Sun Y. Numerical simulation of the effect of different footwear midsole structures on plantar pressure distribution and bone stress in obese and healthy children. Bioengineering. 2023;10(11):1306. doi: 10.3390/bioengineering10111306
  75. Nishiwaki T, Nonogawa M. Topological optimization of heel counter for footwear stability. Footwear Sci. 2009;1(sup1): 107-109. doi: 10.1080/19424280903063531
  76. Hemler SL, Pliner EM, Redfern MS, Haight JM, Beschorner KE. Effects of natural shoe wear on traction performance: a longitudinal study. Footwear Sci. 2022;14(1):1-12. doi: 10.1080/19424280.2021.1994022
  77. Medicine TAAoPS. Footwear—Running Shoes. https://www.aapsm.org/runshoe.html. Accessed March 21, 2025.
  78. Keshvari B, Lehoang L, Senner V. Investigating the effect of outsole configurations on rotational and translational traction using a mechanical prosthetic foot. Sports Eng. 2023;26(1):43. doi: 10.1007/s12283-023-00436-2
  79. Willwacher S, Kurz M, Robbin J, et al. Running-related biomechanical risk factors for overuse injuries in distance runners: a systematic review considering injury specificity and the potentials for future research. Sports Med. 2022;52(8):1863-1877. doi: 10.1007/s40279-022-01666-3
  80. BOA Technology. Redefining the Future of Fit. https://www.boafit.com/en-us/ innovation#:~:text=BOA%C2%AE%20delivers%20fit%20 solutions,an%20athlete%20and%20their%20equipment. Accessed March 12, 2025.
  81. Knitting Industry. Flat Knitting: Nike Launches Next Generation 3D Flyknit. https://www.knittingindustry.com/nike-launches-next-generation-3d-flyknit/. Accessed March 12, 2025.
  82. Luftglass AR, Feeney DF, Queen RM. The effect of upper panel stiffness on biomechanical performance in athletic footwear. Footwear Sci. 2023;15(3):193-202. doi: 10.1080/19424280.2023.2184874
  83. Moorhouse D, Moorhouse D. Sustainable design: circular economy in fashion and textiles. Des J 2017;20(suppl 1):S1948-S1959. doi: 10.1080/14606925.2017.1352713
  84. Menz HB, Bonanno DR. Footwear comfort: a systematic search and narrative synthesis of the literature. J Foot Ankle Res. 2021;14:63. doi: 10.1186/s13047-021-00500-9
  85. Munteanu SE, Scott LA, Bonanno DR, et al. Effectiveness of customised foot orthoses for Achilles tendinopathy: a randomised controlled trial. Br J Sports Med. 2015;49(15):989-94. doi: 10.1136/bjsports-2014-093845
  86. Kayll SA, Hinman RS, Bryant AL, Bennell KL, Rowe PL, Paterson KL. Do biomechanical foot-based interventions reduce patellofemoral joint loads in adults with and without patellofemoral pain or osteoarthritis? A systematic review and meta-analysis. Br J Sports Med. 2023; 57(13):872-881. doi: 10.1136/bjsports-2022-106542
  87. Dillon S, Burke A, Whyte EF, O’Connor S, Gore S, Moran KA. Running towards injury? A prospective investigation of factors associated with running injuries. PLoS One. 2023;18(8):e0288814. doi: 10.1371/journal.pone.0288814
  88. Stearne SM, Alderson JA, Green BA, Donnelly CJ, Rubenson J. Joint kinetics in rearfoot versus forefoot running: implications of switching technique. Med Sci Sports Exerc. 2014;46(8):1578-1587. doi: 10.1249/mss.0000000000000254
  89. James LNA, Richard WW, Christopher N, Daniel RB, Christian JB. Infographic. Running myth: switching to a non-rearfoot strike reduces injury risk and improves running economy. Br J Sports Med. 2021;55(3):175. doi: 10.1136/bjsports-2020-102262
  90. Chhikara K, Sidhu SS, Gupta S, Saharawat S, Kataria C, Chanda A. Development and effectiveness testing of a novel 3d-printed multi-material orthosis in nurses with plantar foot pain. Prosthesis. 2023;5(1):73-87. doi: 10.3390/prosthesis5010006
  91. Rodrigues P, Chang R, TenBroek T, Hamill J. Medially posted insoles consistently influence foot pronation in runners with and without anterior knee pain. Gait Posture. 2013;37(4):526-531. doi: 10.1016/j.gaitpost.2012.09.027
  92. Willwacher S, Weir G. The future of footwear biomechanics research. 2023;15(2):145-154. doi: 10.1080/19424280.2023.2199011
  93. Kathryn M, Peter B, Andrew RC, Thomas GM, Bill V. Foot orthoses and gait: a systematic review and meta-analysis of literature pertaining to potential mechanisms. Br J Sports Med. 2010;44(14):1035. doi: 10.1136/bjsm.2009.066977
  94. News. S. Adidas Combines Two Next-Gen Innovations With The 4DFWD STRUNG. https://sneakernews.com/2024/07/04/adidas-4dfwd-strung-id8893-release-date/. Accessed March 21, 2025.
  95. Asics. Asics and Dassault System to Offer On-Demand Insoles Personalized for Individual Foot Shape. https://corp.asics.com/en/press/article/2024-07-25. Accessed March 12, 2025.
  96. On AG. Swiss Sportswear Brand On Unveils LightSpray™: a new High Performance Upper technology crafted by a Revolutionary single step Manufacturing Process. Accessed August 12, 2025. https://press. on-running. c om/swi s s - spor tswe ar-br and-on-unveils-lightspray-a-new-high-performance-upper-technology-crafted-by-a-revolutionary-single-step-manufacturing-process-rvo865
  97. Binelli MR, van Dommelen R, Nagel Y, et al. Digital manufacturing of personalised footwear with embedded sensors. Sci Rep. 2023;13(1):1962. doi: 10.1038/s41598-023-29261-0
  98. Kim H-G, Hajra S, Lee H, Kim N, Kim HJ. Additively manufactured mechanical metamaterial‐based pressure sensor with tunable sensing properties for stance and motion analysis. Adv Eng Mater. 2023;25(14):2201499. doi: 10.1002/adem.202201499
  99. Hébert-Losier K, Pamment M. Advancements in running shoe technology and their effects on running economy and performance – a current concepts overview. Sports Biomech. 2023;22(3):335-350. doi: 10.1080/14763141.2022.2110512
  100. Nigg BM, Cigoja S, Nigg SR. Effects of running shoe construction on performance in long distance running. Footwear Sci. 2020;12(3):133-138. doi: 10.1080/19424280.2020.1778799
  101. Hoogkamer W, Kipp S, Kram R. The biomechanics of competitive male runners in three marathon racing shoes: a randomized crossover study. Sports Med. 2019;49(1):133-143. doi: 10.1007/s40279-018-1024-z
  102. Foster C, Lucia A. Running economy. Sports Med. 2007;37(4):316-319. doi: 10.2165/00007256-200737040-00011
  103. Barnes KR, Kilding AE. Running economy: measurement, norms, and determining factors. Sports Med Open. 2015;1(1):8. doi: 10.1186/s40798-015-0007-y
  104. Hoogkamer W, Kipp S, Frank JH, Farina EM, Luo G, Kram R. A comparison of the energetic cost of running in marathon racing shoes. Sports Med. 2018;48(4):1009-1019. doi: 10.1007/s40279-017-0811-2
  105. Grunewald SJ. Under Armour Unveils a New 3D Printed Training Shoe Designed with Autodesk Software. 3Dprint. com. Accessed March 12, 2025 https://3dprint.com/123064/under-armour-3d-printed-shoe/
  106. On. Cloudmonster Hyper. https://press.on-running.com/cloudmonster-hyper. Accessed 2025.
  107. Fletcher JR, MacIntosh BR. Running economy from a muscle energetics perspective. Front Physiol. 2017;8:433. doi: 10.3389/fphys.2017.00433
  108. McLeod AR, Bruening D, Johnson AW, Ward J, Hunter I. Improving running economy through altered shoe bending stiffness across speeds. Footwear Sci. 2020;12(2):79-89. doi: 10.1080/19424280.2020.1734870
  109. Adidas. Futurecraft 4D Running Shoe. https://www.adidas.com/us/futurecraft-4d. Accessed March 12, 2025.
  110. Avery S. Decathlon Unveils New Sports Shoe in Collaboration with HP and Lonati. https://www.3dnatives.com/en/decathlon-new-sports-shoe-1506234/. Accessed March 12, 2025.
  111. Worobets J, Wannop JW. Influence of basketball shoe mass, outsole traction, and forefoot bending stiffness on three athletic movements. Sports Biomech. 2015;14(3):351-360. doi: 10.1080/14763141.2015.1084031
  112. Nike. The Future of 3D. https://www.nike.com/launch/t/vaporfly-elite-flyprint-future-3d. Accessed March 21, 2025.
  113. Ibrahim S, Djurtoft C, Mellor R, Thorborg K, Lysdal FG. The effectiveness of customised 3D-printed insoles on perceived pain, comfort, and completion time among frequent Park Runners: study protocol for a pragmatic randomised controlled trial (The ZOLES RCT). Foot. 2024; 58:102068. doi: 10.1016/j.foot.2024.102068
  114. P. M. ASICS works with Dassault Systems on 3D printed shoes. 3Dnatives. Accessed June 12, 2025 https://www.3dnatives.com/en/asics-works-with-dassault-systems-on-3d-printed-shoes-310720244/
  115. Li J, Yang Z, Rai S, et al. Effect of insoles treatment on school-age children with symptomatic flexible flatfoot: a 2-year follow-up study. Indian J Orthop. 2022;56(11):1985-1991. doi: 10.1007/s43465-022-00698-1
  116. Frykberg RG, Lavery LA, Pham H, Harvey C, Harkless L, Veves A. Role of neuropathy and high foot pressures in diabetic foot ulceration. Diabetes Care. 1998;21(10):1714-1719. doi: 10.2337/diacare.21.10.1714
  117. Alshawabka AZ, Liu A, Tyson SF, Jones RK. The use of a lateral wedge insole to reduce knee loading when ascending and descending stairs in medial knee osteoarthritis patients. Clin Biomech. 2014;29(6):650-656. doi: 10.1016/j.clinbiomech.2014.04.011
  118. Wang B, Sun Y, Guo X, et al. The efficacy of 3D personalized insoles in moderate adolescent idiopathic scoliosis: a randomized controlled trial. BMC Musculoskelet Disord. 2022;23(1):983. doi: 10.1186/s12891-022-05952-z
  119. Wang K, Lu C, Ye R, et al. Research and development of 3D printing orthotic insoles and preliminary treatment of leg length discrepancy patients. Technol Health Care. 2020;28(6):615-624. doi: 10.3233/THC-202170
  120. Tirtashi FH, Eslami M, Taghipour M. Effect of shoe insole on the dynamics of lower extremities in individuals with leg length discrepancy during walking. J Bodyw Mov Ther. 2022;31:51-56. doi: 10.1016/j.jbmt.2022.03.006
  121. Chatzistergos PE, Gatt A, Formosa C, Farrugia K, Chockalingam N. Optimised cushioning in diabetic

 

footwear can significantly enhance their capacity to reduce plantar pressure. Gait Posture. 2020;79:244-250.  doi: 10.1016/j.gaitpost.2020.05.009

  1. Chen RK, Jin Y-a, Wensman J, Shih A. Additive manufacturing of custom orthoses and prostheses—a review. Addit Manuf. 2016;12(Part A):77-89. doi: 10.1016/j.addma.2016.04.002
  2. Silva R, Veloso A, Alves N, Fernandes C, Morouço P. A review of additive manufacturing studies for producing customized ankle–foot orthoses. Bioengineering. 2022;9(6):249. doi: 10.3390/bioengineering9060249
  3. Teixeira R, Coelho C, Oliveira J, et al. Towards customized footwear with improved comfort. Materials. 2021;14(7):1738. doi: 10.3390/ma14071738
  4. Cheng A. How Adidas Plans To Bring 3D Printing To The Masses. Forbes. https://www.forbes.com/ sites/ andriacheng/2018/05/22/with-adidas-3d-printing-may- finally-see-its-mass-retail-potential/
  5. Boër CR, Dulio S. Mass Customization and Footwear. London, UK: Springer; 2007.
  6. Yildiz K, Medetalibeyoglu F, Kaymaz I, Ulusoy GR. Triad of foot deformities and its conservative treatment: with a 3D customized insole. Proc Inst Mech Eng H J Eng Med. 2021;235(7):780-791. doi: 10.1177/09544119211006528
  7. Lin K-W, Chou L-W, Su Y-T, Wei S-H, Chen C-S. Biomechanical effect of 3D-printed foot orthoses in patients with knee osteoarthritis. Appl Sci. 2021;11(9):4200. doi: 10.3390/app11094200
  8. Cha YH, Lee KH, Ryu HJ, et al. Ankle‐foot orthosis made by 3D printing technique and automated design software. Appl Bionics Biomech. 2017;2017(1):9610468. doi: 10.1155/2017/9610468
  9. Zheng XY, Lee H, Weisgraber TH, et al. Ultralight, ultrastiff mechanical metamaterials. Science. 2014;344(6190):1373-1377. doi: 10.1126/science.1252291
  10. Schrank ES, Stanhope SJ. Dimensional accuracy of ankle–foot orthoses constructed by rapid customization and manufacturing framework. J Rehabil Res Dev. 2011;48(1):31-42. doi: 10.1682/jrrd.2009.12.0195
  11. Telfer S, Pallari J, Munguia J, Dalgarno K, McGeough M, Woodburn J. Embracing additive manufacture: implications for foot and ankle orthosis design. BMC Musculoskelet Disord. 2012;13(1):1-9. doi: 10.1186/1471-2474-13-84
  12. Son J-h, Kim H, Choi Y, Lee H. 3D printed energy devices: generation, conversion, and storage. Microsyst Nanoeng. 2024;10(1):93. doi: 10.1038/s41378-024-00708-2
  13. Li J, Shu W, Yang Y, Yan R. Parametric modeling and performance analysis of a personalized insole based on 3D scanning and selective laser sintering. Int J Comput Integr Manuf. 2020;33(9):936-945. doi: 10.1080/0951192X.2020.1815849
  14. Pallari J, Dalgarno K, Munguia J, et al. Design and additive fabrication of foot and ankle–foot orthoses. 21st Annual International Solid Freeform Fabrication Symposium — An Additive Manufacturing Conference, SFF 2010; 2010
  15. Pagac M, Hajnys J, Ma Q-P, et al. A review of vat photopolymerization technology: materials, applications, challenges, and future trends of 3D printing. Polymers. 2021;13(4):598. doi: 10.3390/polym13040598
  16. Shaulian H, Gefen A, Biton H, Wolf A. Graded stiffness offloading insoles better redistribute heel plantar pressure to protect the diabetic neuropathic foot. Gait Posture. 2023;101:28-34. doi: 10.1016/j.gaitpost.2023.01.013
  17. Zastrow M. 3D printing gets bigger, faster and stronger. Nature News Feature. doi: 10.1038/d41586-020-00271-6. Accessed April 25, 2025.
  18. Corcoran-tadd F, Arias C, Perilla AN, Padovani M, inventors; Google Patents, assignee. Footwear with 3-D Printed Midsole. United States Patent 11,786,008. 2023.
  19. Chris. ‘Next-Generation Flyknit’ — revolutionary all-new nike flyprint technology revealed. Footy Headline. https://www.footyheadlines.com/2018/04/revolutionary-all-new-nike-flyprint.html. Accessed March 31, 2025.
  20. Raise3D. 3D-Printed Shoe Uppers: Efficient Small Batch Manufacturing and Improved Prototyping. https://www.raise3d.com/case/3d-printed-shoe-uppers-efficient-small-batch-manufacturing-and-improved-prototyping/. Accessed June 12, 2025.
  21. Hargovan SM, Bewza EL, Lawson CM, et al, inventors; Google Patents, assignee. Generating of 3D-printed custom wearables. United States Patent 10,564,628. 2020.
  22. Iacob MC, Popescu D, Petcu D, Marinescu R. Assessment of the flexural fatigue performance of 3D-printed foot orthoses made from different thermoplastic polyurethanes. Appl Sci. 2023;13(22):12149. doi: 10.3390/app132212149
  23. LuxCreo. Footwear Manufacturing Industry Analysis: Evaluating the Impact of 3D Printing. https://luxcreo.com/footwear-manufacturing-industry-analysis-evaluating-the-impact-of-3d-printing-lc/?utm_ source=chatgpt.com. Accessed June 12, 2025.
  24. Xu R, Wang Z, Ren Z, et al. Comparative study of the effects of customized 3D printed insole and prefabricated insole on plantar pressure and comfort in patients with symptomatic flatfoot. Med Sci Monit Int Med J Exp Clin Res. 2019;25:3510. doi: 10.12659/MSM.916975
  25. Chen T, Tian M, Wang X. A Novel Porous Structural Design of the Orthotic Insole for Diabetic Foot. International Conference on Computer, Control and Robotics (ICCCR). 2021:188-192
  26. Fu JC-M, Chen Y-J, Li C-F, Hsiao Y-H, Chen C-H. The effect of three dimensional printing hinged ankle foot orthosis for equinovarus control in stroke patients. Clin Biomech. 2022;94:105622. doi: 10.1016/j.clinbiomech.2022.105622
  27. Ntagios M, Dahiya R. 3d printed soft and flexible insole with intrinsic pressure sensing capability. IEEE Sens J. 2022; 23(20):23995–24003. doi: 10.1109/JSEN.2022.3179233
  28. Hoeffner S. 3D printing of foot orthoses: clinical feasibility and cost-benefit analyses. Lower Extremity Review. https://lermagazine.com/cover_story/3d-printing-of-foot-orthoses-clinical-feasibility-and-cost-benefit-analyses. Accessed June 12, 2025.
  29. Kantaros A, Drosos C, Papoutsidakis M, Pallis E, Ganetsos T. The role of 3D printing in advancing automated manufacturing systems: opportunities and challenges. Automation. 2025;6(2):21. doi: 10.3390/automation6020021
  30. Cui TZ, Raji RK, Han JL, Chen Y. Application of 3D printing technology in footwear design and manufacture—a review of developing trends. Text Leather Rev. 2024; 7:1304-1321. doi: 10.31881/TLR.2024.151

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing