AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025290286
RESEARCH ARTICLE

Low-concentration GOQD-functionalized Ti6Al4V scaffolds enhance osteogenesis and angiogenesis for vascularized bone regeneration

Duoling Xu1,2† Song Yang3† Chao Wang4† Shujun Li5 Wentao Hou5 Jie Wu1,2 Leyi Liu1,2 Dongsheng Yu1,2 Huancai Lin1,2* Wei Zhao1,2*
Show Less
1 Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
2 Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
3 Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
4 Departments of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States of America
5 Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
†These authors contributed equally to this work.
Received: 15 June 2025 | Accepted: 31 July 2025 | Published online: 31 July 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Graphene oxide quantum dots (GOQDs) possess excellent biocompatibility and have demonstrated potential to enhance osteogenesis and angiogenesis. The objective of this work was to construct Ti6Al4V porous scaffolds modified with different GOQD concentrations and investigate their influence on osteogenesis and angiogenesis. Porous Ti6Al4V scaffolds were coated with GOQDs at concentrations of 0.1, 1, and 10 μg/mL. The proliferation and adhesion of bone marrow mesenchymal stem cells (BMSCs) and human umbilical vein endothelial cells (HUVECs) on these scaffolds were evaluated using CCK-8 assay, immunofluorescence staining, and real time-polymerase chain reaction (RT-PCR). In vivo bone regeneration and angiogenesis were assessed through micro-computed tomography imaging and tissue section staining analysis. The results demonstrated successful deposition of GOQDs and the presence of characteristic functional groups. In vitro assays demonstrated that scaffolds coated with 0.1 μg/mL GOQDs significantly promoted the osteogenic/ angiogenic differentiation of BMSCs and HUVECs. In vivo experiments revealed that the 0.1 μg/mL GOQDs-coated scaffold (GQ@TC4) significantly enhanced bone formation and vascularization after 12 weeks. These findings suggest that Ti6Al4V biomimetic porous scaffolds functionalized with an optimal concentration (0.1 μg/ mL) of GOQDs can effectively promote both osteogenesis and angiogenesis, offering a promising strategy for bone defect repair.

Graphical abstract
Keywords
Bone marrow mesenchymal stem cells
Graphene oxide quantum dots
Human umbilical vein endothelial cells
Ti6Al4V biomimetic porous scaffolds
Vascularized bone regeneration
Funding
This research was supported by the National Natural Sciences Foundation of China (No. 81974146), the Guangdong Natural Sciences Foundation (No. 2023A1515012554), the Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University (Grant No. 2023SZ-B01), and the International Postdoctoral Exchange Fellowship Program 2023 by the Human Resources and Social Security Department of Guangdong Province.
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.
References
  1. Ding Q, Cui J, Shen H, et al. Advances of nanomaterial applications in oral and maxillofacial tissue regeneration and disease treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;13(2):e1669. doi: 10.1002/wnan.1669
  2. Liang Y, Li M, Yang Y, Qiao L, Xu H, Guo B. pH/glucose dual responsive metformin release hydrogel dressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing. ACS Nano. 2022;16(2):3194-3207. doi: 10.1021/acsnano.1c11040
  3. Li B, Shu R, Dai W, et al. Bioheterojunction-engineered polyetheretherketone implants with diabetic infectious micromilieu twin-engine powered disinfection for boosted osteogenicity. Small. 2022;18(45):e2203619. doi: 10.1002/smll.202203619
  4. Jang HJ, Kang MS, Jang J, et al. Harnessing 3D printed highly porous Ti-6Al-4V scaffolds coated with graphene oxide to promote osteogenesis. Biomater Sci. 2024;12(21): 5491-5503. doi: 10.1039/d4bm00970c
  5. Xiao F, Ye JH, Huang CX, et al. Gradient gyroid Ti6Al4V scaffolds with TiO(2) surface modification: promising approach for large bone defect repair. Biomater Adv. 2024;161:213899. doi: 10.1016/j.bioadv.2024.213899
  6. Zarei M, Hasanzadeh Azar M, Sayedain SS, et al. Material extrusion additive manufacturing of poly(lactic acid)/ Ti6Al4V@calcium phosphate core-shell nanocomposite scaffolds for bone tissue applications. Int J Biol Macromol. 024;255:128040. doi: 10.1016/j.ijbiomac.2023.128040
  7. Zhang X, Guan S, Qiu J, et al. Atomic layer deposition of tantalum oxide films on 3D-printed Ti6al4v scaffolds with enhanced osteogenic property for orthopedic implants. ACS Biomater Sci Eng. 2023;9(7):4197-4207. doi: 10.1021/acsbiomaterials.3c00217
  8. Shah NJ, Hyder MN, Moskowitz JS, et al. Surface-mediated bone tissue morphogenesis from tunable nanolayered implant coatings. Sci Transl Med. 2013;5(191):191ra83. doi: 10.1126/scitranslmed.3005576
  9. Shum JM, Gadomski BC, Tredinnick SJ, et al. Enhanced bone formation in locally-optimised, low-stiffness additive manufactured titanium implants: an in silico and in vivo tibial advancement study. Acta Biomater. 2023;156:202-213. doi: 10.1016/j.actbio.2022.04.006
  10. Abaricia JO, Farzad N, Heath TJ, Simmons J, Morandini L, Olivares-Navarrete R. Control of innate immune response by biomaterial surface topography, energy, and stiffness. Acta Biomater. 2021;133:58-73. doi: 10.1016/j.actbio.2021.04.021
  11. Ching HA, Choudhury D, Nine MJ, Abu Osman NA. Effects of surface coating on reducing friction and wear of orthopaedic implants. Sci Technol Adv Mater. 2014;15(1):014402. doi: 10.1088/1468-6996/15/1/014402
  12. Mediero A, Frenkel SR, Wilder T, He W, Mazumder A, Cronstein BN. Adenosine A2A receptor activation prevents wear particle-induced osteolysis. Sci Transl Med. 2012;4(135):135ra65. doi: 10.1126/scitranslmed.3003393
  13. Dinoro J, Maher M, Talebian S, et al. Sulfated polysaccharide-based scaffolds for orthopaedic tissue engineering. Biomaterials. 2019;214:119214. doi: 10.1016/j.biomaterials.2019.05.025
  14. Kapat K, Srivas PK, Rameshbabu AP, et al. Influence of porosity and pore-size distribution in Ti(6)Al(4) V foam on physicomechanical properties, osteogenesis, and quantitative validation of bone ingrowth by micro-computed tomography. ACS Appl Mater Interfaces. 2017;9(45):39235-39248. doi: 10.1021/acsami.7b13960
  15. Wang C, Xu D, Li S, et al. Effect of pore size on the physicochemical properties and osteogenesis of ti6al4v porous scaffolds with bionic structure. ACS Omega. 2020;5(44):28684-28692. doi: 10.1021/acsomega.0c03824
  16. Wang C, Xu D, Lin L, et al. Large-pore-size Ti6Al4V scaffolds with different pore structures for vascularized bone regeneration. Mater Sci Eng C Mater Biol Appl. 1;131:112499. doi: 10.1016/j.msec.2021.112499
  17. Wang C, Wu J, Liu L, et al. Improving osteoinduction and osteogenesis of ti6al4v alloy porous scaffold by regulating the pore structure. Front Chem. 2023;11:1190630. doi: 10.3389/fchem.2023.1190630
  18. Lee H, Lee MK, Han G, et al. Customizable design of multiple-biomolecule delivery platform for enhanced osteogenic responses via ‘tailored assembly system’. Bio Des Manuf. 2022;5(3):451-464. doi: 10.1007/s42242-022-00190-7
  19. Lee MK, Lee H, Park C, et al. Accelerated biodegradation of iron-based implants via tantalum-implanted surface nanostructures. Bioact Mater. 2022;9:239-250. doi: 10.1016/j.bioactmat.2021.07.003
  20. Deshmukh S, Chand A, Ghorpade R. Bio-mechanical analysis of porous Ti-6Al-4V scaffold: a comprehensive review on unit cell structures in orthopaedic application. Biomed Phys Eng Express. 2024;10(6):062003. doi: 10.1088/2057-1976/ad8202
  21. Unsworth T. Proceedings of the Institution of Mechanical Engineers Part H. Proc Inst Mech Eng H. 2008;222(7):i. doi: 10.1177/095441190822200701
  22. Awonusi BO, Li H, Yin Z, Zhao J, Yang K, Li J. Surface modification of Zn-Cu Alloy with heparin nanoparticles for urinary implant applications. ACS Appl Bio Mater. 2024;7(3):1748-1762. doi: 10.1021/acsabm.3c01177
  23. Ehlert M, Radtke A, Bartmanski M, Piszczek P. Evaluation of the cathodic electrodeposition effectiveness of the hydroxyapatite layer used in surface modification of Ti6Al4V-based biomaterials. Materials (Basel). 2022;15(19):6925. doi: 10.3390/ma15196925
  24. Teixeira-Santos R, Belo S, Vieira R, Mergulhao FJM, Gomes LC. Graphene-based composites for biomedical applications: surface modification for enhanced antimicrobial activity and biocompatibility. Biomolecules. 2023;13(11):1571. doi: 10.3390/biom13111571
  25. Kang MS, Jeong SJ, Lee SH, et al. Reduced graphene oxide coating enhances osteogenic differentiation of human mesenchymal stem cells on Ti surfaces. Biomater Res. 2021;25(1):4. doi: 10.1186/s40824-021-00205-x
  26. Li P, Di Stasio F, Eda G, et al. Luminescent properties of a water-soluble conjugated polymer incorporating graphene-oxide quantum dots. Chemphyschem. 2015;16(6):1258-1262. doi: 10.1002/cphc.201402744
  27. Liu G, Zhang K, Ma K, Care A, Hutchinson MR, Goldys EM. Graphene quantum dot-based “switch-on” nanosensors for intracellular cytokine monitoring. Nanoscale. 2017;9(15):4934-4943. doi: 10.1039/c6nr09381g
  28. Yang X, Zhao Q, Chen Y, et al. Effects of graphene oxide and graphene oxide quantum dots on the osteogenic differentiation of stem cells from human exfoliated deciduous teeth. Artif Cells Nanomed Biotechnol. 2019;47(1):822-832. doi: 10.1080/21691401.2019.1576706
  29. Lin L, Zheng Y, Wang C, Li P, Xu D, Zhao W. Concentration-dependent cellular uptake of graphene oxide quantum dots promotes the odontoblastic differentiation of dental pulp cells via the AMPK/mTOR pathway. ACS Omega. 2023;8(6):5393-5405. doi: 10.1021/acsomega.2c06508
  30. Liao TT, Deng QY, Wu BJ, et al. Dose-dependent cytotoxicity evaluation of graphite nanoparticles for diamond-like carbon film application on artificial joints. Biomed Mater. 2017;12(1):015018. doi: 10.1088/1748-605X/aa52ca
  31. Qiu J, Li D, Mou X, et al. Effects of graphene quantum dots on the self-renewal and differentiation of mesenchymal stem cells. Adv Healthc Mater. 2016;5(6):702-710. doi: 10.1002/adhm.201500770
  32. Xu D, Wang C, Wu J, et al. Effects of low-concentration graphene oxide quantum dots on improving the proliferation and differentiation ability of bone marrow mesenchymal stem cells through the Wnt/beta-catenin signaling pathway. ACS Omega. 2022;7(16):13546-13556. doi: 10.1021/acsomega.1c06892
  33. Xie H, Cao T, Rodriguez-Lozano FJ, Luong-Van EK, Rosa V. Graphene for the development of the next-generation of biocomposites for dental and medical applications. Dental Mater. 2017;33(7):765-774. doi: 10.1016/j.dental.2017.04.008
  34. Pruna A, Cembrero J, Pullini D, Mocioiu AM, Busquets- Mataix D. Effect of reduced graphene oxide on photocatalytic properties of electrodeposited ZnO. Appl Phys A Mater. 2017;123(12):792. doi: 10.1007/s00339-017-1424-1
  35. Yan X, An N, Zhang Z, et al. Graphene oxide quantum dots-preactivated dental pulp stem cells/GelMA facilitates mitophagy-regulated bone regeneration. Int J Nanomed. 2024;19:10107-10128. doi: 10.2147/IJN.S480979
  36. An N, Yan X, Qiu Q, et al. Human periodontal ligament stem cell sheets activated by graphene oxide quantum dots repair periodontal bone defects by promoting mitochondrial dynamics dependent osteogenic differentiation. J Nanobiotechnol. 2024;22(1):133. doi: 10.1186/s12951-024-02422-7
  37. Jia ZJ, Shi YY, Xiong P, et al. From solution to biointerface: graphene self-assemblies of varying lateral sizes and surface properties for biofilm control and osteodifferentiation. ACS Appl Mater Inter. 2016;8(27):17151-17165. doi: 10.1021/acsami.6b05198
  38. Kang ES, Song I, Kim DS, et al. Size-dependent effects of graphene oxide on the osteogenesis of human adipose-derived mesenchymal stem cells. Colloid Surface B. 2018;169:20-29. doi: 10.1016/j.colsurfb.2018.04.053
  39. Li XJ, Lin KL, Wang ZL. Enhanced growth and osteogenic differentiation of MC3T3-E1 cells on Ti6Al4V alloys modified with reduced graphene oxide. Rsc Adv. 2017;7(24):14430-14437. doi: 10.1039/c6ra25832h
  40. Li D, Dai D, Wang J, Zhang C. Honeycomb bionic graphene oxide quantum dot/layered double hydroxide composite nanocoating promotes osteoporotic bone regeneration via activating mitophagy. Small. 2024;20(50):e2403907. doi: 10.1002/smll.202403907
  41. Ha HD, Jang MH, Liu F, Cho YH, Seo TS. Upconversion photoluminescent metal ion sensors via two photon absorption in graphene oxide quantum dots. Carbon. 2015;81:367-375. doi: 10.1016/j.carbon.2014.09.069
  42. Qiu JJ, Geng H, Wang DH, et al. Layer-number dependent antibacterial and osteogenic behaviors of graphene oxide electrophoretic deposited on titanium. ACS Appl Mater Inter. 2017;9(14):12253-12263. doi: 10.1021/acsami.7b00314
  43. Chen X, Sun Z, Peng X, et al. Graphene oxide/black phosphorus functionalized collagen scaffolds with enhanced near-infrared controlled in situ biomineralization for promoting infectious bone defect repair through PI3K/Akt pathway. ACS Appl Mater Interfaces. 2024;16(38):50369-50388. doi: 10.1021/acsami.4c10284
  44. Kiroshka VV, Petrova VA, Chernyakov DD, et al. Influence of chitosan-chitin nanofiber composites on cytoskeleton structure and the proliferation of rat bone marrow stromal cells. J Mater Sci Mater M. 2017;28(1):21. doi: 10.1007/s10856-016-5822-2
  45. Xue DT, Chen EM, Zhong HM, et al. Immunomodulatory properties of graphene oxide for osteogenesis and angiogenesis. Int J Nanomed. 2018;13:5799-5810. doi: 10.2147/Ijn.S170305
  46. Zhou J, Zhao L. Multifunction Sr, Co and F co-doped microporous coating on titanium of antibacterial, angiogenic and osteogenic activities. Sci Rep. 2016;6:29069. doi: 10.1038/srep29069
  47. Jiang X, Chen X, Li Q, et al. Synergistic effects of polydopamine-coated reduced graphene oxide on osteogenesis and anti-inflammation in periodontitis. J Mater Sci Mater Med. 2025;36(1):51. doi: 10.1007/s10856-025-06905-3
  48. Ma R, Tang SC, Tan HL, et al. Preparation, characterization, and in vitro osteoblast functions of a nano-hydroxyapatite/ polyetheretherketone biocomposite as orthopedic implant material. Int J Nanomed. 2014;9:3949-3961. doi: 10.2147/Ijn.S67358
  49. Sankar D, Shalumon KT, Chennazhi KP, Menon D, Jayakumar R. Surface plasma treatment of poly(caprolactone) micro, nano, and multiscale fibrous scaffolds for enhanced osteoconductivity. Tissue Eng Pt A. 2014;20(11-12):1689-1702. doi: 10.1089/ten.tea.2013.0569
  50. Park JB, Ahn JY, Yang WS, et al. Stacked graphene with nanoscale wrinkles supports osteogenic differentiation of human adipose-derived stromal cells. 2D Mater. 2021;8(2):025034. doi: 10.1088/2053-1583/abe105
  51. Lamalice L, Le Boeuf F, Huot J. Endothelial cell migration during angiogenesis. Circ Res. 2007;100(6):782-794. doi: 10.1161/01.RES.0000259593.07661.1e
  52. Wang Q, Chen MC, Schafer NP, et al. Assemblies of calcium/calmodulin-dependent kinase II with actin and their dynamic regulation by calmodulin in dendritic spines. Proc Natl Acad Sci U S A. 2019;116(38): 18937-18942. doi: 10.1073/pnas.1911452116
  53. Cota Teixeira S, Silva Lopes D, Santos da Silva M, et al. Pentachloropseudilin impairs angiogenesis by disrupting the actin cytoskeleton, integrin trafficking and the cell cycle. Chembiochem. 2019;20(18):2390-2401. doi: 10.1002/cbic.201900203
  54. Yadunandanan Nair N, Samuel V, Ramesh L, Marib A, David DT, Sundararaman A. Actin cytoskeleton in angiogenesis. Biol Open. 2022;11(12):bio058899. doi: 10.1242/bio.058899
  55. Nakayama M, Nakayama A, van Lessen M, et al. Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nat Cell Biol. 2013;15(3):249-260. doi: 10.1038/ncb2679
  56. Soker S, Machado M, Atala A. Systems for therapeutic angiogenesis in tissue engineering. World J Urol. 2000;18(1):10-18. doi: 10.1007/Pl00007070
  57. Liu WC, Chen SH, Zheng LZ, Qin L. Angiogenesis assays for the evaluation of angiogenic properties of orthopaedic biomaterials-a general review. Adv Healthc Mater. 2017;6(5):1600434. doi: 10.1002/adhm.201600434

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing