AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.1806
RESEARCH ARTICLE

Biomimetic mineralization of 3D-printed polyhydroxyalkanoate-based microbial scaffolds for bone tissue engineering

Dahong Kim1,2 Su Jeong Lee3 Dongjin Lee1 Ji Min Seok1,2 Seon Ju Yeo1 Hyungjun Lim1 Jae Jong Lee1 Jae Hwang Song4 Kangwon Lee2,5 Won Ho Park6 Su A Park1*
Show Less
1 Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, Republic of Korea
2 Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
3 Department of Microbiology, CHA University, Seongnam, Republic of Korea
4 Department of Orthopaedic Surgery, Konyang University Hospital, Daejeon, Republic of Korea
5 Research Institute for Convergence Science, Seoul National University, Seoul, Republic of Korea
6 Department of Organic Materials Engineering, Chungnam National University, Daejeon, Republic of Korea
IJB 2024, 10(2), 1806 https://doi.org/10.36922/ijb.1806
Submitted: 12 September 2023 | Accepted: 2 November 2023 | Published: 16 January 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Polyhydroxyalkanoates (PHAs) have gained much attention as a potential alternative to conventional plastic bone scaffolds due to their biocompatibility and biodegradability, among a diverse range of advantageous properties. However, the water resistance of PHA creates an environment that can interfere with cell interactions. In this study, a three-dimensional-printed PHA scaffold was fabricated through fused deposition modeling printing considering the physical properties of PHA. The PHA bone scaffolds were then coated with polydopamine (pDA) and/or hydroxyapatite (HA) in various configurations using a relatively simple and rapid process involving only immersion. The PHA–pDA– HA scaffold showed enhanced cell viability, proliferation, and differentiation, and could thus serve as a versatile platform for bone tissue engineering applications.

Keywords
Polyhydroxyalkanoate
Biomineralization
Biopolymer
Bone scaffold
Polydopamine
Bioprinting
Funding
This research was supported by the National Research Foundation (NRF; No. NRF-2019M3A9E2066348 and NRF-2021M3H4A4079292) and the National Research Council of Science & Technology (CRC22021-200) funded by the Korean government.
References
  1. Lee JM, Yeong WY. Design and printing strategies in 3D bioprinting of cell-hydrogels: a review. Adv Healthc Mater. 2016;5(22):2856-2865. doi: 10.1002/adhm.201600435
  2. Naser AZ, Deiab I, Darras BM. Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review. RSC Adv. 2021;11(28):17151-17196. doi: 10.1039/d1ra02390j
  3. Tomietto P, Russo F, Galiano F, et al. Sustainable fabrication and pervaporation application of bio-based membranes: combining a polyhydroxyalkanoate (PHA) as biopolymer and CyreneTM as green solvent. J Memb Sci. 2022;643:120061. doi: 10.1016/j.memsci.2021.120061
  4. Dwivedi R, Pandey R, Kumar S, Mehrotra D. Poly hydroxyalkanoates (PHA): role in bone scaffolds. J Oral Biol Craniofacial Res. 2020;10(1):389-392. doi: 10.1016/j.jobcr.2019.10.004
  5. Misra SK, Ansari TI, Valappil SP, et al. Poly(3- hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications. Biomaterials. 2010;31(10):2806-2815. doi: 10.1016/j.biomaterials.2009.12.045
  6. Guo W, Wang X, Yang C, Huang R, Wang H, Zhao Y. Microfluidic 3D printing polyhydroxyalkanoates-based bionic skin for wound healing. Mater Futur. 2022;1(1):015401. doi: 10.1088/2752-5724/ac446b
  7. Bao G, Jiang T, Ravanbakhsh H, et al. Triggered micropore-forming bioprinting of porous viscoelastic hydrogels. Mater Horiz. 2020;7(9):2336-2347. doi: 10.1039/d0mh00813c
  8. Gu BK, Choi DJ, Park SJ, Kim MS, Kang CM, Kim CH. 3-Dimensional bioprinting for tissue engineering applications. Biomater Res. 2016;20(1):1-8. doi: 10.1186/s40824-016-0058-2
  9. Li W, Mille LS, Robledo JA, Uribe T, Huerta V, Zhang YS. Recent advances in formulating and processing biomaterial inks for vat polymerization-based 3D printing. Adv Healthc Mater. 2020;9(15):2000156. doi: 10.1002/adhm.202000156
  10. Ng WL, Huang X, Shkolnikov V, Suntornnond R, Yeong WY. Polyvinylpyrrolidone-based bioink: influence of bioink properties on printing performance and cell proliferation during inkjet-based bioprinting. Bio-Design Manuf. 2023;6:676-690. doi: 10.1007/s42242-023-00245-3
  11. Fu Z, Naghieh S, Xu C, Wang C, Sun W, Chen X. Printability in extrusion bioprinting. Biofabrication. 2021;13(3). doi: 10.1088/1758-5090/abe7ab
  12. Mehrpouya M, Vahabi H, Barletta M, Laheurte P, Langlois V. Additive manufacturing of polyhydroxyalkanoates (PHAs) biopolymers: materials, printing techniques, and applications. Mater Sci Eng C. 2021;127:112216. doi: 10.1016/j.msec.2021.112216
  13. Tarrahi R, Fathi Z, Seydibeyoğlu MÖ, Doustkhah E, Khataee A. Polyhydroxyalkanoates (PHA): from production to nanoarchitecture. Int J Biol Macromol. 2020;146:596-619. doi: 10.1016/j.ijbiomac.2019.12.181
  14. Ryu J, Ku SH, Lee H, Park CB. Mussel-inspired polydopamine coating as a universal route to hydroxyapatite crystallization. Adv Funct Mater. 2010;20(13):2132-2139. doi: 10.1002/adfm.200902347
  15. Wang N, Yu X, Kong Q, et al. Nisin-loaded polydopamine/ hydroxyapatite composites: biomimetic synthesis, and in vitro bioactivity and antibacterial activity evaluations. Colloids Surf A Physicochem Eng Asp. 2020;602:125101. doi: 10.1016/j.colsurfa.2020.125101
  16. Liu Z, Qu S, Zheng X, et al. Effect of polydopamine on the biomimetic mineralization of mussel-inspired calcium phosphate cement in vitro. Mater Sci Eng C. 2014;44:44-51. doi: 10.1016/j.msec.2014.07.063
  17. Tseng SJ, Cheng CH, Lee TM, Lin JC. Studies of osteoblast-like MG-63 cellular proliferation and differentiation with cyclic stretching cell culture system on biomimetic hydrophilic layers modified polydimethylsiloxane substrate. Biochem Eng J. 2021;168:107946. doi: 10.1016/j.bej.2021.107946
  18. Zhang Y, Andrukhov O, Berner S, et al. Osteogenic properties of hydrophilic and hydrophobic titanium surfaces evaluated with osteoblast-like cells (MG63) in coculture with human umbilical vein endothelial cells (HUVEC). Dent Mater. 2010;26(11):1043-1051. doi: 10.1016/j.dental.2010.07.003
  19. Owji N, Mandakhbayar N, Gregory DA, et al. Mussel inspired chemistry and bacteria derived polymers for oral mucosal adhesion and drug delivery. Front Bioeng Biotechnol. 2021;9:1-13. doi: 10.3389/fbioe.2021.663764
  20. Luo H, Gu C, Zheng W, Dai F, Wang X, Zheng Z. Facile synthesis of novel size-controlled antibacterial hybrid spheres using silver nanoparticles loaded with poly-dopamine spheres. RSC Adv. 2015;5(18):13470-13477. doi: 10.1039/c4ra16469e
  21. Kim H, Lee K, Ko CY, et al. The role of nacreous factors in preventing osteoporotic bone loss through both osteoblast activation and osteoclast inactivation. Biomaterials. 2012;33(30):7489-7496. doi: 10.1016/j.biomaterials.2012.06.098
  22. Zhang X, Li J, Chen J, et al. Enhanced bone regeneration via PHA scaffolds coated with polydopamine-captured BMP2. J Mater Chem B. 2022;10(32):6214-6227. doi: 10.1039/d2tb01122k
  23. Auclair-Daigle C, Bureau MN, Legoux JG, Yahia L. Bioactive hydroxyapatite coatings on polymer composites for orthopedic implants. J Biomed Mater Res A. 2005;73(4):398-408. doi: 10.1002/jbm.a.30284
  24. Múzquiz-Ramos EM, Cortés-Hernández DA, Escobedo- Bocardo J. Biomimetic apatite coating on magnetite particles. Mater Lett. 2010;64(9):1117-1119. doi: 10.1016/j.matlet.2010.02.025
  25. Park JH, Lee DY, Oh KT, Lee YK, Kim KM, Kim KN. Bioactivity of calcium phosphate coatings prepared by electrodeposition in a modified simulated body fluid. Mater Lett. 2006;60(21-22):2573-2577. doi: 10.1016/j.matlet.2005.07.091
  26. Guo W, Yang K, Qin X, Luo R, Wang H, Huang R. Polyhydroxyalkanoates in tissue repair and regeneration. Eng Regen. 2022;3(1):24-40. doi: 10.1016/j.engreg.2022.01.003
  27. Garot C, Bettega G, Picart C. Additive manufacturing of material scaffolds for bone regeneration: toward application in the clinics. Adv Funct Mater. 2021;31(5):2006967. doi: 10.1002/adfm.202006967
  28. Lichte P, Pape HC, Pufe T, Kobbe P, Fischer H. Scaffolds for bone healing: concepts, materials and evidence. Injury. 2011;42(6):569-573. doi: 10.1016/j.injury.2011.03.033
  29. Dhania S, Bernela M, Rani R, et al. Scaffolds the backbone of tissue engineering: advancements in use of polyhydroxyalkanoates (PHA). Int J Biol Macromol. 2022;208:243-259. doi: 10.1016/j.ijbiomac.2022.03.030
  30. Elmowafy E, Abdal-Hay A, Skouras A, Tiboni M, Casettari L, Guarino V. Polyhydroxyalkanoate (PHA): applications in drug delivery and tissue engineering. Exp Rev Med Dev. 2019;16(6):467-482. doi: 10.1080/17434440.2019.1615439
  31. Li L, Li Y, Yang L, et al. Polydopamine coating promotes early osteogenesis in 3D printing porous Ti6Al4V scaffolds. Ann Transl Med. 2019;7(11):240-240. doi: 10.21037/atm.2019.04.79
  32. Kao CT, Lin CC, Chen YW, Yeh CH, Fang HY, Shie MY. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering. Mater Sci Eng C. 2015;56:165-173. doi: 10.1016/j.msec.2015.06.028
  33. Jo S, Kang SM, Park SA, Kim WD, Kwak J, Lee H. Enhanced adhesion of preosteoblasts inside 3D PCL scaffolds by polydopamine coating and mineralization. Macromol Biosci. 2013;13(10):1389-1395. doi: 10.1002/mabi.201300203
  34. Im S, Choe G, Seok JM, et al. An osteogenic bioink composed of alginate, cellulose nanofibrils, and polydopamine nanoparticles for 3D bioprinting and bone tissue engineering. Int J Biol Macromol. 2022;205: 520-529. doi: 10.1016/j.ijbiomac.2022.02.012
  35. Park J, Lee SJ, Jung TG, et al. Surface modification of a three-dimensional polycaprolactone scaffold by polydopamine, biomineralization, and BMP-2 immobilization for potential bone tissue applications. Colloids Surf B Biointerfaces. 2021;199:111528. doi: 10.1016/j.colsurfb.2020.111528
  36. Loty C, Sautier JM, Boulekbache H, Kokubo T, Kim HM, Forest N. In vitro bone formation on a bone-like apatite layer prepared by a biomimetic process on a bioactive glass-ceramic. J Biomed Mater Res. 2000;49(4): 423-434. doi: 10.1002/(sici)1097-4636(20000315)49:4<423::aid-jbm1>3.0.co;2-7
  37. Konka J, Buxadera-Palomero J, Espanol M, Ginebra MP. 3D printing of hierarchical porous biomimetic hydroxyapatite scaffolds: adding concavities to the convex filaments. Acta Biomater. 2021;134:744-759. doi: 10.1016/j.actbio.2021.07.071
  38. Avanzi IR, Parisi JR, Souza A, et al. 3D-printed hydroxyapatite scaffolds for bone tissue engineering: a systematic review in experimental animal studies. J Biomed Mater Res B Appl Biomater. 2023;111(1):203-219. doi: 10.1002/jbm.b.35134
  39. Barba A, Maazouz Y, Diez-Escudero A, et al. Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: effect of pore architecture. Acta Biomater. 2018;79:135-147. doi: 10.1016/j.actbio.2018.09.003
Conflict of interest
The authors declare no conflicts of interest.
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing