AccScience Publishing / IJB / Volume 9 / Issue 1 / DOI: 10.18063/ijb.v9i1.621
Cite this article
80
Download
927
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Formulation and evaluation of a bioink composed of alginate, gelatin, and nanocellulose for meniscal tissue engineering

Julia Anna Semba1,2 Adam Aron Mieloch1 Ewa Tomaszewska3 Piotr Cywoniuk1 Jakub Dalibor Rybka1*
Show Less
1 Center for Advanced Technology, Adam Mickiewicz University, Poznan
2 Faculty of Biology, Adam Mickiewicz University, Poznan
3 Faculty of Mechanical Engineering University of Technology, Poznan
Submitted: 15 June 2022 | Accepted: 5 August 2022 | Published: 14 October 2022
© 2022 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The necessity to preserve meniscal function prompts the research and develop¬ment of novel treatment options, like three-dimensional (3D) bioprinting. However, bioinks for meniscal 3D bioprinting have not been extensively explored. Therefore, in this study, a bioink composed of alginate, gelatin, and carboxymethylated cellu¬lose nanocrystal (CCNC) was formulated and evaluated. Firstly, bioinks with varying concentrations of the aforementioned components were subjected to rheological analysis (amplitude sweep test, temperature sweep test, and rotation). The optimal bioink formulation of 4.0% gelatin, 0.75% alginate, and 1.4% CCNC dissolved in 4.6% D-mannitol was further used for printing accuracy analysis, followed by 3D bioprint¬ing with normal human knee articular chondrocytes (NHAC-kn). The encapsulated cells’ viability was > 98%, and collagen II expression was stimulated by the bioink. The formulated bioink is printable, stable under cell culture conditions, biocompatible, and able to maintain the native phenotype of chondrocytes. Aside from meniscal tissue bioprinting, it is believed that this bioink could serve as a basis for the devel¬opment of bioinks for various tissues.

Keywords
Meniscus
3D bioprinting
Bioink
Alginate
Gelatin
Carboxymethylated cellulose nanocrystal
References

1. Pereira H, Varatojo R, Sevivas N, et al., 2016, Physiopathology of the meniscal lesions, in: Surgery of the Meniscus, Springer Berlin Heidelberg, 47–61. https://doi:10.1007/978-3-662-49188-1_5 

2. Doral MN, Bilge O, Huri G, et al., 2018, Modern treatment of meniscal tears. EFORT Open Rev, 3:260–268. https://doi.org/10.1302/2058-5241.3.170067 

3. Beaufils P, Becker R, Kopf S, et al., 2017, The knee meniscus: Management of traumatic tears and degenerative lesions. EFORT Open Rev, 2:195–203. https://doi.org/10.1302/2058-5241.2.160056 

4. Vaishya R, Patralekh MK, Vaish A, et al., 2018, Publication trends and knowledge mapping in 3D printing in orthopaedics. J Clin Orthop Trauma, 9:194–201.  https://doi.org/10.1016/j.jcot.2018.07.006 

5. Semba JA, Mieloch AA, Rybka JD, 2020, Introduction to the state-of-the-art 3D bioprinting methods, design, and applications in orthopedics. Bioprinting, 18:e00070.  https://doi.org/10.1016/j.bprint.2019.e00070 

6. Agarwal S, Saha S, Balla VK, et al., 2020, Current developments in 3D bioprinting for tissue and organ regeneration–A review. Front Mech Eng, 6:589171.  https://doi.org/10.3389/fmech.2020.589171 

7. Luo W, Song Z, Wang Z, et al., 2020, Printability optimization of gelatin-alginate bioinks by cellulose nanofiber modification for potential meniscus bioprinting. J Nanomater.  https://doi.org/10.1155/2020/3863428 

8. Stanco D, Urbán P, Tirendi S, et al., 2020, 3D bioprinting for orthopaedic applications: Current advances, challenges and regulatory considerations. Bioprinting, 20:e00103.  https://doi.org/10.1016/j.bprint.2020.e00103 

9. Ma X, Liu J, Zhu W, et al., 2018, 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv Drug Deliv Rev, 132:235–251.

10. Chae S, Lee SS, Choi YJ, et al., 2021, 3D cell-printing of biocompatible and functional meniscus constructs using meniscus‐derived bioink. Biomaterials, 267:120466.  https://doi.org/10.1016/j.biomaterials.2020.120466 

11. Jian Z, Zhuang T, Qinyu T, et al., 2021, 3D bioprinting of a biomimetic meniscal scaffold for application in tissue engineering. Bioact Mater, 6:1711–1726.  https://doi.org/10.1016/j.bioactmat.2020.11.027 

12. Mieloch AA, Semba JA, Rybka JD, 2022, CNT-type dependent cellular adhesion on 3D-printed nanocomposite for tissue engineering. Int J Bioprint, 8(2):548.  https://doi.org/10.18063/ijb.v8i2.548 

13. Vahedi P, Jarolmasjed S, Shafaei H, et al., 2019, In vivo articular cartilage regeneration through infrapatellar adipose tissue derived stem cell in nanofiber polycaprolactone scaffold. Tissue and Cell 57:49–56.  https://doi.org/10.1016/j.tice.2019.02.002 

14. Romanazzo S, Vedicherla S, Moran C, et al., 2018, Meniscus ECM-functionalised hydrogels containing infrapatellar fat pad-derived stem cells for bioprinting of regionally defined meniscal tissue. J Tissue Eng Regen Med, 12:e1826–e1835.  https://doi.org/10.1002/term.2602 

15. Saldin LT, Cramer MC, Velankar SS, et al., 2017, Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomaterialia 49:1–15 

16. Ng WL, Chua CK, Shen YF, 2019, Print me an organ! Why we are not there yet. Prog Polym Sci, 97:101145.  https://doi.org/10.1016/j.progpolymsci.2019.101145 

17. Liu D, Nikoo M, Boran G, et al., 2015, Collagen and gelatin. Annu Rev Food Sci Technol, 6:527–557.  https://doi.org/10.1146/annurev-food-031414-111800 

18. Ojansivu M, Rashad A, Ahlinder A, et al., 2019, Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells. Biofabrication, 11:35010.  https://doi.org/10.1088/1758-5090/ab0692 

19. Leite ÁJ, Sarker B, Zehnder T, et al., 2016, Bioplotting of a bioactive alginate dialdehyde-gelatin composite hydrogel containing bioactive glass nanoparticles. Biofabrication, 8:035005.  https://doi.org/10.1088/1758-5090/8/3/035005 

20. Costantini M, Idaszek J, Szöke K, et al., 2016, 3D bioprinting of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro neocartilage formation. Biofabrication, 8:035002.  https://doi.org/10.1088/1758-5090/8/3/035002
 
21. Markstedt K, Mantas A, Tournier I, et al., 2015, 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules, 16:1489–1496.  https://doi.org/10.1021/acs.biomac.5b00188 

22. Ojansivu M, Rashad A, Ahlinder A, et al., 2019, Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells. Biofabrication, 11:035010.  https://doi.org/10.1088/1758-5090/ab0692 

23. Zaeri A, Cao K, Zhang F, et al., 2022, A review of the structural and physical properties that govern cell interactions with structured biomaterials enabled by additive manufacturing. Bioprinting, 26:e00201.  https://doi.org/10.1016/j.bprint.2022.e00201
 
24. Zhao Z, Li Y, Wang M, et al., 2020, Mechanotransduction pathways in the regulation of cartilage chondrocyte homoeostasis. Journal of Cellular and Molecular Medicine, 24:5408–5419.  https://doi.org/10.1111/jcmm.15204 

25. Möller T, Amoroso M, Hägg D, et al., 2017, In vivo chondrogenesis in 3D bioprinted human cell-laden hydrogel constructs. Plast Reconstr Surg—Glob Open, 5:e1227.  https://doi.org/10.1097/GOX.0000000000001227 

26. Jiang T, Munguia-Lopez JG, Flores-Torres S, et al., 2019, Extrusion bioprinting of soft materials: An emerging technique for biological model fabrication. Appl Phys Rev, 6:011310.  https://doi.org/10.1063/1.5059393 

27. Dravid A, McCaughey-Chapman A, Raos B, et al., 2022, Development of agarose-gelatin bioinks for extrusion-based bioprinting and cell encapsulation. Biomed Mater (Bristol), 17:055001.  https://doi.org/10.1088/1748-605X/ac759f 

28. Li Z, Huang S, Liu Y, et al., 2018, Tuning alginate-gelatin bioink properties by varying solvent and their impact on stem cell behavior. Sci Rep, 8:8020.  https://doi.org/10.1038/s41598-018-26407-3 

29. Zhuang P, Ng WL, An J, et al., 2019, Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications. PLoS ONE, 14:1–21.  https://doi.org/10.1371/journal.pone.0216776 

30. Zaeri A, Zgeib R, Cao K, et al., 2022, Numerical analysis on the effects of microfluidic-based bioprinting parameters on the microfiber geometrical outcomes. Sci Rep, 12:1–16.  https://doi.org/10.1038/s41598-022-07392-0
 
31. Li X, Liu B, Pei B, et al., 2020, Inkjet bioprinting of biomaterials. Chem Rev, 120:10793–10833.  https://doi.org/10.1021/acs.chemrev.0c00008

32. Ng WL, Huang X, Shkolnikov V, et al., 2022, Controlling droplet impact velocity and droplet volume: key factors to achieving high cell viability in sub-nanoliter droplet-based bioprinting. Int J Bioprint, 8:424.  https://doi.org/10.18063/ijb.v8i1.424 

33. Xiong R, Zhang Z, Chai W, et al., 2017, Study of gelatin as an effective energy absorbing layer for laser bioprinting. Biofabrication, 9:024103.  https://doi.org/10.1088/1758-5090/aa74f2 

34. Ng WL, Lee JM, Zhou M, et al., 2020, Vat polymerization-based bioprinting—process, materials, applications and regulatory challenges. Biofabrication, 12:022001.  https://doi.org/10.1088/1758-5090/ab6034 

35. Li W, Mille LS, Robledo JA, et al., 2020, Recent advances in formulating and processing biomaterial inks for vat polymerization-based 3D printing. Adv Healthc Mater, 9:1–18.  https://doi.org/10.1002/adhm.202000156
 
36. Pääkkönen T, Dimic-Misic K, Orelma H, et al., 2016, Effect of xylan in hardwood pulp on the reaction rate of TEMPO-mediated oxidation and the rheology of the final nanofibrillated cellulose gel. Cellulose, 23:277–293.  https://doi.org/https://doi.org/10.1007/s10570-015-0824-7 

37. Jessop ZM, Al-Sabah A, Gardiner MD, et al., 2017, 3D bioprinting for reconstructive surgery: Principles, applications and challenges. J Plast Reconstr Aesthetic Surg, 70(9):1155–1170.  https://doi.org/10.1016/j.bjps.2017.06.001 

38. Giuseppe M di, Law N, Webb B, et al., 2018, Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. J Mech Behav Biomed Mater, 79:150–157.  https://doi.org/10.1016/j.jmbbm.2017.12.018 

39. Ning L, Gil CJ, Hwang B, et al., 2020, Biomechanical factors in three-dimensional tissue bioprinting. Appl Phys Rev, 7:041319.  https://doi.org/10.1063/5.0023206 

40. Kawabe S, Seki M, Tabata H, 2014, Investigation of the sol-gel transition of gelatin using terahertz time-domain spectroscopy. J Appl Phys, 115:143103.  https://doi.org/10.1063/1.4870954 

41. Liu F, Chen Q, Liu C, et al., 2018, Natural polymers for organ 3D bioprinting. Polymers (Basel), 10:1278.  https://doi.org/10.3390/polym10111278 

42. Kačarević ŽP, Rider PM, Alkildani S, et al., 2018, An introduction to 3D bioprinting: Possibilities, challenges and future aspects. Materials, 11:2199.  https://doi.org/10.3390/ma11112199

43. Dimitreli G, Thomareis AS, 2004, Effect of temperature and chemical composition on processed cheese apparent viscosity. J Food Eng, 64:265–271.  https://doi.org/10.1016/j.jfoodeng.2003.10.008
 
44. Li MG, Tian XY, Chen XB, 2009, A brief review of dispensing-based rapid prototyping techniques in tissue scaffold fabrication: Role of modeling on scaffold properties prediction. Biofabrication, 1:032001.  https://doi.org/10.1088/1758-5082/1/3/032001
 
45. Murphy S V., Atala A, 2014, 3D bioprinting of tissues and organs. Nat Biotechnol, 32:773–785.  https://doi.org/10.1038/nbt.2958 

46. Jones N, 2012, Science in three dimensions: The print revolution. Nature, 487:22–23.  https://doi.org/10.1038/487022a 

47. Rutz AL, Hyland KE, Jakus AE, et al., 2015, A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv Mater, 27:1607–1614.  https://doi.org/10.1002/adma.201405076 

48. Blaeser A, Duarte Campos DF, Puster U, et al., 2016, Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater, 5:326–333.  https://doi.org/10.1002/adhm.201500677
 
49. Jin Y, Zhao D, Huang Y, 2018, Study of extrudability and standoff distance effect during nanoclay-enabled direct printing. Bio-Des Manuf, 1:123–134.  https://doi.org/10.1007/s42242-018-0009-y 

50. Markstedt K, Mantas A, Tournier I, et al., 2015, 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules, 16:1489–1496.  https://doi.org/10.1021/acs.biomac.5b00188 

51. Athukoralalage SS, Balu R, Dutta NK, et al., 2019, 3D bioprinted nanocellulose-based hydrogels for tissue engineering applications: A brief review. Polymers, 11(5):898.  https://doi.org/10.3390/polym11050898 

52. Han C, Wang X, Ni Z, et al., 2020, Effects of nanocellulose on alginate/gelatin bio-inks for extrusion-based 3D printing. BioResources, 15:7357–7373.  https://doi.org/10.15376/biores.15.4.7357-7373 

53. Fakhruddin K, Hamzah MSA, Razak SIA, 2018, Effects of extrusion pressure and printing speed of 3D bioprinted construct on the fibroblast cells viability. IOP Conf Ser: Mater Sci Eng, 440:012042.  https://doi.org/10.1088/1757-899X/440/1/012042

54. Liu Q, Hu X, Zhang X, et al., 2016, Effects of mechanical stress on chondrocyte phenotype and chondrocyte extracellular matrix expression. Sci Rep, 6:1–8.  https://doi.org/10.1038/srep37268
 
55. He H, Li D, Lin Z, et al., 2020, Temperature-programmable and enzymatically solidifiable gelatin-based bioinks enable facile extrusion bioprinting. Biofabrication, 12.  https://doi.org/10.1088/1758-5090/ab9906
 
56. Erkoc P, Uvak I, Nazeer MA, et al., 2020, 3D printing of cytocompatible gelatin-cellulose-alginate blend hydrogels. Macromol Biosci, 20:1–15.  https://doi.org/10.1002/mabi.202000106 

57. Place ES, Rojo L, Gentleman E, et al., 2011, Strontium-and zinc-alginate hydrogels for bone tissue engineering. Tissue Eng Part A, 17:2713–2722.  https://doi.org/10.1089/ten.tea.2011.0059 

58. Teti G, Focaroli S, Salvatore V, et al., 2018, The hypoxia-mimetic agent cobalt chloride differently affects human mesenchymal stem cells in their chondrogenic potential. Stem Cells Int, 2018: 3237253.  https://doi.org/10.1155/2018/3237253 

59. Focaroli S, Teti G, Salvatore V, et al., 2016, Calcium/cobalt alginate beads as functional scaffolds for cartilage tissue engineering. Stem Cells Int, 2016:20–22.  https://doi.org/10.1155/2016/2030478 

60. Nguyen D, Hgg DA, Forsman A, et al., 2017, Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Sci Rep, 7:658.  https://doi.org/10.1038/s41598-017-00690-y 

61. Apelgren P, Amoroso M, Lindahl A, et al., (2017) Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo. PLoS ONE, 12:e0189428.  https://doi.org/10.1371/journal.pone.0189428
 
62. Grogan SP, Duffy SF, Pauli C, et al., 2018, Gene expression profiles of the meniscus avascular phenotype: A guide for meniscus tissue engineering. J Orthop Res, 36:1947–1958.  https://doi.org/10.1002/jor.23864

63. Mackie EJ, Ahmed YA, Tatarczuch L, et al., 2008, Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol, 40:46–62.  https://doi.org/10.1016/j.biocel.2007.06.009 

64. Folkesson E, Turkiewicz A, Rydén M, et al., 2020, Proteomic characterization of the normal human medial meniscus body using data-independent acquisition mass spectrometry. J Orthop Res, 38:1735–1745.  https://doi.org/10.1002/jor.24602 

65. Francis SL, di Bella C, Wallace GG, et al., 2018, Cartilage tissue engineering using stem cells and bioprinting technology— barriers to clinical translation. Front Surg, 5:1–12.  https://doi.org/10.3389/fsurg.2018.00070 

66. Sharma P, Kumar P, Sharma R, et al., 2019, Tissue engineering; current status & futuristic scope. J Med Life, 12:225–229.  https://doi.org/10.25122/jml-2019-0032
 
67. Sathish PB, Gayathri S, Priyanka J, et al., 2022, Tricomposite gelatin-carboxymethylcellulose-alginate bioink for direct and indirect 3D printing of human knee meniscal scaffold. Int J Biol Macromol, 195:179–189.  https://doi.org/10.1016/j.ijbiomac.2021.11.184
 
68. Dutta SD, Hexiu J, Patel DK, et al., 2021, 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/ gelatin/cellulose nanocrystals for tissue engineering. Int J Biol Macromol, 167:644–658.  https://doi.org/10.1016/j.ijbiomac.2020.12.011
 
69. Ramakrishnan R, Kasoju N, Raju R, et al., 2022, Exploring the potential of alginate-gelatin-diethylaminoethyl cellulose-fibrinogen based bioink for 3d bioprinting of skin tissue constructs. Carbohydr Polym Technol Appl, 3:100184.  https://doi.org/10.1016/j.carpta.2022.100184 

70. Somasekharan LT, Raju R, Kumar S, et al., 2021, Biofabrication of skin tissue constructs using alginate, gelatin and diethylaminoethyl cellulose bioink. Int J Biol Macromol, 189:398–409.  https://doi.org/10.1016/j.ijbiomac.2021.08.114

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing