AccScience Publishing / IJB / Volume 5 / Issue 1 / DOI: 10.18063/ijb.v5i1.166
Cite this article
68
Download
828
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Mechanisms and modeling of electrohydrodynamic phenomena

Dajing Gao1 Donggang Yao2 Steven K. Leist1 Yifan Fei1 Jack Zhou1*
Show Less
1 Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, USA
2 School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
Published: 28 December 2018
© 2018 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The purpose of this paper is to review the mechanisms of electrohydrodynamic (EHD) phenomenon. From this review, researchers and students can learn principles and development history of EHD. Significant progress has been identified in research and development of EHD high-resolution deposition as a direct additive manufacturing method, and more effort will be driven to this direction soon. An introduction is given about current trend of additive manufacturing and advantages of EHD inkjet printing. Both theoretical models and experiment approaches about the formation of cone, development of cone-jet transition and stability of jet are presented. The formation of a stable cone-jet is the key factor for precision EHD printing which will be discussed. Different scaling laws can be used to predict the diameter of jet and emitted current in different parametrical ranges. The information available in this review builds a bridge between EHD phenomenon and threedimensional high-resolution inkjet printing.

Keywords
Electrohydrodynamic
cone-jet
jet stability
inkjet printing
additive manufacturing
References

1. Onses M S, Sutanto E, Ferreira P M, et al., 2015, Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing. Small J, 11(34): 4237– 4266. https://doi.org/10.1002/smll.201500593; https://doi. org/10.1002/smll.201570209. 
2. Korkut S, Saville D A, Aksay I A, 2008, Collodial cluster arrays by electrohydrodynamic printing. Langmuir, 24: 12196–12201. https://doi.org/10.1021/la8023327. 
3. Chrisey D B, 2000, Materials processing: The power of direct writing. Science, 289(5481): 879–881. https://doi. org/10.1126/science.289.5481.879. 
4. Jaworek A, Sobczyk A, 2008, Electrospraying route to nanotechnology: An overview. J Electrostat, 66(3–4): 197– 219. https://doi.org/10.1016/j.elstat.2007.10.001. 
5. Chen C H, 2011, Electrohydrodynamic Stability. Vienna: Springer. p177–220. https://doi.org/10.1007/978-3-7091- 0900-7_6. 
6. Park J U, Hardy M, Kang S J, et al., 2007, High–resolution electrohydrodynamic jet printing. Nat Mater, 6(10): 782– 789. https://doi.org/10.1038/nmat1974. 
7. Liang H, He J, Chang J, et al., 2017, Coaxial nozzle–assisted electrohydrodynamic printing for microscale 3D cell– laden constructs. Int J Bioprinting, 4(1): 127. https://doi. org/10.18063/ijb.v4i1.127. 
8. Liu H, Vijayavenkataraman S, Wang D, et al., 2017, Influence of electrohydrodynamic jetting parameters on the morphology of PCL scaffolds. Int J Bioprinting, 3(1):72-82. https://doi.org/10.18063/IJB.2017.01.009. 
9. Gilbert W, 1893, De Magnete Book. New York: John Wiley and Sons. 
10. Forbes R G, 2000, Liquid–metal ion sources and electrosprays operating in cone–jet mode some theoretical comparisons and comments. J Aerosol Sci, 31: 97–120. https://doi. org/10.1016/S0021-8502(99)00036-1. 
11. Gary S, 1732, A letter concerning the electricity of water, from Mr.Stephen Gray to cromwell Mortimer, M.D. Secr.R.S. Philos Trans, 37: 227–260. 
12. Rayleigh L, 1879, XX. On the equilibrium of liquid conducting masses charged with electricity. Philos Mag Ser, 14(87): 184–186. https://doi.org/10.1080/14786448208628425. 
13. Zeleny J, 1917, Instability of electrified liquid surfaces. Phys Rev, 10(1): 1–6. https://doi.org/10.1103/PhysRev.10.1. 
14. Marginean L P, Heffernan L, Vertes A, 2004, Flexing the electrified meniscus the birth of a jet in electrosprays. Anal Chem, 76: 4202–4207. https://doi.org/10.1021/ac049817r. 
15. Allan R S, Mason S G, 1962, Particle behaviour in shear and electric fields I. Deformation and burst of fluid drops. Proc R Soc London, 267: 45–61. 
16. Saville D A, 1997, Electrohydrodynamics-the taylor-melcher leaky dielectric model. Ann Rev Fluid Mech, 29: 27–64. https://doi.org/10.1146/annurev.fluid.29.1.27. 
17. Taylor G, 1969, Electrically driven jets. Proc R Soc London, 313: 453–475. https://doi.org/10.1098/rspa.1969.0205. 
18. Cloupeau M, Prunet-Foch B, 1994, Electrohydrodynamic spraying functioning modes a critical review. J Aerosol Sci, 25: 1021–1036. https://doi.org/10.1016/0021- 8502(94)90199-6. 
19. Marginean I, Nemes P, Vertes A, 2007, Astable regime in electrosprays. Phys Rev E Stat Nonlin Soft Matter Phys, 76(2 Pt 2): 26320. https://doi.org/10.1103/PhysRevE.76.026320. 
20. Juraschek R, Rollgen F W, 1998, Pulsation phenomena during electrospray ionization. Int J Mass Spectrom, 177: 1–15. https://doi.org/10.1016/S1387-3806(98)14025-3. 
21. Fenn J B, Mann M, Meng C K, et al., 1989, Electrospray ionization for mass spectrometry of large biomolecules. Am Assoc Adv Sci, 246: 64–71. https://doi.org/10.1126/science.2675315. 
22. Gamero-Castaño M, Aguirre-de-Carcer I, Juan L D, et al., 1998, On the current emitted by Taylor cone-jets of electrolytes in vacuo: Implications for liquid metal ion sources. J Appl Phys, 83(5): 2428–2434. https://doi.org/10.1063/1.367002. 
23. Morozov V N, Morozova T Y, 1999, Electrospray deposition as a method for mass fabrication of mono-and multicomponent microarrays of biological and biologically active substances. Anal Chem, 71: 3110–3117. https://doi. org/10.1021/ac981412h. 
24. Yogi O, Kawakami T, Yamauchi M, et al., 2001, On-demand droplet spotter for preparing pico-to femtoliter droplets on surfaces. Anal Chem, 73: 1896–1902. https://doi.org/10.1021/ ac0012039.
 
25. Jayasinghe S N, Edirisinghe M J, Wang D Z, 2004, Controlled deposition of nanoparticle clusters by electrohydrodynamic atomization. Nanotechnology, 15(11): 1519–1523. https:// doi.org/10.1088/0957-4484/15/11/025. 
26. Ganan-Calvo A M, 2004, On the general scaling theory for electrospraying. J Fluid Mech, 507: 203–212. https://doi. org/10.1017/S0022112004008870. 
27. Chen C H, Saville D A, Aksay I A, 2006, Electrohydrodynamic drop-and-place particle deployment. Appl Phys Lett, 88: 1541041–1541043. https://doi.org/10.1063/1.2191733. 
28. Chen C H, Saville D A, Aksay I A, 2006, Scaling laws for pulsed electrohydrodynamic drop formation. Appl Phys Lett, 89(12): 1241031–1241033. https://doi.org/10.1063/1.2356891. 
29. Park J U, Lee J H, Paik U, et al., 2008, Nanoscale patterns of oligonucleotides formed by electrohydrodynamic jet printing with application in biosensing and nanomaterials assembly. Am Chem Soc, 8: 4210–4216. https://doi.org/10.1021/nl801832v. 
30. Marginean I, Nemes P, Parvin L, et al., 2006, How much charge is there on a pulsating Taylor cone? Appl Phys Lett, 89(6): 64104. https://doi.org/10.1063/1.2266889. 
31. De La Mora J F, Loscertales I G, 1994, The current emitted by highly conducting Taylor cones. J Fluid Mech, 260: 155– 184. https://doi.org/10.1017/S0022112094003472. 
32. Carretero-Benignos J A, Martinez-Sanchez M, 2005, Numerical Simulation of a Single Emitter Colloid Thruster in Pure Droplet Cone-Jet Mode PhD Report. 
33. Lee A, Jin H, Dang H W, et al., 2013, Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing. Langmuir, 29(44): 13630– 13639. https://doi.org/10.1021/la403111m. 
34. Lozano P, Martinez-Sanchez M, Lopez-Urdiales J M, 2004, Electrospray emission from nonwetting flat dielectric surfaces. J Colloid Interface Sci, 276(2): 392–399. https:// doi.org/10.1016/j.jcis.2004.04.017. 
35. Taylor G, 1964, Disintegration of water drop in an electric field. Proc R Soc London, 280: 383–397. 
36. Taylor G, 1966, Studies in electrohydrodynamics.I.the circulation produced in a drop by electrical field. Proc R Soc London, 291: 159–166. 
37. Landau L D, Lifshitz E M, 1960, Electrodynamics of Continuous Media. Oxford: Pergamon Press. 
38. Poon H F, 2002, Electrohydrodynamic Printing. PhD Thesis. 
39. Atkins P, Paula J D, 2006, Physical Chemistry. 8th ed. New York: Atkins, W. H. Freeman and Company. 
40. Cloupeau M, Prunet-Foch B, 1990, Electrostatic spraying of liquids main functioning modes. J Electrostat, 25: 165–184. https://doi.org/10.1016/0304-3886(90)90025-Q. 
41. Smith D P H, 1986, The electrohydrodynamic atomization of liquids. IEEE Trans Ind Appl, IA-22: 527–535. https://doi. org/10.1109/TIA.1986.4504754. 
42. Kebarle P, Verkerk U H, 2009, Electrospray: From ions in solution to ions in the gas phase, what we know now. Mass Spectrom Rev, 28(6): 898–917. https://doi.org/10.1002/ mas.20247. 
43. De La Mora J F, 1992, The effect of charge emission from electrified liquid cones. J Fluid Mech, 243: 561–574. https:// doi.org/10.1017/S0022112092002829. 
44. Hayati I, Bailey A I, Tadros T F, 1986, Investigations into the mechanisms of electrohydrodynamic spraying of liquids I. J Colloid Interface Sci, 117(1): 205–220. https://doi. org/10.1016/0021-9797(87)90185-8. 
45. de la Mora J F, 2007, The fluid dynamics of Taylor cones. Ann Rev Fluid Mech, 39(1): 217–243. https://doi.org/10.1146/ annurev.fluid.39.050905.110159. 
46. Collins R T, Harris M T, Basaran O A, 2007, Breakup of electrified jets. J Fluid Mech, 588: 75–129. https://doi. org/10.1017/S0022112007007409. 
47. Eggers J, Villermaux E, 2008, Physics of liquid jets. Rep Prog Phys, 71(3): 3660101–36601079. https://doi. org/10.1088/0034-4885/71/3/036601. 
48. Wei J, Shui W, Zhou F, et al., 2002, Naturally and externally pulsed electrospray. Mass Spectrom Rev, 21(3): 148–162. https://doi.org/10.1002/mas.10026. 
49. Han Y, Dong J, 2017, Design, Modeling and testing of integrated ring extractor for high resolution electrohydrodynamic (EHD) 3D printing. J Micromech Microeng, 27(3): 035005-035013. https://doi. org/10.1088/1361-6439/aa5966. 
50. Han Y, Wei C, Dong J, 2015, Droplet formation and settlement of phase–change ink in high resolution electrohydrodynamic (EHD) 3D printing. J Manuf Process, 20: 485–491. https:// doi.org/10.1016/j.jmapro.2015.06.019. 
51. Zeleny J, 1914, The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Phys Rev, 3(2): 69–91. https://doi.org/10.1103/ PhysRev.3.69. 
52. Doyle A, Moffett D R, Vonnegut B, 1964, Behavior of evaporating electrically charged droplets. J Colloid Sci, 19: 136–143. https://doi.org/10.1016/0095-8522(64)90024 8. 
53. Melcher J R, Taylor G I, 1969, Electrohydrodynamics a review of the role of interfacial shear stresses. Ann Rev Fluid Mech, 1: 111–146. https://doi.org/10.1146/annurev. fl.01.010169.000551. 
54. Hayati I, Bailey A I, Tadros T F, 1986, Mechanism of stable jet formation in electrohydrodynamic atomization. Nature, 319(2): 41–43. https://doi.org/10.1038/319041a0. 
55. Ganan-Calvo A M, Davila J, Barrero A, 1997, Current and droplet size in the electrospraying of liquids scaling laws. J Aerosol Sci, 28(2): 249–275. https://doi.org/10.1016/ S0021-8502(96)00433-8. 
56. Barrero A, Ganan-Calvo A M, Davila J, et al., 1998, Low and high reynolds number flows inside Taylor cones. Phys Rev E, 58(6): 7309–7314. https://doi.org/10.1103/ PhysRevE.58.7309. 
57. Cloupeau M, Prunet-Foch B, 1989, Electrostatic spraying of liquids in cone–jet mode. J Electrostat, 22: 135–159. https:// doi.org/10.1016/0304-3886(89)90081-8. 
58. Jayasinghe S N, Edirisinghe M J, 2004, Electric–field driven jetting from dielectric liquids. Appl Phys Lett, 85(18): 4243– 4245. https://doi.org/10.1063/1.1812574. 
59. Jayasinghe S N, Edirisinghe M J, 2004, Electrically forced jets and microthreads of high viscosity dielectric liquids. J Aerosol Sci, 35(2): 233–243. https://doi.org/10.1016/j. jaerosci.2003.08.004. 
60. Gañán-Calvo A M, 2000, Erratum: Cone-jet analytical extension of Taylor’s electrostatic solution and the asymptotic universal scaling laws in electrospraying. Phys Rev Lett, 85(19): 4193. https://doi.org/10.1103/PhysRevLett.85.4193. 
61. Mestal A J, 1994, The electrohydrodynamic cone–jet at high reynolds number. J Aerosol Sci, 25(6): 1037–1047. https:// doi.org/10.1016/0021-8502(94)90200-3. 
62. Saville D A, 1970, Electrohydrodynamic stability: Fluid cylinders in longitudinal electric fields. Phys Fluids, 13(12): 2987–2994. https://doi.org/10.1063/1.1692890. 
63. Yarin A L, 2001, Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys, 90(9): 4836– 4846. https://doi.org/10.1063/1.1408260. 
64. Choi H K, Park J U, Park O O, et al., 2008, Scaling laws for jet pulsations associated with high–resolution electrohydrodynamic printing. Appl Phys Lett, 92(12): 1231091–1231093. https://doi.org/10.1063/1.2903700. 
65. Cloupeau M, 1994, Receipes for use of EHD spraying in cone– jet mode and notes on corona discharge effects. J Aerosol Sci, 25(6): 1143–1157. https://doi.org/10.1016/0021- 8502(94)90206-2. 
66. Ganan-Calvo A M, 1999, The surface charge in electrospraying its nature and its universal scaling laws. J Aerosol Sci, 30(7): 863–872. https://doi.org/10.1016/S0021-8502(98)00780-0. 
67. Ganan-Calvo A M, 1997, On the theory of electrohydrodynamically driven capillary jets. J Fluid Mech, 335: 165–188. https://doi.org/10.1017/S0022112096004466. 
68. Melcher J R, Warren E P, 1971, Electrohydrodynamics of a current carrying semi–insulating jet. J Fluid Mech, 47(1): 127–143. https://doi.org/10.1017/S0022112071000971. 
69. Hartman R P A, Brunner D J, Camelot D M A, et al., 1999, Electrohydrodynamic atomization in the cone–jet mode physical modelling of the liquid cone and jet. J Aerosol Sci, 30(7): 823–849. https://doi.org/10.1016/S0021- 8502(99)00033-6. 
70. Gamero-Castano M, Hruby V, 2002, Electric measurements of charged sprays emitted by cone–jets. J Fluid Mech, 459: 245–276. https://doi.org/10.1017/S002211200200798X. 
71. Higuera F J, 2003, Flow rate and electric current emitted by a Taylor cone. J Fluid Mech, 484: 303–327. https://doi. org/10.1017/S0022112003004385. 
72. Chen D R, Pui D Y H, 1997, Experimental investigation of scaling laws for electrospraying-dielctric constant effect. Aerosol Sci Technol, 27: 367–380. https://doi. org/10.1080/02786829708965479. 
73. Hohman M M, Shin M, Rutledge G, et al., 2001, Electrospinning and electrically forced jets. II. Applications. Phys Fluids, 13(8): 2221–2236. https://doi. org/10.1063/1.1384013; https://doi.org/10.1063/1.1383791. 
74. Forbes R G, 1996, The liquid metal ion source as an electrically driven vena contracta, and some comments on LMIS stability. J Phys IV, 6(C5): C543-7. https://doi. org/10.1051/jp4:1996506. 
75. Bailey A G, 1984, Electrostatic spraying of liquids. Phys Bull, 35: 146–148. https://doi.org/10.1088/0031-9112/35/4/018. 
76. Rayleigh L, 1879, On the capillary phenomena of jets. Proc R Soc London, 29: 71–97. https://doi.org/10.1098/rspl.1879.0015. 
77. Lefebvre A H, McDonell V G, 2017, Atomization and Sprays. 2nd ed. Boca Raton: CRC Press. p25. https://doi. org/10.1201/9781315120911. 
78. Saville D A, 1971, Electrohydrodynamic stability effects of charge relaxation at the interface of a liquid jet. J Fluid Mech, 48(4): 815–827. https://doi.org/10.1017/ S0022112071001873. 
79. Hohman M M, Shin M, Rutledge G, et al., 2001, Electrospinning and electrically forced jets-I. Stability theory. Phys Fluids, 13(8): 2201–2220. https://doi. org/10.1063/1.1384013; https://doi.org/10.1063/1.1383791. 
80. Saville D A, 1971, Stability of electrically charged viscous cylinders. Phys Fluids, 14(6): 1095–1099. https://doi. org/10.1063/1.1693569. 
81. López-Herrera J M, Riesco-Chueca P, Gañán-Calvo A M, 2005, Linear stability analysis of axisymmetric perturbations in imperfectly conducting liquid jets. Phys Fluids, 17(3): 3410601–3410621. https://doi.org/10.1063/1.1863285.
82. López-Herrera J M, Herrada M A, Montanero J M, et al., 2013, On the validity and applicability of the one–dimensional approximation in cone–jet electrospray. J Aerosol Sci, 61: 60–69. https://doi.org/10.1016/j.jaerosci.2013.03.008. 
83. Artana G, Romat H, Touchard G, 1998, Theoretical analysis of linear stability of electrified jets flowing at high velocity inside a coaxial electrode. J Electrostat, 43: 83–100. https:// doi.org/10.1016/S0304-3886(97)00163-0. 
84. Ganan-Calvo A M, Montanero J M, 2009, Revision of capillary cone–jet physics: Electrospray and flow focusing. Phys Rev E Stat Nonlin Soft Matter Phys, 79(6 Pt 2): 66305. https://doi.org/10.1103/PhysRevE.79.066305. 
85. López-Herrera J M, Gañán-Calvo A M, Herrada M A, 2010, Absolute to convective instability transition in charged liquid jets. Phys Fluids, 22(6): 620021–620029. https://doi. org/10.1063/1.3446972.

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing