AccScience Publishing / IJB / Volume 3 / Issue 1 / DOI: 10.18063/IJB.2017.01.009
Cite this article
17
Download
580
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Influence of electrohydrodynamic jetting parameters on the morphology of PCL scaffolds

Hang Liu1 Sanjairaj Vijayavenkataraman2 Dandan Wang1 Linzhi Jing1,3 Jie Sun1,4* Kai He4*
Show Less
1 National University of Singapore (Suzhou) Research Institute, Suzhou Industrial Park, Suzhou 215123, China
2 Department of Mechanical Engineering, National University of Singapore 117575, Singapore
3 Department of Chemistry, National University of Singapore 117543, Singapore
4 Department of Industrial Design, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
© Invalid date by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

 One of the important constituents in tissue engineering is scaffold, which provides structural support and suitable microenvironment for the cell attachment, growth and proliferation. To fabricate micro/nano structures for soft tissue repair and three-dimensional (3D) cell culture, the key is to improve fibre-based scaffold fabrication. Electrohydrodynamic (EHD) jetting is capable of producing and orientating submicron fibres for 3D scaffold fabrication. In this work, an EHD-jetting system was developed to explore the relationship between vital processing parameters and fibre characteristics. In this study, polycaprolactone (PCL) solution prepared by dissolving PCL pellets in acetic acid was used to fabricate the scaffolds. The influence of voltage, motorized stage speed, solution feed rate, and solution concentration on fibre characteristics and scaffold pattern were studied. Morphology of the EHD-jetted PCL fibres and scaffolds were analysed using optical microscope images and scanning electron microscope (SEM) images. Multi-layer scaffolds with the varied coiled pattern were fabricated and analysed. Cell attachment and proliferation have to be investigated in the future by further cell culture studies on these multi-layer coiled scaffolds.

Keywords
electrohydrodynamic jetting
3D bioprinting
polycaprolactone scaffolds
soft-tissue
tissue engineering
References

1.    Yeong W Y, Chua C K, Leong K F, et al. 2004, Rapid prototyping in tissue engineering: challenges and potential. Trends in Biotechnology, vol.22(12): 643–652. 
http://dx.doi.org/10.1016/j.tibtech.2004.10.004
2.    Wang X, Drew C, Lee S H, et al. 2002, Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Letters, vol.2(11): 1273–1275. 
http://dx.doi.org/10.1021/nl020216u
3.    Li W J, Laurencin C T, Caterson E J, et al. 2002, Electrospun nanofibrous structure: a novel scaffold for tissue engineering. Journal of Biomedical Materials Research, vol.60(4): 613–621. 
http://dx.doi.org/10.1002/jbm.10167
4.    Min B M, Lee G, Kim S H, et al. 2004, Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials, vol.25(7): 1289–1297. 
http://dx.doi.org/10.1016/j.biomaterials.2003.08.045
5.    Megelski S, Stephens J S, Chase D B, et al. 2002, Micro and nanostructured surface morphology on electrospun polymer fibers. Macromolecules, vol.35(22): 8456–8466. 
http://dx.doi.org/10.1021/ma02044a
6.    Jin H J, Fridrikh S V, Rutledge G C, et al. 2002, Electrospinning bombyx mori silk with poly (ethylene oxide). Biomacromolecules, vol.3(6): 1233–1239.
http://dx.doi.org/10.1021/bm025581u
7.    Vijayavenkataraman S, Lu W F, and Fuh J Y H, 2016, 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes. Biofabrication, vol.8(3): p032001. 
http://dx.doi.org/10.1088/1758-5090/8/3/032001 
8.    Chizhik S A, Wierzcholski K, Trushko A V, et al. 2011, Properties of cartilage on micro-and nanolevel. Advances in Tribology, vol.2010.
http://dx.doi.org/10.1155/2010/243150
9.    Teo W E, and Ramakrishna S, 2006, A review on electro-spinning design and nanofibre assemblies. Nanotechnology, vol.17(14): R89.
http://dx.doi.org/10.1088/0957-4484/17/14/R01
10.    Theron A, Zussman E, and Yarin A, 2001, Electrostatic field-assisted alignment of electrospun nanofibers. Nanotechnology, vol.12(3): 384.
http://dx.doi.org/10.1088/0957-4484/12/3/329
11.    Bhattarai N, Edmondson D, Veiseh O, et al. 2005, Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials, vol.26(31): 6176–6184. 
http://dx.doi.org/10.1016/j.biomaterials.2005.03.027
12.    Teo W E, Kotaki M, Mo X, et al. 2005, Porous tubular structures with controlled fibre orientation using a modified electrospinning method. Nanotechnology, vol.16 (6): 918. 
http://dx.doi.org/10.1088/0957-4484/16/6/049
13.    Baker B M, and Mauck R L, 2007, The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials, vol.28(11): 1967–1977. 
http://dx.doi.org/10.1016/j.biomaterials, 2007.01.004
14.    Sun D, Chang C, Li S, et al. 2006, Near-field electrospinning. Nano Letters, vol.6(4): 839–842.
http://dx.doi.org/10.1021/nl0602701
15.    Sun D, Lin L, Wu D, et al. 2007, Electrospun ordered nanofibers on Si and SiO2 substrate. In 2nd IEEE International Conference on Nano/Micro Engineered and Mo-lecular Systems, NEMS’07, IEEE, pp.72–76.
16.    Chang C, Limkrailassiri K, and Lin L, 2008, Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns. Applied Physics Letters, vol.93 (12): 123111.
http://dx.doi.org/10.1063/1.2975834
17.    Padmanabhan T, Kamaraj V, Magwood L, et al. 2011, Experimental investigation on the operating variables of a near-field electrospinning process via response surface methodology. Journal of Manufacturing Processes, vol.13(2): 104–112.
http://dx.doi.org/10.1016/j.jmapro.2011.01.003
18.    Wei C, and Dong J, 2013, Direct fabrication of high-resolution three-dimensional polymeric scaffolds using electrohydrodynamic hot jet plotting. Journal of Microme-chanics and Microengineering, vol.23(2): 025017. 
http://dx.doi.org/10.1088/0960-1317/23/2/025017
19.    Park J U, Hardy M, Kang S J, et al. 2007, High-resolution electrohydrodynamic jet printing. Nature Materials, vol.6(10): 782–789.
http://dx.doi.org/10.1038/nmat1974
20.    Kim B H, Onses M S, Lim J B, et al. 2015, High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Letters, vol.15(2): 969–973.
http://dx.doi.org/10.1021/nl503779e
21.    Lee H, Seong B, Kim J, Jang Y, et al. 2014, Direct alignment and patterning of silver nanowires by electrohydrodynamic jet printing. Small, vol.10(19): 3918–3922. 
http://dx.doi.org/10.1002/smll.201400936
22.    Croisier F, Duwez A S, Jérôme C, et al. 2012, Mechanical testing of electrospun PCL fibers. Acta Biomaterialia, vol.8(1): 218–224.
http://dx.doi.org/10.1016/j.actbio.2011.08.015
23.    Wang H, Vijayavenkataraman S, Wu Y, et al. 2016, Investigation of process parameters of electrohydrodynamic jetting for 3D printed PCL fibrous scaffolds with complex geometries. International Journal of Bioprinting, vol.2(1): 63–71.
http://dx.doi.org/10.18063/IJB.2016.01.005 
24.    Kowalewski T, Bloński S, and Barral S, 2005, Experiments and modelling of electrospinning process. Technical Sciences, vol.53(4).
25.    Koombhongse S, Liu W, and Reneker D H, 2001, Flat polymer ribbons and other shapes by electrospinning. Journal of Polymer Science Part B: Polymer Physics, vol.39(21): 2598–2606.
http://dx.doi.org/10.1002/polb.10015
26.    Woodruff M A and Hutmacher D W, 2010, The return of a forgotten polymer — polycaprolactone in the 21st century. Progress in Polymer Science, vol.35(10): 1217–1256.
http://dx.doi.org/10.1016/j.progpolymsci.2010.04.002 
27.    Karageorgiou V and Kaplan D, 2005, Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, vol.26(27): 5474–5491.
http://dx.doi.org/10.1016/j.biomaterials.2005.02.002
28.    Garg K. and Bowlin G L, 2011, Electrospinning jets and nanofibrous structures. Biomicrofluidics, vol.5(1): 013403.
http://dx.doi.org/10.1063/1.3567097
29.    Lee A, Jin H, Dang H W, et al., 2013, Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing. Langmuir, vol.29(44): 13630–13639.
http://dx.doi.org/10.1021/la403111m
30.    Pillay V, Dott C, Choonara Y E, et al., 2013, A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. Journal of Nanomaterials, vol.13(1): 789289.
http://dx.doi.org/10.1155/2013/789289

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing