AccScience Publishing / IJB / Volume 2 / Issue 2 / DOI: 10.18063/IJB.2016.02.009
Cite this article
9
Download
420
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Morphological, mechanical and biological assessment of PCL/pristine graphene scaffolds for bone regeneration

Weiguang Wang1 Guilherme Ferreira Caetano1,2 Wei-Hung Chiang3 Ana Letícia Braz4 Jonny James Blaker4 Marco Andrey Cipriani Frade2 Paulo Jorge Bártolo1*
Show Less
1 Manchester Biomanufacturing Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, M13 9PL, UK
2 Department of Internal Medicine, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
3 Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, E2-514, Taiwan
4 Bio-Active Materials Group, School of Materials, The University of Manchester, Manchester, M13 9PL, UK
© Invalid date by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Scaffolds are physical substrates for cell attachment, proliferation, and differentiation, ultimately leading to the regeneration of tissues. They must be designed according to specific biomechanical requirements such as mechanical properties, surface characteristics, biodegradability, biocompatibility, and porosity. The optimal design of a scaffold for a specific tissue strongly depends on both materials and manufacturing processes. Polymeric scaffolds reinforced with electro-active particles could play a key role in tissue engineering by modulating cell proliferation and differentiation. This paper investigates the use of an extrusion additive manufacturing system to produce PCL/pristine graphene scaffolds for bone tissue applications. PCL/pristine graphene blends were prepared using a melt blending process. Scaffolds with regular and reproducible architecture were produced with different concentrations of pristine graphene. Scaffolds were evaluated from morphological, mechanical, and biological view. The results suggest that the addition of pristine graphene improves the mechanical performance of the scaffolds, reduces the hydrophobicity, and improves cell viability and proliferation.

Keywords
biofabrication
human adipose-derived stem cells
poly (ε-caprolactone)
pristine graphene
scaffolds
tissue engineering
References

1. Lee J, Farag M M, Park E K, et al., 2014, A simultaneous process of 3D magnesium phosphate scaffold fabrication and bioactive substance loading for hard tissue regeneration. Materials Science and Engineering: C, vol.36: 252–260. http://dx.doi.org/10.1016/j.msec.2013.12.007 
2. Lichte P, Pape H C, Pufe T, et al., 2011, Scaffolds for bone healing: concepts, materials and evidence. Injury, vol.42(6): 569–573. http://dx.doi.org/10.1016/j.injury.2011.03.033 
3. Tang D, Tare R S, Yang L Y, et al., 2016, Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials, vol.83: 363–382. http://dx.doi.org/10.1016/j.biomaterials.2016.01.024 
4. Wang W, Chiang W H and Bartolo P J, 2016, Proceedings of the 2nd International Conference on Progress in Additive Manufacturing, May 16-19, 2016: Design, fa-
brication and evaluation of PCL/graphene scaffolds for bone regeneration. 
5. Oryan A, Alidadi S, Moshiri A, et al., 2014, Bone regenerative medicine: classic options, novel strategies, and future directions. Journal of Orthopaedic Surgery and Research, vol.9(1): 18. http://dx.doi.org/10.1186/1749-799X-9-18 
6. Denry I and Kuhn L T, 2016, Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dental Materials, vol.32(1): 43–53. http://dx.doi.org/10.1016/j.dental.2015.09.008 
7. Fiedler T, Videira A C, Bártolo P, et al., 2013, On the mechanical properties of PLC–bioactive glass scaffolds fabricated via BioExtrusion. Materials Science and Engineering: C, vol.57: 288–293. http://dx.doi.org/10.1016/j.msec.2015.07.063 
8. Sousa I, Mendes A, Pereira R F, et al., 2014, Collagen surface modified poly (ε-caprolactone) scaffolds with improved hydrophilicity and cell adhesion properties. Materials Letters, vol.134: 263–267. http://dx.doi.org/10.1016/j.matlet.2014.06.132 
9. Santos A R C, Almeida H A and Bártolo P J, 2013, Additive manufacturing techniques for scaffold-based cartilage tissue engineering. Virtual and Physical Prototyping, vol.8(3): 175–186. http://dx.doi.org/10.1080/17452759.2013.838825 
10. Bartolo P J, Kruth J P, Silva J, et al., 2012, Biomedical production of implants by additive electrochemical and physical processes. CIRP Annals – Manufacturing Technology, vol.61(2): 635–655. http://dx.doi.org/10.1016/j.cirp.2012.05.005 
11. Bártolo P J, Chua C K, Almeida H A, et al., 2009, Biomanufacturing for tissue engineering: present and future trends. Virtual and Physical Prototyping, vol.4(4): 203– 216. http://dx.doi.org/10.1080/17452750903476288 
12. Fantini M, Curto M and De Crescenzio F, 2016, A method to design biomimetic scaffolds for bone tissue engineering based on Voronoi lattices. Virtual and Physical Prototyping, vol.11(2): 1–14. http://dx.doi.org/10.1080/17452759.2016.1172301 
13. Lee J M and Yeong W Y, 2015, A preliminary model of time-pressure dispensing system for bioprinting based on printing and material parameter. Virtual and Physical Prototyping, vol.10(1): 3–8. http://dx.doi.org/10.1080/17452759.2014.979557 
14. Dean D, Mott E, Luo X, et al., 2014, Multiple initiators and dyes for continuous digital light processing (cDLP) additive manufacture of resorbable bone tissue engineering. Virtual and Physical Prototyping, vol.9(1): 3–9. http://dx.doi.org/10.1080/17452759.2013.873337 
15. Kumar A, Mandal S, Barui S, et al., 2016. Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment. Materials Science and Engineering: R: Reports, vol.103: 1–39. http://dx.doi.org/10.1016/j.mser.2016.01.001 
16. Caetano G, Violante R, Sant′Ana A B, et al., 2016, Cellularized versus decellularized scaffolds for bone regeneration. Materials Letters. http://dx.doi.org/10.1016/j.matlet.2016.05.152 
17. Jin G and Li K, 2014, The electrically conductive scaffold as the skeleton of stem cell niche in regenerative medicine. Materials Science and Engineering: C, vol.45: 671–681. http://dx.doi.org/10.1016/j.msec.2014.06.004 
18. Lu L, Mende M, Yang X, et al., 2012, Design and validation of a bioreactor for simulating the cardiac niche: A system incorporating cyclic stretch, electrical stimulation, and constant perfusion. Tissue Engineering Part A, vol.19(3–4): 403–414. http://dx.doi.org/10.1089/ten.tea.2012.0135 
19. Maidhof R, Tandon N, Lee E J, et al., 2012, Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue. Journal of Tissue Engineering and Regenerative Medicine, vol.6(10): e12–e23. http://dx.doi.org/10.1002/term.525 
20. Kuilla T, Bhadra S, Yao D, et al., 2010, Recent advances in graphene based polymer composites. Progress in Polymer Science, vol.35(11): 1350–1375. http://dx.doi.org/10.1016/j.progpolymsci.2010.07.005 
21. Li M, Guo Y, Wei Y, et al., 2006, Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials, vol.27(13): 2705– 2715. http://dx.doi.org/10.1016/j.biomaterials.2005.11.037 
22. Kumar S, Azam D, Raj S, et al., 2016, 3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.104(4): 732–749. http://dx.doi.org/10.1002/jbm.b.33549 
23. Wang J K, Xiong G M, Zhu M, et al., 2015, Polymer-enriched 3D graphene foams for biomedical applications. ACS Applied Materials and Interfaces, vol.7(15): 8275–8283. http://dx.doi.org/10.1021/acsami.5b01440 
24. Liao K H, Lin Y S, Macosko C W, et al., 2011, Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Applied Materials and Interfaces, vol.3(7): 2607–2615. http://dx.doi.org/10.1021/am200428v 
25. Wang K, Ruan J, Song H, et al., 2011, Biocompatibility of graphene oxide. Nanoscale Research Letters, vol.6(1): 
8. http://dx.doi.org/10.1007/s11671-010-9751-6 
26. Zhang Y, Ali S F, Dervishi E, et al., 2010, Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano, vol.4(6): 3181–3186. http://dx.doi.org/10.1021/nn1007176 
27. Park S Y, Park J, Sim S H, et al., 2011, Enhanced differentiation of human neural stem cells into neurons on graphene. Advanced Materials, vol.23(36): H263–H267. http://dx.doi.org/10.1002/adma.201101503 
28. Li N, Zhang X, Song Q, et al., 2011, The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates. Biomaterials, vol.32(35): 9374–9382. http://dx.doi.org/10.1016/j.biomaterials.2011.08.065 
29. Woodruff M A and Hutmacher D W, 2010, The return of a forgotten polymer — polycaprolactone in the 21st century. Progress in Polymer Science, vol.35(10): 1217– 1256. http://dx.doi.org/10.1016/j.progpolymsci.2010.04.002 
30. Sasmazel H T, 2011, Novel hybrid scaffolds for the cultivation of osteoblast cells. International Journal of Biological Macromolecules, vol.49(4): 838–846. http://dx.doi.org/10.1016/j.ijbiomac.2011.07.022 
31. Caetano G F, Bártolo P J, Domingos M, et al., 2015, Osteogenic differentiation of adipose-derived mesenchymal stem cells into Polycaprolactone (PCL) scaffold. Procedia Engineering, vol.110: 59–66. http://dx.doi.org/10.1016/j.proeng.2015.07.010 
32. Zhang H X, Du G H and Zhang J T, 2004, Assay of mitochondrial functions by resazurin in vitro. Acta Pharmacologica Sinica, vol.25(3): 385–389. 
33. Borra R C, Lotufo M A, Gagioti S M, et al., 2009, A simple method to measure cell viability in proliferation and cytotoxicity assays. Brazilian Oral Research, vol.23(3): 255–262. http://dx.doi.org/10.1590/S1806-83242009000300006 
34. Vega-Avila E and Pugsley M K, 2011, An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. Proceedings of the Western Pharmacology Society, vol.54: 10–14. 
35. Poh P S P, Hutmacher D W, Holzapfel B M, et al., 2016, In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds. Acta Biomaterialia, vol.30: 319–333. http://dx.doi.org/10.1016/j.actbio.2015.11.012 
36. Bártolo P J, Domingos M, Patrício T, et al., 2011, Bio-fabrication strategies for tissue engineering, in Fernandes P R and Bártolo P J, (eds) Advances on Modeling in Tissue Engineering, Springer, Netherlands, 137–176. http://dx.doi.org/10.1007/978-94-007-1254-6

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing