AccScience Publishing / IJB / Volume 2 / Issue 2 / DOI: 10.18063/IJB.2016.02.004
Cite this article
18
Download
575
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Producing hip implants of titanium alloys by additive manufacturing

Anatoliy Popovich1 Vadim Sufiiarov1 Igor Polozov* Evgenii Borisov1 Dmitriy Masaylo1
Show Less
1 Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya ul., 29, St Petersburg, Russia
© Invalid date by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Additive manufacturing (AM) technologies, in particular Selective Laser Melting (SLM) allows the production of complex-shaped individual implants from titanium alloys with high biocompatibility, mechanical properties, and improved osseointegration by surface texturing. In this work, the possibility of producing a custom-made hip implant from Ti-6Al-4V powder according to the data acquired via computed tomography of the patient is shown. Different heat treatments were applied in order to achieve better combination of tensile strength and elongation by partial decomposition of the martensitic phase. The implant was installed to the patient, postoperative supervision has shown good results, and the patient is able to move with the installed implant. A successful case of applying AM for producing custom hip implant is demonstrated in the paper. Using AM allowed the production of a custom-made hip implant in a short time and decreases the operation time and lessens the risk of infection ingress.

Keywords
selective laser melting
implant
Ti-6Al-4V
biomedical application
prosthesis
References

1. An J, Chua C K and Mironov V, 2016, A perspective on 4D bioprinting. International Journal of Bioprinting, vol.2(1): 3–5. http://dx.doi.org/10.18063/IJB.2016.01.003 
2. Doubrovski Z, Verlinden J C and Geraedts J M, 2011, Optimal design for additive manufacturing: Opportunities and challenges. Volume 9: 23rd International Conference on Design Theory and Methodology; 16th Design for Manufacturing and the Life Cycle Conference, August 28–31, 2001, 635–646. Washington, DC, USA. http://dx.doi.org/10.1115/detc2011-48131 
3. Gao W, Zhang Y, Ramanujan D, et al., 2015, The status, challenges, and future of additive manufacturing in engineering. Computer-Aided Design, vol.69: 65–89. http://dx.doi.org/10.1016/j.cad.2015.04.001 
4. Uhlmann E, Kersting R, Klein T B, et al., 2015, Additive manufacturing of titanium alloy for aircraft components. Procedia CIRP, vol.35: 55–60. http://dx.doi.org/10.1016/j.procir.2015.08.061 
5. Vandenbroucke B and Kruth J P, 2007, Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyping Journal, vol.13(4): 196–203. http://dx.doi.org/10.1108/13552540710776142 
6. Sallica-Leva E, Caram R, Jardini A L, et al., 2016, Ductility improvement due to martensite α′decomposition in porous Ti–6Al–4V parts produced by selective laser melting for orthopedic implants. Journal of the Mechanical Behavior of Biomedical Materials, vol.54: 149–158. http://dx.doi.org/10.1016/j.jmbbm.2015.09.020 
7. Mercelis P and Kruth J P, 2006, Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping Journal, vol.12(5): 254–265. http://dx.doi.org/10.1108/13552540610707013 
8. Sames W J, List F A, Pannala S, et al., 2016, The metallurgy and processing science of metal additive manufacturing. International Materials Reviews, vol.6608: 1–46. http://dx.doi.org/10.1080/09506608.2015.1116649 
9. Yadroitsev I, Krakhmalev P and Yadroitsava I, 2014, Selective laser melting of Ti6Al4V alloy for biomedical applications: temperature monitoring and microstructural evolution. Journal of Alloys and Compounds, vol.583: 404–409. http://dx.doi.org/10.1016/j.jallcom.2013.08.183 
10. Popovich A A, Sufiiarov V S, Polozov I A, et al., 2015, Microstructure and mechanical properties of Inconel 718 produced by SLM and subsequent heat treatment. Key Engineering Materials, vol.651–653: 665–670. http://dx.doi.org/10.4028/www.scientific.net/KEM.651-653.665 
11. Frazier W E, 2014, Metal additive manufacturing: A review. Journal of Materials Engineering and Performance, vol.23(6): 1917–1928. http://dx.doi.org/10.1007/s11665-014-0958-z 
12. Kurtz S, Ong K, Lau E, et al., 2007, Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. Journal of Bone and Joint Surgery. American Volume, vol.89(4): 780–785. http://dx.doi.org/10.2106/JBJS.F.00222 
13. Pivec R, Johnson A J, Mears S C, et al., 2012, Hip arthroplasty. Lancet, vol.380(9855): 1768–1777. http://dx.doi.org/10.1016/S0140-6736(12)60607-2 
14. Herberts P and Malchau H, 2000, Long-term registration has improved the quality of hip replacement: A review of the Swedish THR register comparing 160,000 cases. Acta Orthopaedica Scandinavica, vol.71(2): 111–121. http://dx.doi.org/10.1080/000164700317413067 
15. Deirmengian G K, Zmistowski B, O’Neil J T, et al., 2011, Management of acetabular bone loss in revision total hip arthroplasty. The Journal of Bone and Joint Surgery. American Volume, vol.93(19): 1842–1852. http://dx.doi.org/10.2106/JBJS.J.01197
16. Civinini R, Capone A, Carulli C, et al., 2008, Acetabular revisions using a cementless oblong cup: Five to ten year results. International Orthopaedics, vol.32(2): 189– 193. http://dx.doi.org/10.1007/s00264-006-0307-4 
17. Issack P S, Nousiainen M, Beksac B, et al., 2009, Acetabular component revision in total hip arthroplasty. Part I: Cementless shells. American Journal of Orthopedics (Belle Mead NJ), vol.38(10): 509–514. 
18. Lütjering G, Williams J C and Gysler A. 2000, Microstructure and mechanical properties of titanium alloys, in Microstructure and Properties of Materials vol.2, Li J C M (ed.), World Scientific Publishing Co. Pte. Ltd., Singapore, 49–55. 
19. Sun J, Yang Y and Wang D, 2013, Mechanical properties of a Ti6Al4V porous structure produced by selective laser melting. Materials & Design, vol.49: 545– 552. http://dx.doi.org/10.1016/j.matdes.2013.01.038 
20. Hallmann S, Glockner P, Daniel C, et al., 2015, Manufacturing of medical implants by combination of selective laser melting and laser ablation. Lasers in Manufacturing and Materials Processing, vol.2(3): 124–134. http://dx.doi.org/10.1007/s40516-015-0010-7 
21. Harrysson O L A, Cansizoglu O, Marcellin-Little D J, et al., 2008, Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Materials Science and Engineering: C, vol.28(3): 366–373. http://dx.doi.org/10.1016/j.msec.2007.04.022 
22. Cansizoglu O, Harrysson O, Cormier D, et al., 2008, Properties of Ti–6Al–4V non-stochastic lattice structures fabricated via electron beam melting. Materials Science and Engineering: A, 492(1–2): 468–474. http://dx.doi.org/10.1016/j.msea.2008.04.002 
23. Sing S L, An J, Yeong W Y, et al., 2016, Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. Journal of Orthopaedic Research, vol.34(3): 369–385. http://dx.doi.org/10.1002/jor.23075 
24. Yap C Y, Chua C K, Dong Z L, et al., 2015, Review of selective laser melting: Materials and applications. Applied Physics Reviews, vol.2(4): 041101. http://dx.doi.org/10.1063/1.4935926 
25. Sing S L, Yeong W Y and Wiria F E, 2016, Selective laser melting of titanium alloy with 50 wt% tantalum: Microstructure and mechanical properties. Journal of Al-loys and Compounds, vol.660, 461-470. http://dx.doi.org/10.1016/j.jallcom.2015.11.141 
26. Popovich A, Sufiiarov V, Borisov E, et al., 2015, Microstructure and mechanical properties of Ti-6Al-4V manufactured by SLM. Key Engineering Materials, vol.651– 653: 677–682. http://dx.doi.org/10.4028/www.scientific.net/KEM.651-653.677 
27. Sufiiarov V S, Popovich A A, Borisov E V, et al., 2015, Selective laser melting of titanium alloy and manufacturing of gas-turbine engine part blanks. Tsvetnye Metally, vol.8: 76–80. http://dx.doi.org/10.17580/tsm.2015.08.11 
28. Warnke P H, Douglas T, Wollny P, et al., 2009, Rapid prototyping: Porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering. Tissue Engineering Part C: Methods, vol.15(2): 115–124. http://dx.doi.org/10.1089/ten.tec.2008.0288 
29. Vrancken B, Thijs L, Kruth J P, et al., 2014, Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting. Acta Materialia, vol.68: 150–158. http://dx.doi.org/10.1016/j.actamat.2014.01.018 
30. Thijs L, Verhaeghe F, Craeghs T, et al., 2010, A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Materialia, vol.58(9): 3303– 3312. http://dx.doi.org/10.1016/j.actamat.2010.02.004 
31. Facchini L, Magalini E, Robotti P, et al., 2010, Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders. Rapid Prototyping Journal, vol.16(6): 450–459. http://dx.doi.org/10.1108/13552541011083371 
32. Liu F, Lin X, Yang G, et al., 2011, Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy. Optics & Laser Technology, vol.43(1): 208–213. http://dx.doi.org/10.1016/j.optlastec.2010.06.015 
33. Yadroitsev I and Yadroitsava I, 2015, Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting. Virtual and Physical Prototyping, vol.10(2): 67–76. http://dx.doi.org/10.1080/17452759.2015.1026045

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing