AccScience Publishing / IJB / Volume 2 / Issue 2 / DOI: 10.18063/IJB.2016.02.001
Cite this article
10
Download
650
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Colony development of laser printed eukaryotic (yeast and microalga) microorganisms in co-culture

Behnam Taidi1* Guillaume Lebernede2 Lothar Koch3 Patrick Perre1 Boris Chichkov3,4*
Show Less
1 LGPM, Centralesupelec, Université de Paris-Saclay, Grande Voie des Vignes, 92295 Châtenay-Malabry, France
2 Sup’Biotech, 66 rue Guy Môquet, 94800 Villejuif, France
3 Laser Zentrum Hannover e.V., Nanotechnology Department, Hollerithallee 8, 30419 Hannover, Germany
4 Leibniz Universität Hannover, Institut für Quantenoptik, Welfengarten 1, 30167 Hannover, Germany
Published: 26 June 2016
© 2016 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

 Laser Induced Forward Transfer (LIFT) bioprinting is one of a group of techniques that have been largely applied for printing mammalian cells so far. Bioprinting allows precise placement of viable cells in a defined matrix with the aim of directed three-dimensional development of tissues. In this study, laser bioprinting is used to precisely place eukaryotic microorganisms in specific patterns that allow growth and microscopic observation of the organisms’ micro-colonies. Saccharomyces cerevisiae var. bayanus and Chlorella vulgaris are used as model organisms for this purpose. Growth and development of the micro-colonies are studied via confocal microscopy and the colonies’ growth rates are determined by image analysis. The developed protocols for printing of microorganisms and growth-rate determination of the micro-colonies are very promising for future studies of colony growth and development.

Keywords
laser-induced forward transfer
bioprinting
printing of microorganisms
growth rates of micro-colonies
Saccharomyces cerevisiae
Chlorella vulgaris
References

1. Ringeisen B R, Karina R, Fitzgerald L A, et al. 2014, Printing soil: A single-step, high-throughput method to isolate micro-organisms and near-neighbour microbial consortia from a complex environmental sample. Methods in Ecology and Evolution, vol.6(1): 209–217. http://dx.doi.org/10.1111/2041-210X.12303 
2. Walker D, Hill G, Wood S, et al. 2004, Agent-based computational modeling of wounded epithelial cell mono-layers. IEEE Transactions on Nanobioscience, vol.3(3): 153–163. http://dx.doi.org/10.1109/TNB.2004.833680 
3. Emonet T, Macal C M, North M J, et al. 2005, Agent-Cell: A digital single-cell assay for bacterial chemotaxis. Bioinformatics, vol.21(11): 2714–2721. http://dx.doi.org/10.1093/bioinformatics/bti391 
4. Zhang L, Wang Z, Sagotsky J A, et al. 2009, Multiscale agent-based cancer modeling. Journal of Mathematical Biology, vol.58(4–5): 545–559. http://dx.doi.org/10.1007/s00285-008-0211-1 
5. Tang Y and Valocchi A J, 2013, An improved cellular automaton method to model multispecies biofilms. Water Research, vol.47(15): 5729–5742. http://dx.doi.org/10.1016/j.watres.2013.06.055 
6. Gerken H G, Bryon D and Knoshaug E P, 2013, Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta, vol.237(1): 239–253. http://dx.doi.org/10.1007/s00425-012-1765-0 
7. Orlean P, 2012, Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics, vol.192(3): 
775–818. http://dx.doi.org/10.1534/genetics.112.144485 
8. Martínez F and Orús M I, 1991, Interactions between glucose and inorganic carbon metabolism in Chlorella vulgaris strain UAM 101. Plant Physiology, vol.95(4): 1150–1155. 
http://dx.doi.org/10.1104/pp.95.4.1150 
9. Liang Y, Sarkany N and Cui Y, 2009, Biomass and lipid productivity of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, vol.31(7): 1043–1049. http://dx.doi.org/10.1007/s10529-009-9975-7 
10. Merico A, Sulo P, Piškur J, et al. 2007, Fermentative lifestyle in yeasts belonging to the Saccharomyces complex. The FEBS Journal, vol.274(4): 976–989. http://dx.doi.org/10.1111/j.1742-4658.2007.05645.x 
11. Rosenfeld E, Beauvoit B, Blondin B, et al. 2003, Oxygen consumption by anaerobic Saccharomyces cerevisiae under enological conditions: Effect on fermentation kinetics. Applied and Environmental Microbiology, vol.69(1): 113–121. http://dx.doi.org/10.1128/AEM.69.1.113–121.2003 
12. Ferris C J, Gilmore K J, Wallace G G, et al. 2013, Biofabrication: An overview of the approaches used for printing of living cells. Applied Microbiology and Biotechnology, vol.97(10): 4243–4258. http://dx.doi.org/10.1007/s00253-013-4853-6 
13. Clément-Larosière B, Lopes F, Gonçalves A, et al. 2014, Carbon dioxide biofixation by Chlorella vulgaris at different CO2 concentrations and light intensities. Engineering in Life Sciences, vol.14(5): 509–519. http://dx.doi.org/10.1002/elsc.201200212 
14. Koch L, Kuhn S, Sorg H, et al. 2010, Laser printing of skin cells and human stem cells. Tissue Engineering Part C: Methods, vol.16(5): 847–854. http://dx.doi.org/10.1089/ten.TEC.2009.0397 
15. Unger C, Gruene M, Koch L, et al. 2011, Time-resolved imaging of hydrogel printing via laser-induced forward transfer. Applied Physics A, vol.103(2): 271–277. http://dx.doi.org/10.1007/s00339-010-6030-4 
16. Gruene M, Unger C, Koch L, et al. 2011, Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting. Biomedical Engineering Online, vol.10: 19. http://dx.doi.org/10.1186/1475-925X-10-19 
17. Monod J, 1949, The growth of bacterial cultures. Annual Review of Microbiology, vol.3: 371–394. http://dx.doi.org/10.1146/annurev.mi.03.100149.002103 
18. Schiele N R, Corr D T, Huang Y, et al. 2010, Laser-based direct-write techniques for cell printing. Biofabrication, vol.2(3): 032001. http://dx.doi.org/10.1088/1758-5082/2/3/032001 
19. Koch L, Deiwick A and Chichkov B, 2014, Laser-based 3D cell printing for tissue engineering. BioNanoMaterials, vol.15(3–4): 71–78. http://dx.doi.org/10.1515/bnm-2014-0005

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing