AccScience Publishing / IJB / Volume 10 / Issue 2 / DOI: 10.36922/ijb.1970
Cite this article
55
Download
779
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Decellularized extracellular matrix for three-dimensional bioprinted in vitro disease modeling

Mihyeon Bae1,2† Joeng Ju Kim1,2† Jongmin Kim1,2 Dong-Woo Cho1,2*
Show Less
1 Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, Republic of Korea
2 POSTECH-Catholic Biomedical Engineering Institute, POSTECH, Pohang, Kyungbuk, Republic of Korea
IJB 2024, 10(2), 1970 https://doi.org/10.36922/ijb.1970
Submitted: 6 October 2023 | Accepted: 3 November 2023 | Published: 16 January 2024
(This article belongs to the Special Issue Fine-tuned Hydrogels for 3D Bioprinting)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Precise in vitro models in tissue engineering have attracted the attention of researchers seeking to understand physiological consequences from native tissues as well as the mechanism of diseases in vitro. To construct delicate native tissue-like in vitro models, a proper combination of biomimetic materials and a biofabrication strategy is required. Conventional biomaterials, such as collagens, laminins, and synthetic polymers, have been widely adapted in tissue recapitulation; however, they lack tissue specificity in the context of biophysical properties and native-like extracellular matrix composition. The lack of tissue specificity accounts for the pathophysiological discrepancy between preclinical model and actual human patient. Thus, biomaterials should be improved for attaining physiological similarity between disease models and patients. Additionally, a biofabrication technique is essential for building mature cellular or tissue structures with a sophisticated bioassembly process. Among the biofabrication techniques, bioprinting stands as a promising approach for constructing three-dimensional (3D) cellular structures using specific cell types and biomaterials. Combining multifunctional bioinks and bioprinting is expected to enhance tissue specificity with regard to structural recapitulation. From this viewpoint, decellularized extracellular matrix (dECM) bioink has been increasingly used to achieve tissue specificity and manufacturability in 3D bioprinting. Progress in this domain requires the clarification of tissue-specific decellularization method and the development of a proper 3D bioprinting method, in conjunction with the improvement of the compatibility between dECM and bioprinting. In this review, we introduce the production methods and characteristics of dECM in the context of tissue specificity and examine state-of-the-art dECM-incorporated 3D-bioprinted in vitro models for disease investigation. We also recommend a strategy for improving dECM for use in therapeutic studies based on simulations of the pathophysiological microenvironment.

Keywords
Decellularized extracellular matrix
Bioink
3D bioprinting
In vitro model
Biomaterial
Funding
This work was supported by the Korean Fund for Regenerative Medicine funded by Ministry of Science and ICT, and Ministry of Health and Welfare (22A0106L1, Republic of Korea), and was supported by the Alchemist Project (20012378, Development of Meta Soft Organ Module Manufacturing Technology without Immunity Rejection and Module Assembly Robot System) funded by the Ministry of Trade, Industry & Energy (MOTIE, Republic of Korea).
References
  1. Nikolic M, Sustersic T, Filipovic N. In vitro models and on-chip systems: biomaterial interaction studies with tissues generated using lung epithelial and liver metabolic cell lines. Front Bioeng Biotechnol. 2018;6:120. doi: 10.3389/fbioe.2018.00120
  2. Rothbauer M, Rosser JM, Zirath H, Ertl P. Tomorrow today: organ-on-a-chip advances towards clinically relevant pharmaceutical and medical in vitro models. Curr Opin Biotechnol. 2019;55:81-86. doi: 10.1016/j.copbio.2018.08.009
  3. Wang YI, Carmona C, Hickman JJ. Multiorgan microphysiological systems for drug development: strategies, advances, and challenges. Adv Healthc Mater. 2018;7(2):1701000. doi: 10.1002/adhm.201701000
  4. Wikswo JP. The relevance and potential roles of microphysiological systems in biology and medicine. Exp Biol Med. 2014;239(9):1061-1072. doi: 10.1177/1535370214542068
  5. Shyam R, Reddy LVK, Palaniappan A. Fabrication and characterization techniques of in vitro 3D tissue models. Int J Mol Sci. 2023;24(3):1912. doi: 10.3390/ijms24031912
  6. Bae M, Yi H-G, Jang J, Cho D-W. Microphysiological systems for neurodegenerative diseases in central nervous system. Micromachines. 2020;11(9):855. doi: 10.3390/mi11090855
  7. Brovold M, Almeida JI, Pla-Palacín I, et al. Naturally-derived biomaterials for tissue engineering applications. Novel Biomater Regen Med. 2018:421-449. doi: 10.1007/978-981-13-0947-2_23
  8. Joyce K, Fabra GT, Bozkurt Y, Pandit A. Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduct Target Ther. 2021;6(1):122. doi: 10.1038/s41392-021-00512-8
  9. Groll J, Boland T, Blunk T, et al. Biofabrication: reappraising the definition of an evolving field. Biofabrication. 2016;8(1):013001. doi: 10.1088/1758-5090/8/1/013001
  10. Moroni L, Burdick JA, Highley C, et al. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat Rev Mater. 2018;3(5):21-37. doi: 10.1038/s41578-018-0006-y
  11. Devillard CD, Marquette CA. Vascular tissue engineering: challenges and requirements for an ideal large scale blood vessel. Front Bioeng Biotechnol. 2021;9:721843. doi: 10.3389/fbioe.2021.721843
  12. Cesare G. Muscle tissue engineering. Nukavarapu SP, Freeman JW, Laurencin CT, eds. Regenerative Engineering of Musculoskeletal Tissues and Interfaces. Amsterdam, Netherlands: Elsevier; 2015:239-268. doi: 10.1016/C2014-0-02826-2
  13. Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized extracellular matrix scaffolds: recent trends and emerging strategies in tissue engineering. Bioact Mater. 2022;10:15-31. doi: 10.1016/j.bioactmat.2021.09.014
  14. Kim BS, Kim H, Gao G, Jang J, Cho D-W. Decellularized extracellular matrix: a step towards the next generation source for bioink manufacturing. Biofabrication. 2017;9(3):034104. doi: 10.1088/1758-5090/aa7e98
  15. Kim BS, Das S, Jang J, Cho D-W. Decellularized extracellular matrix-based bioinks for engineering tissue-and organ-specific microenvironments. Chem Rev. 2020;120(19): 10608-10661. doi: 10.1021/acs.chemrev.9b00808
  16. Han W, Singh NK, Kim JJ, et al. Directed differential behaviors of multipotent adult stem cells from decellularized tissue/organ extracellular matrix bioinks. Biomaterials. 2019;224:119496. doi: 10.1016/j.biomaterials.2019.119496
  17. Hynes RO, Naba A. Overview of the matrisome—an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol. 2012;4(1):a004903. doi: 10.1101/cshperspect.a004903
  18. Uhlén M, Fagerberg L, Hallström BM, et al. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. doi: 10.1126/science.1260419
  19. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014;32(8):773-785. doi: 10.1038/nbt.2958
  20. Tan B, Gan S, Wang X, Liu W, Li X. Applications of 3D bioprinting in tissue engineering: advantages, deficiencies, improvements, and future perspectives. J Mater Chem B. 2021;9(27):5385-5413. doi: 10.1039/D1TB00172H
  21. Kačarević ŽP, Rider PM, Alkildani S, et al. An introduction to 3D bioprinting: possibilities, challenges and future aspects. Materials. 2018;11(11):2199. doi: 10.3390/ma11112199
  22. Zhang YS, Haghiashtiani G, Hübscher T, et al. 3D extrusion bioprinting. Nat Rev Methods Primers. 2021;1(1):75. doi: 10.1038/s43586-021-00073-8
  23. Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials. Chem Rev. 2020;120(19):10793-10833. doi: 10.1021/acs.chemrev.0c00008
  24. Guillotin B, Souquet A, Catros S, et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials. 2010;31(28): 7250-7256. doi: 10.1016/j.biomaterials.2010.05.055
  25. Ramesh S, Harrysson OL, Rao PK, et al. Extrusion bioprinting: recent progress, challenges, and future opportunities. Bioprinting. 2021;21:e00116. doi: 10.1016/j.bprint.2020.e00116
  26. Binder KW, Allen AJ, Yoo JJ, Atala A. Drop-on-demand inkjet bioprinting: a primer. Gene Ther Regul. 2011;6(01):33-49. doi: 10.1142/S1568558611000258
  27. Ventura RD. An overview of laser-assisted bioprinting (LAB) in tissue engineering applications. Med Lasers. 2021;10(2):76-81. doi: 10.25289/ML.2021.10.2.76
  28. Pati F, Jang J, Ha D-H, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5(1):3935. doi: 10.1038/ncomms4935
  29. Hubmacher D, Apte SS. The biology of the extracellular matrix: novel insights. Curr Opin Rheumatol. 2013;25(1):65. doi: 10.1097/BOR.0b013e32835b137b
  30. Huggins ML. The structure of fibrous proteins. Chem Rev. 1943;32(2):195-218. doi: 10.1021/cr60102a002
  31. Parry DA, Squire JM. Fibrous Proteins: Structures and Mechanisms. New York City, USA: Springer; 2017. doi: 10.1007/978-3-319-49674-0
  32. Linsenmayer T. Collagen. In: Hay ED, ed. Cell Biology of Extracellular Matrix. 2nd ed. New York, NY: Springer; 1991:7-44. doi: 10.1007/978-1-4615-3770-0
  33. Kristensen J, Karsdal M. Elastin. Karsdal MA, eds. Biochemistry of Collagens, Laminins, and Elastin: Structure, Function, and Biomarkers. Cambridge, Massachusetts, USA: Elsevier; 2016. doi: 10.1016/C2015-0-05547-2
  34. Rouse JG, Van Dyke ME. A review of keratin-based biomaterials for biomedical applications. Materials. 2010;3(2):999-1014. doi: 10.3390/ma3020999
  35. Kwiatkowska D, Kwiatkowska-Korczak J. Adhesive glycoproteins of the extracellular matrix. Postepy Hig Med Dosw. 1999;53(1):55-74.
  36. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15(12):786-801. doi: 10.1038/nrm3904
  37. Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia- Urquia N, Olalde-Graells B, Abarrategi A. Tissue-specific decellularization methods: rationale and strategies to achieve regenerative compounds. Int J Mol Sci. 2020;21(15):5447. doi: 10.3390/ijms21155447
  38. Bowers SL, Banerjee I, Baudino TA. The extracellular matrix: at the center of it all. J Mol Cell Cardiol. 2010;48(3): 474-482. doi: 10.1016/j.yjmcc.2009.08.024
  39. Das S, Gao G, Lee JY, Jang J, Cho D-W. Decellularized tissue matrix-based 3D tissue modeling. In: Cho D-W, ed. Biofabrication and 3D Tissue Modeling. Burlington House, Piccadilly, London: The Royal Society of Chemistry; 2019. doi: 10.1039/9781788012683-00148
  40. Brown BN, Badylak SF. Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl Res. 2014;163(4):268-285. doi: 10.1016/j.trsl.2013.11.003
  41. Song JJ, Ott HC. Organ engineering based on decellularized matrix scaffolds. Trends Mol Med. 2011;17(8):424-432. doi: 10.1016/j.molmed.2011.03.005
  42. Sakai T, Larsen M, Yamada KM. Fibronectin requirement in branching morphogenesis. Nature. 2003;423(6942):876-881. doi: 10.1038/nature01712
  43. Hwang DG, Choi Y-m, Jang J. 3D bioprinting-based vascularized tissue models mimicking tissue-specific architecture and pathophysiology for in vitro studies. Front Bioeng Biotechnol. 2021;9:685507. doi: 10.3389/fbioe.2021.685507
  44. Barros CS, Franco SJ, Müller U. Extracellular matrix: functions in the nervous system. Cold Spring Harb Perspect Biol. 2011;3(1):a005108. doi: 10.1101/cshperspect.a005108
  45. Lau LW, Cua R, Keough MB, Haylock-Jacobs S, Yong VW. Pathophysiology of the brain extracellular matrix: a new target for remyelination. Nat Rev Neurosci. 2013;14(10):722-729. doi: 10.1038/nrn3550
  46. Choi BH. Role of the basement membrane in neurogenesis and repair of injury in the central nervous system. Microsc Res Tech. 1994;28(3):193-203. doi: 10.1002/jemt.1070280304
  47. Fawcett JW, Oohashi T, Pizzorusso T. The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat Rev Neurosci. 2019;20(8):451-465. doi: 10.1038/s41583-019-0196-3
  48. Bekku Y, Saito M, Moser M, et al. Bral2 is indispensable for the proper localization of brevican and the structural integrity of the perineuronal net in the brainstem and cerebellum. J Comp Neurol. 2012;520(8):1721-1736. doi: 10.1002/cne.23009
  49. Ricks CB, Shin SS, Becker C, Grandhi R. Extracellular matrices, artificial neural scaffolds and the promise of neural regeneration. Neural Regen Res. 2014;9(17):1573. doi: 10.4103/1673-5374.141778
  50. Sood D, Tang-Schomer M, Pouli D, et al. 3D extracellular matrix microenvironment in bioengineered tissue models of primary pediatric and adult brain tumors. Nat Commun. 2019;10(1):4529. doi: 10.1038/s41467-019-12420-1
  51. Henke E, Nandigama R, Ergün S. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci. 2020;6:160. doi: 10.3389/fmolb.2019.00160
  52. Silva AC, Pereira C, Fonseca ACR, Pinto-do-Ó P, Nascimento DS. Bearing my heart: the role of extracellular matrix on cardiac development, homeostasis, and injury response. Front Cell Dev Biol. 2021;8:621644. doi: 10.3389/fcell.2020.621644
  53. Rienks M, Papageorgiou A-P, Frangogiannis NG, Heymans S. Myocardial extracellular matrix: an ever-changing and diverse entity. Circ Res. 2014;114(5):872-888. doi: 10.1161/CIRCRESAHA.114.302533
  54. Lockhart M, Wirrig E, Phelps A, Wessels A. Extracellular matrix and heart development. Birth Defects Res, Part A. 2011;91(6):535-550. doi: 10.1002/bdra.20810
  55. Buijtendijk MF, Barnett P, van den Hoff MJ. Development of the human heart. Am J Med Genet, Part C. 2020;184(1):7-22. doi: 10.1002/ajmg.c.31778
  56. Park H-J, De Jesus Morales KJ, Bheri S, Kassouf BP, Davis ME. Bidirectional relationship between cardiac extracellular matrix and cardiac cells in ischemic heart disease. Stem Cell. 2021;39(12):1650-1659. doi: 10.1002/stem.3445
  57. Bedossa P, Paradis V. Liver extracellular matrix in health and disease. J Pathol. 2003;200(4):504-515. doi: 10.1002/path.1397
  58. Martinez-Hernandez A, Amenta PS. Morphology, localization and origin of the hepatic extracellular matrix. In: Zern MA, Reid L, eds. Extracellular Matrix: Chemistry, Biology, and Pathobiology with Emphasis on the Liver. New York, NY: Marcel Dekker; 1993:255-327. doi: 10.1007/BF01606580
  59. Rojkind M, Giambrone M-A, Biempica L. Collagen types in normal and cirrhotic liver. Gastroenterology. 1979;76(4): 710-719. doi: 10.1016/S0016-5085(79)80170-5
  60. Martinez-Hernandez A. The hepatic extracellular matrix. I. Electron immunohistochemical studies in normal rat liver. Lab Invest. 1984;51(1):57-74. https://europepmc.org/article/med/6376944
  61. Schuppan D. Structure of the extracellular matrix in normal and fibrotic liver: collagens and glycoproteins. Semin Liver Dis. 1990;10(1):1-10. doi: 10.1055/s-2008-1040452
  62. Wells RG. The role of matrix stiffness in regulating cell behavior. Hepatology. 2008;47(4):1394-1400. doi: 10.1002/hep.22193
  63. Gressner A. Hepatic fibrogenesis: the puzzle of interacting cells, fibrogenic cytokines, regulatory loops, and extracellular matrix molecules. Z Gastroenterol. 1992;30:5-16.
  64. McGuire RF, Bissell DM, Boyles J, Joseph Roll F. Role of extracellular matrix in regulating fenestrations of sinusoidal endothelial cells isolated from normal rat liver. Hepatology. 1992;15(6):989-997. doi: 10.1002/hep.1840150603
  65. Tan Z, Sun H, Xue T, et al. Liver fibrosis: therapeutic targets and advances in drug therapy. Front Cell Dev Biol. 2021;9:730176. doi: 10.3389/fcell.2021.730176
  66. Hussey GS, Dziki JL, Badylak SF. Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater. 2018;3(7):159-173. doi: 10.1038/s41578-018-0023-x
  67. de Hilster RHJ, Sharma PK, Jonker MR, et al. Human lung extracellular matrix hydrogels resemble the stiffness and viscoelasticity of native lung tissue. Am J Physiol. 2020;318(4):L698-L704. doi: 10.1152/ajplung.00451.2019
  68. Silver FH, Birk DE. Molecular structure of collagen in solution: comparison of types I, II, III and V. Int J Biol Macromol. 1984;6(3):125-132. doi: 10.1016/0141-8130(84)90052-7
  69. Lever R, Page C. Glycosaminoglycans, airways inflammation and bronchial hyperresponsiveness. Pulmon Pharmacol Therap. 2001;14(3):249-254. doi: 10.1006/pupt.2001.0296
  70. Burgstaller G, Oehrle B, Gerckens M, White ES, Schiller HB, Eickelberg O. The instructive extracellular matrix of the lung: basic composition and alterations in chronic lung disease. Eur Respir J. 2017;50(1):1601805. doi: 10.1183/13993003.01805-2016
  71. Shifren A, Mecham RP. The stumbling block in lung repair of emphysema: elastic fiber assembly. Proc Am Thorac Soc. 2006;3(5):428-433. doi: 10.1513/pats.200601-009AW
  72. Kranenburg AR, Willems-Widyastuti A, Mooi WJ, et al. Enhanced bronchial expression of extracellular matrix proteins in chronic obstructive pulmonary disease. Am J Clin Pathol. 2006;126(5):725-735. doi: 10.1309/JC477FAEL1YKV54W
  73. Salazar LM, Herrera AM. Fibrotic response of tissue remodeling in COPD. Lung. 2011;189:101-109. doi: 10.1007/s00408-011-9279-2
  74. Chakir J, Shannon J, Molet S, et al. Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-β, IL-11, IL-17, and type I and type III collagen expression. J Allergy Clin Immunol. 2003;111(6):1293-1298. doi: 10.1067/mai.2003.1557
  75. Huang D, Gibeley SB, Xu C, et al. Engineering liver microtissues for disease modeling and regenerative medicine. Adv Funct Mater. 2020;30(44):1909553. doi: 10.1002/adfm.201909553
  76. Parmaksiz M, Dogan A, Odabas S, Elçin AE, Elçin YM. Clinical applications of decellularized extracellular matrices for tissue engineering and regenerative medicine. Biomed Mater. 2016;11(2):022003. doi: 10.1088/1748-6041/11/2/022003
  77. Mouw JK, Ou G, Weaver VM. Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol. 2014;15(12):771-785. doi: 10.1038/nrm3902
  78. Choudhury D, Tun HW, Wang T, Naing MW. Organ-derived decellularized extracellular matrix: a game changer for bioink manufacturing? Trends Biotechnol. 2018;36(8):787-805. doi: 10.1016/j.tibtech.2018.03.003
  79. Park W, Gao G, Cho D-W. Tissue-specific decellularized extracellular matrix bioinks for musculoskeletal tissue regeneration and modeling using 3D bioprinting technology. Int J Mol Sci. 2021;22(15):7837. doi: 10.3390/ijms22157837
  80. Heath DE. A review of decellularized extracellular matrix biomaterials for regenerative engineering applications. Regen Eng Transl Med. 2019;5:155-166. doi: 10.1007/s40883-018-0080-0
  81. Kim JJ, Park JY, Nguyen VVT, et al. Pathophysiological reconstruction of a tissue‐specific multiple‐organ on‐a‐chip for Type 2 diabetes emulation using 3D cell printing. Adv Funct Mater. 2023;33(22):2213649. doi: 10.1002/adfm.202213649
  82. Yang X, Ma Y, Wang X, et al. A 3D‐bioprinted functional module based on decellularized extracellular matrix bioink for periodontal regeneration. Adv Sci. 2022;10(5):2205041. doi: 10.1002/advs.202205041
  83. Kim H, Jang J-H, Han W, et al. Extracellular matrix-based sticky sealants for scar-free corneal tissue reconstruction. Biomaterials. 2023;292:121941. doi: 10.1016/j.biomaterials.2022.121941
  84. Chae S, Yong U, Park W, et al. 3D cell-printing of gradient multi-tissue interfaces for rotator cuff regeneration. Bioact Mater. 2023;19:611-625. doi: 10.1016/j.bioactmat.2022.05.004
  85. Cho A-N, Jin Y, An Y, et al. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun. 2021;12(1):4730. doi: 10.1038/s41467-021-24775-5
  86. Giobbe GG, Crowley C, Luni C, et al. Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture. Nat Commun. 2019;10(1):5658. doi: 10.1038/s41467-019-13605-4
  87. Mandrycky C, Wang Z, Kim K, Kim D-H. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34(4): 422-434. doi: 10.1016/j.biotechadv.2015.12.011
  88. Abaci A, Guvendiren M. Designing decellularized extracellular matrix‐based bioinks for 3D bioprinting. Adv Healthc Mater. 2020;9(24):2000734. doi: 10.1002/adhm.202000734
  89. De Santis MM, Alsafadi HN, Tas S, et al. Extracellular‐matrix‐reinforced bioinks for 3D bioprinting human tissue. Adv Mater. 2021;33(3):2005476. doi: 10.1002/adma.202005476
  90. de Paula AGP, de Lima JD, Bastos TSB, et al. Decellularized extracellular matrix: the role of this complex biomaterial in regeneration. ACS Omega. 2023;8(25):22256-22267. doi: 10.1021/acsomega.2c06216
  91. Wu L-C, Kuo Y-J, Sun F-W, et al. Optimized decellularization protocol including α-Gal epitope reduction for fabrication of an acellular porcine annulus fibrosus scaffold. Cell Tissue Bank. 2017;18:383-396. doi: 10.1007/s10561-017-9619-4
  92. Stahl EC, Bonvillain RW, Skillen CD, et al. Evaluation of the host immune response to decellularized lung scaffolds derived from α-Gal knockout pigs in a non-human primate model. Biomaterials. 2018;187:93-104. doi: 10.1016/j.biomaterials.2018.09.038
  93. Warren CJ, Sawyer SL. Identifying animal viruses in humans. Science. 2023;379(6636):982-983. doi: 10.1126/science.ade6985
  94. Denner J. Porcine endogenous retroviruses and xenotransplantation, 2021. Viruses. 2021;13(11):2156. doi: 10.3390/v13112156
  95. Naso F, Gandaglia A. Can heart valve decellularization be standardized? A review of the parameters used for the quality control of decellularization processes. Front Bioeng Biotechnol. 2022;10:830899. doi: 10.3389/fbioe.2022.830899
  96. Rocha DN, Ferraz-Nogueira JP, Barrias CC, Relvas JB, Pêgo AP. Extracellular environment contribution to astrogliosis— lessons learned from a tissue engineered 3D model of the glial scar. Front Cell Neurosci. 2015;9:377. doi: 10.3389/fncel.2015.00377
  97. Galarza S, Crosby AJ, Pak C, Peyton SR. Control of astrocyte quiescence and activation in a synthetic brain hydrogel. Adv Healthc Mater. 2020;9(4):1901419. doi: 10.1002/adhm.201901419
  98. Kasravi M, Ahmadi A, Babajani A, et al. Immunogenicity of decellularized extracellular matrix scaffolds: a bottleneck in tissue engineering and regenerative medicine. Biomater Res. 2023;27(1):1-24. doi: 10.1186/s40824-023-00348-z
  99. Chakraborty J, Roy S, Ghosh S. Regulation of decellularized matrix mediated immune response. Biomater Sci. 2020;8(5):1194-1215. doi: 10.1039/C9BM01780A
  100. Jiang Y, Li R, Han C, et al. Extracellular matrix grafts: from preparation to application. Int J Mol Med. 2021;47(2):463- 474. doi: 10.3892/ijmm.2020.4818
  101. Gilpin A, Yang Y. Decellularization strategies for regenerative medicine: from processing techniques to applications. Biomed Res Int. 2017;2017:9831534. doi: 10.1155/2017/9831534
  102. Basara G, Ozcebe SG, Ellis BW, Zorlutuna P. Tunable human myocardium derived decellularized extracellular matrix for 3D bioprinting and cardiac tissue engineering. Gels. 2021;7(2):70. doi: 10.3390/gels7020070
  103. Jang J, Kim TG, Kim BS, Kim S-W, Kwon S-M, Cho D-W. Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking. Acta Biomater. 2016;33:88-95. doi: 10.1016/j.actbio.2016.01.013
  104. He W, Wang H, Zhang X, et al. Construction of a decellularized spinal cord matrix/GelMA composite scaffold and its effects on neuronal differentiation of neural stem cells. J Biomater Sci. 2022;33(16):2124-2144. doi: 10.1080/09205063.2022.2102275
  105. Shin YJ, Shafranek RT, Tsui JH, Walcott J, Nelson A, Kim D-H. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix. Acta Biomater. 2021;119:75-88. doi: 10.1016/j.actbio.2020.11.006
  106. Gao G, Park W, Kim BS, et al. Construction of a novel in vitro atherosclerotic model from geometry‐tunable artery equivalents engineered via in‐bath coaxial cell printing. Adv Funct Mater. 2021;31(10):2008878. doi: 10.1002/adfm.202008878
  107. Rabbani M, Zakian N, Alimoradi N. Contribution of physical methods in decellularization of animal tissues. J Med Signals Sens. 2021;11(1):1-11. https://doi.org/10.4103/jmss.JMSS_2_20
  108. DeQuach JA, Yuan SH, Goldstein LS, Christman KL. Decellularized porcine brain matrix for cell culture and tissue engineering scaffolds. Tiss Eng Part A. 2011; 17(21-22):2583-2592. doi: 10.1089/ten.tea.2010.0724
  109. Gregory E, Baek IH, Ala-Kokko N, et al. Peripheral nerve decellularization for in vitro extracellular matrix hydrogel use: a comparative study. ACS Biomater Sci Eng. 2022;8(6):2574-2588. doi: 10.1021/acsbiomaterials.2c00034
  110. Kim J, Park JY, Kong JS, Lee H, Won JY, Cho D-W. Development of 3D printed Bruch’s membrane-mimetic substance for the maturation of retinal pigment epithelial cells. Int J Mol Sci. 2021;22(3):1095. doi: 10.3390/ijms22031095
  111. Kundu J, Michaelson A, Talbot K, Baranov P, Young MJ, Carrier RL. Decellularized retinal matrix: natural platforms for human retinal progenitor cell culture. Acta Biomater. 2016;31:61-70. doi: 10.1016/j.actbio.2015.11.028
  112. Lee J, Hong J, Kim W, Kim GH. Bone-derived dECM/ alginate bioink for fabricating a 3D cell-laden mesh structure for bone tissue engineering. Carbohydr Polym. 2020;250:116914. doi: 10.1016/j.carbpol.2020.116914
  113. Sun Y, Yan L, Chen S, Pei M. Functionality of decellularized matrix in cartilage regeneration: a comparison of tissue versus cell sources. Acta Biomater. 2018;74:56-73. doi: 10.1016/j.actbio.2018.04.048
  114. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27(19):3675-3683. doi: 10.1016/j.biomaterials.2006.02.014
  115. Neishabouri A, Soltani Khaboushan A, Daghigh F, Kajbafzadeh A-M, Zolbin MM. Decellularization in tissue engineering and regenerative medicine: evaluation, modification, and application methods. Front Bioeng Biotechnol. 2022;10:805299. doi: 10.3389/fbioe.2022.805299
  116. Ketchedjian A, Jones AL, Krueger P, et al. Recellularization of decellularized allograft scaffolds in ovine great vessel reconstructions. Ann Thorac Surg. 2005;79(3):888-896. doi: 10.1016/j.athoracsur.2004.09.033
  117. White LJ, Taylor AJ, Faulk DM, et al. The impact of detergents on the tissue decellularization process: a ToF-SIMS study. Acta Biomater. 2017;50:207-219. doi: 10.1016/j.actbio.2016.12.033
  118. Pellegata AF, Asnaghi M, Stefani I, et al. Detergent-enzymatic decellularization of swine blood vessels: insight on mechanical properties for vascular tissue engineering. Biomed Res Int. 2013;2013:918753. doi: 10.1155/2013/918753
  119. Fernández-Pérez J, Ahearne M. The impact of decellularization methods on extracellular matrix derived hydrogels. Sci Rep. 2019;9(1):14933. doi: 10.1038/s41598-019-49575-2
  120. Yang B, Zhang Y, Zhou L, et al. Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering. Tissue Eng Part C. 2010;16(5):1201-1211. doi: 10.1089/ten.tec.2009.0311
  121. Poornejad N, Schaumann LB, Buckmiller EM, et al. The impact of decellularization agents on renal tissue extracellular matrix. J Biomater Appl. 2016;31(4): 521-533. doi: 10.1177/0885328216656099
  122. Choi JS, Kim BS, Kim JY, et al. Decellularized extracellular matrix derived from human adipose tissue as a potential scaffold for allograft tissue engineering. J Biomed Mater Res Part A. 2011;97(3):292-299. doi: 10.1002/jbm.a.33056
  123. Narciso M, Otero J, Navajas D, Farré R, Almendros I, Gavara N. Image-based method to quantify decellularization of tissue sections. Int J Mol Sci. 2021;22(16):8399. doi: 10.3390/ijms22168399
  124. Dimou Z, Michalopoulos E, Katsimpoulas M, et al. Evaluation of a decellularization protocol for the development of a decellularized tracheal scaffold. Anticancer Res. 2019;39(1):145-150. doi: 10.21873/anticanres.13090
  125. Jin Y, Lee JS, Kim J, et al. Three-dimensional brain-like microenvironments facilitate the direct reprogramming of fibroblasts into therapeutic neurons. Nat Biomed Eng. 2018;2(7):522-539. doi: 10.1038/s41551-018-0260-8
  126. Kim BS, Kwon YW, Kong J-S, et al. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: a step towards advanced skin tissue engineering. Biomaterials. 2018;168:38-53. doi: 10.1016/j.biomaterials.2018.03.040
  127. Byron A, Humphries JD, Humphries MJ. Defining the extracellular matrix using proteomics. Int J Exp Pathol. 2013;94(2):75-92. doi: 10.1111/iep.12011
  128. Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2012;41(D1):D377-D386. doi: 10.1093/nar/gks1118
  129. Shao X, Taha IN, Clauser KR, Gao YT, Naba A. MatrisomeDB: the ECM-protein knowledge database. Nucleic Acids Res. 2020;48(D1):D1136-D1144. doi: 10.1093/nar/gkz849
  130. Chen Y-W, Lin Y-H, Lin T-L, Lee K-XA, Yu M-H, Shie M-Y.3D-biofabricated chondrocyte-laden decellularized extracellular matrix-contained gelatin methacrylate auxetic scaffolds under cyclic tensile stimulation for cartilage regeneration. Biofabrication. 2023;15(4):045007. doi: 10.1088/1758-5090/ace5e1
  131. Simsa R, Rothenbücher T, Gürbüz H, et al. Brain organoid formation on decellularized porcine brain ECM hydrogels. PLoS One. 2021;16(1):e0245685. doi: 10.1371/journal.pone.0245685
  132. Ijima H, Nakamura S, Bual R, Shirakigawa N, Tanoue S. Physical properties of the extracellular matrix of decellularized porcine liver. Gels. 2018;4(2):39. doi: 10.3390/gels4020039
  133. Goh S-K, Bertera S, Olsen P, et al. Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials. 2013;34(28):6760-6772. doi: 10.1016/j.biomaterials.2013.05.066
  134. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. Organ printing: tissue spheroids as building blocks. Biomaterials. 2009;30(12):2164-2174. doi: 10.1016/j.biomaterials.2008.12.084
  135. Chen X, Zhang YS, Zhang X, Liu C. Organ-on-a-chip platforms for accelerating the evaluation of nanomedicine. Bioact Mater. 2021;6(4):1012-1027. doi: 10.1016/j.bioactmat.2020.09.022
  136. Brodal P. The Central Nervous System: Structure and Function. Oxford, England: Oxford University Press; 2004. https://global.oup.com/academic/product/the-central-nervous-system-9780190228958?cc=kr&lang=en&
  137. Lancaster MA, Renner M, Martin C-A, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501(7467):373-379. doi: 10.1038/nature12517
  138. Saha K, Keung AJ, Irwin EF, et al. Substrate modulus directs neural stem cell behavior. Biophys J. 2008;95(9):4426-4438. doi: 10.1529/biophysj.108.132217
  139. Yi B, Xu Q, Liu W. An overview of substrate stiffness guided cellular response and its applications in tissue regeneration. Bioact Mater. 2022;15:82-102. doi: 10.1016/j.bioactmat.2021.12.005
  140. Portenoy RK. Cancer pain: pathophysiology and syndromes. Lancet. 1992;339(8800):1026-1031. doi: 10.1016/0140-6736(92)90545-e
  141. Yi H-G, Jeong YH, Kim Y, et al. A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nat Biomed Eng. 2019;3(7):509-519. doi: 10.1038/s41551-019-0363-x
  142. Park W, Bae M, Hwang M, Jang J, Cho D-W, Yi H-G. 3D cell-printed hypoxic cancer-on-a-chip for recapitulating pathologic progression of solid cancer. JoVE. 2021;(167):e61945. doi: 10.3791/61945
  143. Slanzi A, Iannoto G, Rossi B, Zenaro E, Constantin G. In vitro models of neurodegenerative diseases. Front Cell Dev Biol. 2020;8:328. doi: 10.3389/fcell.2020.00328
  144. Cetin S, Knez D, Gobec S, Kos J, Pišlar A. Cell models for Alzheimer’s and Parkinson’s disease: at the interface of biology and drug discovery. Biomed Pharmacother. 2022;149:112924. doi: 10.1016/j.biopha.2022.112924
  145. Osaki T, Shin Y, Sivathanu V, Campisi M, Kamm RD. In vitro microfluidic models for neurodegenerative disorders. Adv Healthc Mater. 2018;7(2):1700489. doi: 10.1002/adhm.201700489
  146. Kong JS, Huang X, Choi YJ, et al. Promoting long‐term cultivation of motor neurons for 3D neuromuscular junction formation of 3D in vitro using central‐nervous‐tissue‐derived bioink. Adv Healthc Mater. 2021;10(18):2100581. doi: 10.1002/adhm.202100581
  147. Kim W, Kim G. Bioprinting 3D muscle tissue supplemented with endothelial-spheroids for neuromuscular junction model. Appl Phys Rev. 2023;10(3):031410. doi: 10.1063/5.0152924
  148. Lee SJ, Esworthy T, Stake S, et al. Advances in 3D bioprinting for neural tissue engineering. Adv Biosyst. 2018;2(4):1700213. doi: 10.1002/adbi.201700213
  149. Daneman R, Prat A. The blood–brain barrier. Cold Spring Harb Perspect Biol. 2015;7(1):a020412. doi: 10.1101/cshperspect.a020412
  150. Potjewyd G, Moxon S, Wang T, Domingos M, Hooper NM. Tissue engineering 3D neurovascular units: a biomaterials and bioprinting perspective. Trends Biotechnol. 2018;36(4):457-472. doi: 10.1016/j.tibtech.2018.01.003
  151. Mossink B, Verboven AH, van Hugte EJ, et al. Human neuronal networks on micro-electrode arrays are a highly robust tool to study disease-specific genotype-phenotype correlations in vitro. Stem Cell Rep. 2021;16(9):2182-2196. doi: 10.1016/j.stemcr.2021.07.001
  152. Nabel EG. Cardiovascular disease. N Engl J Med. 2003; 349(1):60-72. doi: 10.1056/NEJMra035098
  153. Wilkins E, Wilson L, Wickramasinghe K, et al. European Cardiovascular Disease Statistics 2017. Brussels, Belgium: European Heart Network; 2017. https://researchportal.bath.ac.uk/en/publications/ european-cardiovascular-disease-statistics-2017
  154. Zhang WJ, Liu W, Cui L, Cao Y. Tissue engineering of blood vessel. J Cell Mol Med. 2007;11(5):945-957. doi: 10.1111/j.1582-4934.2007.00099.x
  155. Abramson DI. Blood Vessels and Lymphatics. Cambridge, Massachusetts, USA: Elsevier; 2013. doi: 10.1016/C2013-0-12391-4
  156. Bogseth A, Ramirez A, Vaughan E, Maisel K. In vitro models of blood and lymphatic vessels—connecting tissues and immunity. Adv Biol. 2023;7(5):2200041. doi: 10.1002/adbi.202200041
  157. Abdelsayed G, Ali D, Malone A, et al. 2D and 3D in-vitro models for mimicking cardiac physiology. Appl Eng Sci. 2022;12:100115. doi: 10.1016/j.apples.2022.100115
  158. Ferri N, Siegl P, Corsini A, Herrmann J, Lerman A, Benghozi R. Drug attrition during pre-clinical and clinical development: understanding and managing drug-induced cardiotoxicity. Pharmacol Ther. 2013;138(3):470-484. doi: 10.1016/j.pharmthera.2013.03.005
  159. Ho D, Zhao X, Gao S, Hong C, Vatner DE, Vatner SF. Heart rate and electrocardiography monitoring in mice. Curr Protoc Mouse Biol. 2011;1(1):123-139. doi: 10.1002/9780470942390.mo100159
  160. Wolfe JT, He W, Kim M-S, et al. 3D-bioprinting of patient-derived cardiac tissue models for studying congenital heart disease. Front Cardiovasc Med. 2023;10:1162731. doi: 10.3389/fcvm.2023.1162731
  161. Faulkner-Jones A, Zamora V, Hortigon-Vinagre MP, et al. A bioprinted heart-on-a-chip with human pluripotent stem cell-derived cardiomyocytes for drug evaluation. Bioengineering. 2022;9(1):32. doi: 10.3390/bioengineering9010032
  162. Das S, Kim S-W, Choi Y-J, et al. Decellularized extracellular matrix bioinks and the external stimuli to enhance cardiac tissue development in vitro. Acta Biomater. 2019;95:188-200. doi: 10.1016/j.actbio.2019.04.026
  163. Min S, Cho S-W. Engineered human cardiac tissues for modeling heart diseases. BMB Rep. 2023;56(1):32. doi: 10.5483/BMBRep.2022-0185
  164. Eng G, Lee BW, Protas L, et al. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat Commun. 2016;7(1):10312. doi: 10.1038/ncomms10312
  165. Ronaldson-Bouchard K, Ma SP, Yeager K, et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature. 2018;556(7700):239-243. doi: 10.1038/s41586-018-0016-3
  166. Lasli S, Kim HJ, Lee K, et al. A human liver‐on‐a‐chip platform for modeling nonalcoholic fatty liver disease. Adv Biosyst. 2019;3(8):1900104. doi: 10.1002/adbi.201900104
  167. Ozougwu JC. Physiology of the liver. Int J Res Pharm Biosci. 2017;4(8):13-24.
  168. Bellentani S. The epidemiology of non‐alcoholic fatty liver disease. Liver Int. 2017;37:81-84. doi: 10.1111/liv.13299
  169. Friedman SL. Liver fibrosis–from bench to bedside. J Hepatol. 2003;38:38-53. doi: 10.1016/S0168-8278(02)00429-4
  170. Border WA, Noble NA. Transforming growth factor β in tissue fibrosis. N Engl J Med. 1994;331(19):1286-1292. doi: 10.1056/NEJM199411103311907
  171. Yanni SB, Augustijns PF, Benjamin DK, Brouwer KLR, Thakker DR, Annaert PP. In vitro investigation of the hepatobiliary disposition mechanisms of the antifungal agent micafungin in humans and rats. Drug Metab Dispos. 2010;38(10):1848-1856. doi: 10.1124/dmd.110.033811
  172. LeCluyse EL, Audus KL, Hochman JH. Formation of extensive canalicular networks by rat hepatocytes cultured in collagen-sandwich configuration. Am J Physiol: Cell Physiol. 1994;266(6):C1764-C1774. doi: 10.1152/ajpcell.1994.266.6.C1764
  173. De Graaf IA, Olinga P, De Jager MH, et al. Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies. Nat. Protoc. 2010;5(9):1540-1551. doi: 10.1038/nprot.2010.111
  174. Du Y, Li N, Yang H, et al. Mimicking liver sinusoidal structures and functions using a 3D-configured microfluidic chip. Lab Chip. 2017;17(5):782-794. doi: 10.1039/C6LC01374K
  175. Vollmar B, Menger MD. The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev. 2009;89(4):1269-1339. doi: 10.1152/physrev.00027.2008
  176. Wisse E, De Zanger R, Charels K, van der Smissen P, McCuskey RS. The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology. 1985;5(4):683-692. doi: 10.1002/hep.1840050427
  177. Berger DR, Ware BR, Davidson MD, Allsup SR, Khetani SR. Enhancing the functional maturity of induced pluripotent stem cell–derived human hepatocytes by controlled presentation of cell–cell interactions in vitro. Hepatology. 2015;61(4):1370-1381. doi: 10.1002/hep.27621
  178. Petronis S, Eckert K-L, Gold J, Wintermantel E. Microstructuring ceramic scaffolds for hepatocyte cell culture. J Mater Sci: Mater Med. 2001;12:523-528. doi: 10.1023/A:1011219729687
  179. Rennert K, Steinborn S, Gröger M, et al. A microfluidically perfused three dimensional human liver model. Biomaterials. 2015;71:119-131. doi: 10.1016/j.biomaterials.2015.08.043
  180. Yamada M, Utoh R, Ohashi K, et al. Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials. 2012;33(33): 8304-8315. doi: 10.1016/j.biomaterials.2012.07.068
  181. Lee H, Chae S, Kim JY, et al. Cell-printed 3D liver-on-a-chip possessing a liver microenvironment and biliary system. Biofabrication. 2019;11(2):025001. doi: 10.1088/1758-5090/aaf9fa
  182. Carvalho V, Gonçalves I, Lage T, et al. 3D printing techniques and their applications to organ-on-a-chip platforms: a systematic review. Sensors. 2021; 21(9):3304. doi: 10.3390/s21093304
  183. Mazzocchi A, Soker S, Skardal A. 3D bioprinting for high-throughput screening: drug screening, disease modeling, and precision medicine applications. Appl Phys Rev. 2019;6(1):011302. doi: 10.1063/1.5056188
  184. Kang HK, Sarsenova M, Kim D-H, et al. Establishing a 3D in vitro hepatic model mimicking physiologically relevant to in vivo state. Cells. 2021;10(5):1268. doi: 10.3390/cells10051268
  185. Lee H, Han W, Kim H, et al. Development of liver decellularized extracellular matrix bioink for three-dimensional cell printing-based liver tissue engineering. Biomacromolecules. 2017;18(4):1229-1237. doi: 10.1021/acs.biomac.6b01908
  186. Lee H, Kim J, Choi Y, Cho D-W. Application of gelatin bioinks and cell-printing technology to enhance cell delivery capability for 3D liver fibrosis-on-a-chip development. ACS Biomater Sci Eng. 2020;6(4):2469-2477. doi: 10.1021/acsbiomaterials.9b01735
  187. Taymour R, Kilian D, Ahlfeld T, Gelinsky M, Lode A. 3D bioprinting of hepatocytes: core–shell structured co-cultures with fibroblasts for enhanced functionality. Sci Rep. 2021;11(1):5130. doi: 10.1038/s41598-021-84384-6
  188. Wang T, Du Z, Zhu F, et al. Comorbidities and multi-organ injuries in the treatment of COVID-19. Lancet. 2020;395(10228):e52. doi: 10.1016/S0140-6736(20)30558-4
  189. Sahlman P, Nissinen M, Puukka P, et al. Genetic and lifestyle risk factors for advanced liver disease among men and women. J Gastroenterol Hepatol. 2020;35(2):291-298. doi: 10.1111/jgh.14770
  190. Yang H, Sun L, Pang Y, et al. Three-dimensional bioprinted hepatorganoids prolong survival of mice with liver failure. Gut. 2021;70(3):567-574. doi: 10.1136/gutjnl-2019-319960
  191. Jin B, Liu Y, Du S, Sang X, Yang H. Current trends and research topics regarding liver 3D bioprinting: a bibliometric analysis research. Front Cell Dev Biol. 2022;10:1047524. doi: 10.3389/fcell.2022.1047524
  192. Deng J, Wei W, Chen Z, et al. Engineered liver-on-a-chip platform to mimic liver functions and its biomedical applications: a review. Micromachines. 2019;10(10):676. doi: 10.3390/mi10100676
  193. Shinozawa T, Kimura M, Cai Y, et al. High-fidelity drug-induced liver injury screen using human pluripotent stem cell– derived organoids. Gastroenterology. 2021;160(3):831-846.e10. doi: 10.1053/j.gastro.2020.10.002
  194. Man WH, de Steenhuijsen Piters WA, Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol. 2017;15(5):259-270. doi: 10.1038/nrmicro.2017.14
  195. Comroe JH. The lung. Sci Am. 1966;214(2):56-71. https://jstor.org/stable/24931268
  196. Mccracken Jr GH. Diagnosis and management of pneumonia in children. Pediatr Infect Dis J. 2000;19(9):924-928. doi: 10.1097/00006454-200009000-00036
  197. Bateman ED, Reddel HK, van Zyl-Smit RN, Agusti A. The asthma–COPD overlap syndrome: towards a revised taxonomy of chronic airways diseases? Lancet Respir Med. 2015;3(9):719-728. doi: 10.1016/S2213-2600(15)00254-4
  198. Flume PA, Van Devanter DR. State of progress in treating cystic fibrosis respiratory disease. BMC Med. 2012;10(1):88. doi: 10.1186/1741-7015-10-88
  199. Antonelli M, Conti G, Bufi M, et al. Noninvasive ventilation for treatment of acute respiratory failure in patients undergoing solid organ transplantation: a randomized trial. JAMA. 2000;283(2):235-241. doi: 10.1001/jama.283.2.235
  200. Cidem A, Bradbury P, Traini D, Ong HX. Modifying and integrating in vitro and ex vivo respiratory models for inhalation drug screening. Front Bioeng Biotechnol. 2020;8:581995. doi: 10.3389/fbioe.2020.581995
  201. Baldassi D, Gabold B, Merkel OM. Air−liquid Interface cultures of the healthy and diseased human respiratory tract: promises, challenges, and future directions. Adv Nanobiomed Res. 2021;1(6):2000111. doi: 10.1002/anbr.202000111
  202. Zheng F, Fu F, Cheng Y, Wang C, Zhao Y, Gu Z. Organ‐on‐a‐chip systems: microengineering to biomimic living systems. Small. 2016;12(17):2253-2282. doi: 10.1002/smll.201503208
  203. Horváth L, Umehara Y, Jud C, Blank F, Petri-Fink A, Rothen- Rutishauser B. Engineering an in vitro air-blood barrier by 3D bioprinting. Sci Rep. 2015;5(1):7974. doi: 10.1038/srep07974
  204. Osório LA, Silva E, Mackay RE. A review of biomaterials and scaffold fabrication for organ-on-a-chip (OOAC) systems. Bioengineering. 2021;8(8):113. doi: 10.3390/bioengineering8080113
  205. Humayun M, Chow C-W, Young EW. Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions. Lab Chip. 2018;18(9):1298-1309. doi: 10.1039/C7LC01357D
  206. Benam K H, Villenave R, Lucchesi C, et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods. 2016;13(2):151-157. doi: 10.1038/nmeth.3697
  207. Sellgren KL, Butala EJ, Gilmour BP, Randell SH, Grego S. A biomimetic multicellular model of the airways using primary human cells. Lab Chip. 2014;14(17):3349-3358. doi: 10.1039/C4LC00552J
  208. Nalayanda DD, Puleo C, Fulton WB, Sharpe LM, Wang T-H, Abdullah F. An open-access microfluidic model for lung-specific functional studies at an air-liquid interface. Biomed Microdevices. 2009;11:1081-1089. doi: 10.1007/s10544-009-9325-5
  209. Douville NJ, Zamankhan P, Tung Y-C, et al. Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model. Lab Chip. 2011;11(4):609-619. doi: 10.1039/C0LC00251H
  210. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science. 2010;328(5986):1662-1668. doi: 10.1126/science.1188302
  211. Bennet TJ, Randhawa A, Hua J, Cheung KC. Airway-on-a-chip: designs and applications for lung repair and disease. Cells. 2021;10(7):1602. doi: 10.3390/cells10071602
  212. Higham A, Bostock D, Booth G, Dungwa JV, Singh D. The effect of electronic cigarette and tobacco smoke exposure on COPD bronchial epithelial cell inflammatory responses. Int J Chronic Obstruct Pulm Dis. 2018;13:989-1000. doi: 10.2147/COPD.S157728
  213. de Boer JD, Majoor CJ, van’t Veer C, Bel EHD, van der Poll T. Asthma and coagulation. Blood. 2012;119(14):3236-3244. doi: 10.1182/blood-2011-11-391532
  214. Guo R, Pittler M, Ernst E. Herbal medicines for the treatment of COPD: a systematic review. Eur Respir J. 2006;28(2):330-338. doi: 10.1183/09031936.06.00119905
  215. Park JY, Ryu H, Lee B, et al. Development of a functional airway-on-a-chip by 3D cell printing. Biofabrication. 2018;11(1):015002. doi: 10.1088/1758-5090/aae545
  216. Nam H, Choi Y-m, Cho S, et al. Modular assembly of bioprinted perfusable blood vessel and tracheal epithelium for studying inflammatory respiratory diseases. Biofabrication. 2022;15(1):014101. doi: 10.1088/1758-5090/ac93b6
  217. Gu Z, Fu J, Lin H, He Y. Development of 3D bioprinting: from printing methods to biomedical applications. Asian J Pharm Sci. 2020;15(5):529-557. doi: 10.1016/j.ajps.2019.11.003
  218. Chen EP, Toksoy Z, Davis BA, Geibel JP. 3D bioprinting of vascularized tissues for in vitro and in vivo applications. Front Bioeng Biotechnol. 2021;9:664188. doi: 10.3389/fbioe.2021.664188
  219. Kuperman DA, Huang X, Koth LL, et al. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat Med. 2002;8(8):885-889. doi: 10.1038/nm734
  220. Gao G, Lee JH, Jang J, et al. Tissue engineered bio‐blood‐vessels constructed using a tissue‐specific bioink and 3D coaxial cell printing technique: a novel therapy for ischemic disease. Adv Funct Mater. 2017;27(33):1700798. doi: 10.1038/nm734
  221. Luster AD, Alon R, von Andrian UH. Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol. 2005;6(12):1182-1190. doi: 10.1038/ni1275
  222. Park JH, Ahn M, Park SH, et al. 3D bioprinting of a trachea-mimetic cellular construct of a clinically relevant size. Biomaterials. 2021;279:121246. doi: 10.1016/j.biomaterials.2021.121246
  223. Nizamoglu M, Joglekar MM, Almeida CR, et al. Innovative three-dimensional models for understanding mechanisms underlying lung diseases: powerful tools for translational research. Eur Respir Rev. 2023;32(169). doi: 10.1183/16000617.0042-2023
  224. Barreiro Carpio M, Dabaghi M, Ungureanu J, et al. 3D bioprinting strategies, challenges, and opportunities to model the lung tissue microenvironment and its function. Front Bioeng Biotechnol. 2021;9:773511. doi: 10.3389/fbioe.2021.773511
  225. Cho WW, Ahn M, Kim BS, et al. Blood‐lymphatic integrated system with heterogeneous melanoma spheroids via in‐bath three‐dimensional bioprinting for modelling of combinational targeted therapy. Adv Sci. 2022;9(29): 2202093. doi: 10.1002/advs.202202093
  226. Alencar AM, Arold SP, Buldyrev SV, et al. Dynamic instabilities in the inflating lung. Nature. 2002;417(6891): 809-811. doi: 10.1038/417809b
  227. Sengupta A, Roldan N, Kiener M, et al. A new immortalized human alveolar epithelial cell model to study lung injury and toxicity on a breathing lung-on-chip system. Front Toxicol. 2022;4:840606. doi: 10.3389/ftox.2022.840606
  228. Yi H-G, Kim H, Kwon J, et al. Application of 3D bioprinting in the prevention and the therapy for human diseases. Signal Transduction Targeted Ther. 2021;6(1):177. doi: 10.1038/s41392-021-00566-8
  229. Vanaei S, Parizi MS, Vanaei S, Salemizadehparizi F, Vanaei HR. An overview on materials and techniques in 3D bioprinting toward biomedical application. Eng Regener. 2021;2:1-18. doi: 10.1016/j.engreg.2020.12.001
  230. Malda J, Visser J, Melchels FP, et al. 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater. 2013;25(36):5011-5028. doi: 10.1002/adma.201302042
  231. Khoshnood N, Zamanian A. A comprehensive review on scaffold-free bioinks for bioprinting. Bioprinting. 2020;19:e00088. doi: 10.1016/j.bprint.2020.e00088
  232. Ali M, Pr AK, Yoo JJ, Zahran F, Atala A, Lee SJ. A photo‐crosslinkable kidney ECM‐derived bioink accelerates renal tissue formation. Adv Healthc Mater. 2019;8(7):1800992. doi: 10.1002/adhm.201800992
  233. Kim H, Kang B, Cui X, et al. Light‐activated decellularized extracellular matrix‐based bioinks for volumetric tissue analogs at the centimeter scale. Adv Funct Mater. 2021;31(32):2011252. doi: 10.1002/adfm.202011252
  234. Brassard JA, Nikolaev M, Hübscher T, Hofer M, Lutolf MP. Recapitulating macro-scale tissue self-organization through organoid bioprinting. Nat Mater. 2021;20(1):22-29. doi: 10.1038/s41563-020-00803-5
  235. Lee VK, Dai G. Three-dimensional bioprinting and tissue fabrication: prospects for drug discovery and regenerative medicine. Adv Healthc Technol. 2015;2015:23-35. doi: 10.2147/AHCT.S69191
  236. Topuz B, Günal G, Guler S, Aydin HM. Use of supercritical CO2 in soft tissue decellularization. Methods Cell Biol. 2020;157:49-79. doi: 10.1016/bs.mcb.2019.10.012
  237. Mostow EN, Haraway GD, Dalsing M, Hodde JP, King D. Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. J Vasc Surg. 2005;41(5):837-843. doi: 10.1016/j.jvs.2005.01.042
  238. Wainwright D. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns. 1995;21(4):243-248. doi: 10.1016/0305-4179(95)93866-I
  239. Kirillova A, Bushev S, Abubakirov A, Sukikh G. Bioethical and legal issues in 3D bioprinting. Int J Bioprint. 2020;6(3). doi: 10.18063/ijb.v6i3.272
  240. Jessop ZM, Al-Sabah A, Gardiner MD, Combellack E, Hawkins K, Whitaker IS. 3D bioprinting for reconstructive surgery: principles, applications and challenges. J Plast Reconstr. Aesthetic Surg. 2017;70(9):1155-1170. doi: 10.1016/j.bjps.2017.06.001
  241. Salmikangas P, Schuessler-Lenz M, Ruiz S, et al. Marketing regulatory oversight of advanced therapy medicinal products (ATMPs) in Europe: the EMA/CAT perspective. Regul Aspects Gene Ther Cell Ther Prod. 2015:103-130. doi: 10.1007/978-3-319-18618-4_6
  242. Shafiq MA, Gemeinhart RA, Yue BY, Djalilian AR. Decellularized human cornea for reconstructing the corneal epithelium and anterior stroma. Tissue Eng Part C. 2012;18(5):340-348. doi: 10.1089/ten.tec.2011.0072
  243. Polisetti N, Schmid A, Schlötzer-Schrehardt U, et al. A decellularized human corneal scaffold for anterior corneal surface reconstruction. Sci Rep. 2021;11(1):1-15. doi: 10.1038/s41598-021-82678-3
  244. Gonzalez-Andrades M, de la Cruz Cardona J, Ionescu AM, Campos A, del Mar Perez M, Alaminos M. Generation of bioengineered corneas with decellularized xenografts and human keratocytes. Invest Ophthalmol Visual Sci. 2011;52(1):215-222. doi: 10.1167/iovs.09-4773
  245. Ventura RD, Padalhin AR, Park CM, Lee BT. Enhanced decellularization technique of porcine dermal ECM for tissue engineering applications. Mater Sci Eng C. 2019;104:109841. doi: 10.1016/j.msec.2019.109841
  246. Funamoto S, Nam K, Kimura T, et al. The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials. 2010;31(13):3590-3595. doi: 10.1016/j.biomaterials.2010.01.073
  247. Jang J, Park H-J, Kim S-W, et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. 2017;112: 264-274. doi: 10.1016/j.biomaterials.2016.10.026
  248. Quint C, Kondo Y, Manson RJ, Lawson JH, Dardik A, Niklason LE. Decellularized tissue-engineered blood vessel as an arterial conduit. Proc Natl Acad Sci. 2011;108(22): 9214-9219. doi: 10.1073/pnas.1019506108
  249. Flynn L. The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells. Biomaterials. 2010;31(17):4715-4724. doi: 10.1016/j.biomaterials.2010.02.046
  250. Banyard DA, Sarantopoulos C, Tassey J, et al. Preparation, characterization, and clinical implications of human decellularized adipose tissue extracellular matrix. In: Duscher D, Shiffman MA, eds. Regenerative Medicine and Plastic Surgery. Cham: Springer; 2019:71-89. doi: 10.1007/978-3-030-19962-3_6
  251. Kang H, Peng J, Lu S, et al. In vivo cartilage repair using adipose‐derived stem cell‐loaded decellularized cartilage ECM scaffolds. J Tissue Eng Regener Med. 2014;8(6): 442-453. doi: 10.1002/term.1538
  252. Elder BD, Kim DH, Athanasiou KA. Developing an articular cartilage decellularization process toward facet joint cartilage replacement. Neurosurgery. 2010;66(4):722-727. doi: 10.1227/01.NEU.0000367616.49291.9F
  253. Bae M, Ko MK, Jin Y, et al. Neural stem cell delivery using brain-derived tissue-specific bioink for recovering from traumatic brain injury. Biofabrication. 2021;13(4): 044110. doi: 10.1088/1758-5090/ac293f
  254. Min K, Kong JS, Kim J, et al. Three-dimensional microfilament printing of a decellularized extracellular matrix (dECM) bioink using a microgel printing bath for nerve graft fabrication and the effectiveness of dECM graft combined with a polycaprolactone conduit. ACS Appl Biomater. 2022;5(4):1591-1603.doi: 10.1021/acsabm.1c01142
  255. Chen C-C, Yu J, Ng H-Y, et al. The physicochemical properties of decellularized extracellular matrix-coated 3D printed poly (ε-caprolactone) nerve conduits for promoting Schwann cells proliferation and differentiation. Materials. 2018;11(9):1665. doi: 10.3390/ma11091665
  256. Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci. 2019; 6(11):1900344. doi: 10.1002/advs.201900344
Conflict of interest
The authors declare no conflicts of interest.
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing