AccScience Publishing / IJB / Volume 10 / Issue 2 / DOI: 10.36922/ijb.1814
Cite this article
27
Download
666
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

DNA-functionalized hyaluronic acid bioink in cartilage engineering: a perspective

Mengmeng Li1,2† Yan Wu1,2† Miaomiao Wang1,2† Wencai Zhang3* Peiran Song1,2* Jiacan Su1,2,4*
Show Less
1 Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
2 National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
3 Department of Orthopedics, First Affiliated Hospital, Jinan University, Guangzhou, China
4 Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
IJB 2024, 10(2), 1814 https://doi.org/10.36922/ijb.1814
Submitted: 24 August 2023 | Accepted: 21 November 2023 | Published: 16 January 2024
(This article belongs to the Special Issue Application of 3D bioprinting materials: Hyaluronic acid-based bioink)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Degenerative osteoarthritis, a common sequela of articular cartilage defect, significantly impacts the quality of life of millions of individuals worldwide. Three-dimensional (3D) bioprinting has emerged as an advanced tissue engineering strategy, offering precise spatial arrangements of cells, hydrogels, and bioactive cues. Hyaluronic acid (HA) is a crucial component of bioink designed for fabricating cartilage tissue. However, creating a bioink that closely mimics the cartilaginous extracellular matrix (ECM) still remains a challenge. HA hydrogels have limitations in recapitulating tunable mechanical properties, stimuli responsiveness, and flexibility in ligands’ adhesion akin to those of native tissues. In recent years, DNA has emerged as a smart biomaterial that endows hydrogels with tunable properties and allows for precise structural customization of the hydrogels due to its unique programmability. Integrating reversible DNA linkages, reconfigurable DNA architectures, DNA plasmid, and targeted DNA aptamers into HA hydrogels allows them to respond to the extracellular environment and express desired molecules, making them ideal artificial ECMs for 3D bioprinting of cartilage tissue. This review targets this challenge by highlighting the characteristics of DNA moieties designed as reversible crosslinkers, responsive units, and adhesion ligands to functionalize HA hydrogels. Furthermore, we offer perspectives on how DNA-functionalized HA hydrogels can be harnessed to create dynamic and biomimetic bioink capable of recapitulating the more complex functions required for cartilage tissue engineering.

Keywords
Hyaluronic acid
DNA functionalization
Cartilage regeneration
Tissue engineering
Funding
The work was supported by the Natural Science Foundation of Shanghai (22ZR1423400), National Natural Science Foundation of China (82230071, 82172098), and Shanghai Committee of Science and Technology (23141900600).
References
  1. Costantini M, Idaszek J, Szöke K, et al. 3D bioprinting of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro neocartilage formation. Biofabrication. 2016;8(3):035002. doi: 10.1088/1758-5090/8/3/035002
  2. Kesti M, Müller M, Becher J, et al. A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation. Acta Biomater. 2015;11:162-172. doi: 10.1016/j.actbio.2014.09.033
  3. Laomeephol C, Ferreira H, Kanokpanont S, Luckanagul JA, Neves NM, Damrongsakkul S. Osteogenic differentiation of encapsulated cells in dexamethasone-loaded phospholipid-induced silk fibroin hydrogels. Biomater Transl. 2022;3(3):213. doi: 10.12336/biomatertransl.2022.03.005
  4. Choi JR, Yong KW, Choi JY. Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering. J Cell Physiol. 2018;233(3):1913-1928. doi: 10.1002/jcp.26018
  5. Zhang H, Wu S, Chen W, Hu Y, Geng Z, Su J. Bone/cartilage targeted hydrogel: strategies and applications. Bioact Mater. 2023;23:156-169. doi: 10.1016/j.bioactmat.2022.10.028
  6. Hu Y, Zhang H, Wang S, et al. Bone/cartilage organoid on-chip: construction strategy and application. Bioact Mater. 2023;25:29-41. doi: 10.1016/j.bioactmat.2023.01.016
  7. Armstrong JP, Burke M, Carter BM, Davis SA, Perriman AW. 3D bioprinting using a templated porous bioink. Adv Healthc Mater. 2016;5(14):1724-1730. doi: 10.1002/adhm.201600022
  8. Xue X, Zhang H, Liu H, et al. Rational design of multifunctional CuS nanoparticle‐PEG composite soft hydrogel‐coated 3D hard polycaprolactone scaffolds for efficient bone regeneration. Adv Funct Mater. 2022;32(33):2202470. doi: 10.1002/adfm.202202470
  9. Sahranavard M, Sarkari S, Safavi S, Ghorbani F. Three-dimensional bio-printing of decellularized extracellular matrix-based bio-inks for cartilage regeneration: a systematic review. Biomater Transl. 2022;3(2):105. doi: 10.12336/biomatertransl.2022.02.004
  10. Nakamura M, Iwanaga S, Henmi C, Arai K, Nishiyama Y. Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication. 2010;2(1):014110. doi: 10.1088/1758-5082/2/1/014110
  11. Xue X, Hu Y, Wang S, Chen X, Jiang Y, Su J. Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering. Bioact Mater. 2022;12:327-339. doi: 10.1016/j.bioactmat.2021.10.029
  12. Chen W, Zhang H, Zhou Q, Zhou F, Zhang Q, Su J. Smart hydrogels for bone reconstruction via modulating the microenvironment. Research. 2023;6:0089. doi: 10.34133/research.0089
  13. Tamayol A, Najafabadi AH, Aliakbarian B, et al. Hydrogel templates for rapid manufacturing of bioactive fibers and 3D constructs. Adv Healthc Mater. 2015;4(14):2146-2153. doi: 10.1002/adhm.201500492
  14. Zhou Z, Cui J, Wu S, Geng Z, Su J. Silk fibroin-based biomaterials for cartilage/osteochondral repair. Theranostics. 2022;12(11):5103. doi: 10.7150/thno.74548
  15. Liu H, Su J. Organoid and organoid extracellular vesicles for osteoporotic fractures therapy: current status and future perspectives. Interdiscip Med. 2023;1(3):e20230011. doi: 10.1002/INMD.20230011
  16. Maturavongsadit P, Wu W, Fan J, Roninson IB, Cui T, Wang Q. Graphene-incorporated hyaluronic acid-based hydrogel as a controlled Senexin A delivery system. Biomater Transl. 2022;3(2):152. doi: 10.12336/biomatertransl.2022.02.007
  17. Yuan J, Maturavongsadit P, Zhou Z, et al. Hyaluronic acid-based hydrogels with tobacco mosaic virus containing cell adhesive peptide induce bone repair in normal and osteoporotic rats. Biomater Transl. 2020;1(1):89-98. doi: 10.3877/cma.j.issn.2096-112X.2020.01.009
  18. Galarraga JH, Zlotnick HM, Locke RC, et al. Evaluation of surgical fixation methods for the implantation of melt electrowriting-reinforced hyaluronic acid hydrogel composites in porcine cartilage defects. Int J Bioprinting. 2023;9(5):493-509. doi: 10.18063/ijb.775
  19. Ghorbani F, Ghalandari B, Khajehmohammadi M, et al. Photo-cross-linkable hyaluronic acid bioinks for bone and cartilage tissue engineering applications. Int Mater Rev. 2023;68(7):901-942. doi: 10.1080/09506608.2023.2167559
  20. Hauptstein J, Böck T, Bartolf‐Kopp M, et al. Hyaluronic acid‐based bioink composition enabling 3D bioprinting and improving quality of deposited cartilaginous extracellular matrix. Adv Healthc Mater. 2020;9(15):2000737. doi: 10.1002/adhm.202000737
  21. Xue X, Hu Y, Deng Y, Su J. Recent advances in design of functional biocompatible hydrogels for bone tissue engineering. Adv Funct Mater. 2021;31(19):2009432. doi: 10.1002/adfm.202009432
  22. Wu S, Zhang H, Wang S, et al. Ultrasound-triggered in situ gelation with ROS-controlled drug release for cartilage repair. Mater Horiz. 2023;10:3507–3522. doi: 10.1039/D3MH00042G
  23. Chen S, Chen X, Geng Z, Su J. The horizon of bone organoid: a perspective on construction and application. Bioact Mater. 2022;18:15-25. doi: 10.1016/j.bioactmat.2022.01.048
  24. Jiang Y, Li J, Xue X, Yin Z, Xu K, Su J. Engineered extracellular vesicles for bone therapy. Nano Today. 2022;44:101487. doi: 10.1016/j.nantod.2022.101487
  25. Wu S, Wu X, Wang X, Su J. Hydrogels for bone organoid construction: from a materiobiological perspective. J Mater Sci Technol. 2023;136:21-31. doi: 10.1016/j.jmst.2022.07.008
  26. Li F, Tang J, Geng J, Luo D, Yang D. Polymeric DNA hydrogel: design, synthesis and applications. Prog Polym Sci. 2019;98:101163. doi: 10.1016/j.progpolymsci.2019.101163
  27. Han Y, Cao L, Li G, Zhou F, Bai L, Su J. Harnessing nucleic acids nanotechnology for bone/cartilage regeneration. Small. 2023;19(37):2301996. doi: 10.1002/smll.202301996
  28. Cangialosi A, Yoon C, Liu J, et al. DNA sequence–directed shape change of photopatterned hydrogels via high-degree swelling. Science. 2017;357(6356):1126-1130. doi: 10.1126/science.aan3925
  29. Tang J, Yao C, Gu Z, Jung S, Luo D, Yang D. Super‐soft and super‐elastic DNA robot with magnetically driven navigational locomotion for cell delivery in confined space. Angew Chem Int Ed Engl. 2020;59(6):2490-2495. doi: 10.1002/anie.201913549
  30. Wang S, Yue L, Shpilt Z, et al. Controlling the catalytic functions of DNAzymes within constitutional dynamic networks of DNA nanostructures. J Am Chem Soc. 2017;139(28):9662-9671. doi: 10.1021/jacs.7b04531
  31. Bai L, Li M, Su J. A perspective on light-based bioprinting of DNA hydrogels for advanced bone regeneration: implication for bone organoids. Int J Bioprinting. 2023; 9(2):688. doi: 10.18063/ijb.688
  32. Li C, Li H, Ge J, Jie G. Versatile fluorescence detection of microRNA based on novel DNA hydrogel-amplified signal probes coupled with DNA walker amplification. Chem Commun. 2019;55(27):3919-3922. doi: 10.1039/C9CC00565J
  33. Sun S, Liu H, Hu Y, et al. Selection and identification of a novel ssDNA aptamer targeting human skeletal muscle. Bioact Mater. 2023;20:166-178. doi: 10.1016/j.bioactmat.2022.05.016
  34. Lu S, Shen J, Fan C, Li Q, Yang X. DNA assembly‐ based stimuli‐responsive systems. Adv Sci. 2021;8(13): 2100328. doi: 10.1002/advs.202100328
  35. Li M, Yu B, Wang S, Zhou F, Cui J, Su J. Microenvironment-responsive nanocarriers for targeted bone disease therapy. Nano Today. 2023;50:101838. doi: 10.1016/j.nantod.2023.101838
  36. Wei Y, Wang K, Luo S, et al. Programmable DNA hydrogels as artificial extracellular matrix. Small. 2022;18(36):2107640. doi: 10.1002/smll.202107640
  37. Nagahara S, Matsuda T. Hydrogel formation via oligonucleotide hybridization in water-soluble vinyl polymers. Polym Gels Netw. 1996;4(2):111-127. doi: 10.1016/0966-7822(96)00001-9
  38. Morgan FL, Moroni L, Baker MB. Dynamic bioinks to advance bioprinting. Adv Healthc Mater. 2020;9(15):1901798. doi: 10.1002/adhm.201901798
  39. Lu CH, Guo W, Qi XJ, Neubauer A, Paltiel Y, Willner I. Hemin– G-quadruplex-crosslinked poly-N-isopropylacrylamide hydrogel: a catalytic matrix for the deposition of conductive polyaniline. Chem Sci. 2015;6(11):6659-6664. doi: 10.1039/C5SC02203G
  40. Tang J, Jia X, Li Q, et al. A DNA-based hydrogel for exosome separation and biomedical applications. Proc Natl Acad Sci USA. 2023;120(28):e2303822120. doi: 10.1073/pnas.2303822120
  41. Peng YH, Hsiao SK, Gupta K, et al. Dynamic matrices with DNA-encoded viscoelasticity for cell and organoid culture. Nat Nanotechnol. 2023;18:1463-1473.doi: 10.1038/s41565-023-01483-3
  42. Yang D, Hartman MR, Derrien TL, et al. DNA materials: bridging nanotechnology and biotechnology. Acc Chem Res. 2014;47(6):1902-1911. doi: 10.1021/ar5001082
  43. Roh YH, Ruiz RC, Peng S, Lee, JB, Luo D. Engineering DNA-based functional materials. Chem Soc Rev. 2011;40(12): 5730-5744. doi: 10.1039/C1CS15162B
  44. Nöll T, Schönherr H, Wesner D, Schopferer M, Paululat T, Nöll G. Construction of three‐dimensional DNA hydrogels from linear building blocks. Angew Chem Int Ed Engl. 2014;126(32):8468-8472. doi: 10.1002/ange.201402497
  45. Cheng E, Xing Y, Chen P, et al. A pH‐triggered, fast‐responding DNA hydrogel. Angew Chem Int Ed Engl. 2009;48(41):7660-7663. doi: 10.1002/anie.200902538
  46. Xing Y, Cheng E, Yang Y, et al. Self‐assembled DNA hydrogels with designable thermal and enzymatic responsiveness. Adv Mater. 2011;23(9):1117-1121. doi: 10.1002/adma.201003343
  47. Um SH, Lee JB, Park N, Kwon SY, Umbach CC, Luo D. Enzyme-catalysed assembly of DNA hydrogel. Nat Mater. 2006;5(10):797-801. doi: 10.1038/nmat1741
  48. Hartman MR, Yang D, Tran TN, et al. Thermostable branched DNA nanostructures as modular primers for polymerase chain reaction. Angew Chem Int Ed Engl. 2013;125(33):8861-8864. doi: 10.1002/ange.201302175
  49. Wang J, Chao J, Liu H, et al. Clamped hybridization chain reactions for the self‐assembly of patterned DNA hydrogels. Angew Chem Int Ed Engl. 2017;56(8):2171-2175. doi: 10.1002/anie.201610125
  50. Ren J, Hu Y, Lu CH, et al. pH-responsive and switchable triplex- based DNA hydrogels. Chem Sci. 2015;6(7): 4190-4195. doi: 10.1039/C5SC00594A
  51. Song P, Ye D, Zuo X, et al. DNA hydrogel with aptamer-toehold-based recognition, cloaking, and decloaking of circulating tumor cells for live cell analysis. Nano Lett. 2017;17(9):5193-5198. doi: 10.1021/acs.nanolett.7b01006
  52. Chu B, Zhang D, Paukstelis PJ. A DNA G-quadruplex/i-motif hybrid. Nucleic Acids Res. 2019;47(22):11921-11930. doi: 10.1093/nar/gkz1008
  53. Zhou X, Li C, Shao Y, Chen C, Yanga Z, Liu D. Reversibly tuning the mechanical properties of a DNA hydrogel by a DNA nanomotor. Chem Commun. 2016;52(70): 10668-10671. doi: 10.1039/C6CC04724F
  54. Lu S, Wang S, Zhao J, Sun J, Yang X. A pH-controlled bidirectionally pure DNA hydrogel: reversible self-assembly and fluorescence monitoring. Chem Commun. 2018;54(36):4621-4624. doi: 10.1039/C8CC01603H
  55. Wang L, Sun L, Gu Z, et al. N-carboxymethyl chitosan/ sodium alginate composite hydrogel loading plasmid DNA as a promising gene activated matrix for in-situ burn wound treatment. Bioact Mater. 2022;15:330-342. doi: 10.1016/j.bioactmat.2021.12.012
  56. Kim IG, Park MR, Choi YH, et al. Regeneration of paralyzed vocal fold by the injection of plasmid DNA complex-loaded hydrogel bulking agent. ACS Biomater Sci Eng. 2019;5(3):1497-1508. doi: 10.1021/acsbiomaterials.8b01541
  57. Liu H, Cao T, Xu Y, Dong Y, Liu D. Tuning the mechanical properties of a DNA hydrogel in three phases based on ATP aptamer. Int J Mol Sci. 2018;19(6):1633. doi: 10.3390/ijms19061633
  58. Sekar MP, Suresh S, Zennifer A, Sethuraman S, Sundaramurthi D. Hyaluronic acid as bioink and hydrogel scaffolds for tissue engineering applications. ACS Biomater Sci Eng. 2023;9(6):3134-3159. doi: 10.1021/acsbiomaterials.3c00299
  59. Wang C, Zhang J. Recent advances in stimuli-responsive DNA-based hydrogels. ACS Appl Bio Mater. 2022;5(5): 1934-1953. doi: 10.1021/acsabm.1c01197
  60. Kahn JS, Trifonov A, Cecconello A, Guo W, Fan C, Willner I. Integration of switchable DNA-based hydrogels with surfaces by the hybridization chain reaction. Nano Lett. 2015;15(11):7773-7778. doi: 10.1021/acs.nanolett.5b04101
  61. Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;23(12):H41-H56. doi: 10.1002/adma.201003963
  62. Fujita S, Hara S, Hosono A, Sugihara S, Uematsu H, Suye SI. Hyaluronic acid hydrogel crosslinked with complementary DNAs. Adv Polym Technol. 2020;2020:1470819. doi: 10.1155/2020/1470819
  63. Sun Y, Qi S, Dong X, Qin M, Zhang Y, Wang Z. Colorimetric aptasensor targeting zearalenone developed based on the hyaluronic acid-DNA hydrogel and bimetallic MOFzyme. Biosens Bioelectron. 2022;212: 114366. doi: 10.1016/j.bios.2022.114366
  64. Liedl T, Dietz H, Yurke B, Simmel F. Controlled trapping and release of quantum dots in a DNA‐switchable hydrogel. Small. 2007;3(10):1688-1693. doi: 10.1002/smll.200700366
  65. Lin DC, Yurke B, Langrana NA. Inducing reversible stiffness changes in DNA-crosslinked gels. J Mater Res. 2005;20(6):1456-1464. doi: 10.1557/JMR.2005.0186
  66. English MA, Soenksen LR, Gayet RV, et al. Programmable CRISPR-responsive smart materials. Science. 2019;365(6455):780-785. doi: 10.1126/science.aaw5122
  67. Liao WC, Lilienthal S, Kahn JS, et al. pH-and ligand-induced release of loads from DNA–acrylamide hydrogel microcapsules. Chem Sci. 2017;8(5):3362-3373. doi: 10.1039/C6SC04770J
  68. Du X, Bi Y, He P, Wang C, Guo W. Hierarchically structured DNA‐based hydrogels exhibiting enhanced enzyme‐responsive and mechanical properties. Adv Funct Mater. 2020;30(51):2006305. doi: 10.1002/adfm.202006305
  69. Gu Y, Distler ME, Cheng HF, Huang C, Mirkin CA. A general DNA-gated hydrogel strategy for selective transport of chemical and biological cargos. J Am Chem Soc. 2021;143(41):17200-17208. doi: 10.1021/jacs.1c08114
  70. Huang F, Chen M, Zhou Z, Duan R, Xia F, Willner I. Spatiotemporal patterning of photoresponsive DNA-based hydrogels to tune local cell responses. Nat Commun. 2021;12(1):2364. doi: 10.1038/s41467-021-22645-8
  71. Yan X, Yang B, Chen Y, et al. Anti‐friction MSCs delivery system improves the therapy for severe osteoarthritis. Adv Mater. 2021;33(52):2104758. doi: 10.1002/adma.202104758
  72. Ge Z, Li W, Zhao R, et al. Programmable DNA hydrogel provides suitable microenvironment for enhancing TSPCS therapy in healing of tendinopathy. Small. 2023;19(32):2207231. doi: 10.1002/smll.202207231
  1. Jin J, Xing Y, Xi Y, et al. A triggered DNA hydrogel cover to envelop and release single cells. Adv Mater. 2013;25(34):4714-4717. doi: 10.1002/adma.201301175
  2. Zhou B, Yang B, Liu Q, et al. Effects of univariate stiffness and degradation of DNA hydrogels on the transcriptomics of neural progenitor cells. J Am Chem Soc. 2023;145(16): 8954-8964. doi: 10.1021/jacs.2c13373
  3. Yang B, Zhou B, Li C, et al. A biostable l‐DNA hydrogel with improved stability for biomedical applications. Angew Chem Int Ed. 2023;134(30):e202202520. doi: 10.1002/ange.202202520
  4. Chen F, He Y, Li Z, et al. A novel tunable, highly biocompatible and injectable DNA-chitosan hybrid hydrogel fabricated by electrostatic interaction between chitosan and DNA backbone. Int J Pharm. 2021;606:120938. doi: 10.1016/j.ijpharm.2021.120938
  5. Li W, Wang C, Wang Z, et al. Physically cross-linked DNA hydrogel-based sustained cytokine delivery for in situ diabetic alveolar bone rebuilding. ACS Appl Mater Interfaces. 2022;14(22):25173-25182. doi: 10.1021/acsami.2c04769
  6. Borum RM, Moore C, Mantri, Y, Xu M, Jokerst JV. Supramolecular loading of DNA hydrogels with dye–drug conjugates for real‐time photoacoustic monitoring of chemotherapy. Adv Sci. 2023;10(1):2204330. doi: 10.1002/advs.202204330
  7. Yao C, Zhu C, Tang J, Ou J, Zhang R, Yang D. T lymphocyte-captured DNA network for localized immunotherapy. J Am Chem Soc. 2021;143(46):19330-19340. doi: 10.1021/jacs.1c07036
  8. Yao C, Tang H, Wu W, et al. Double rolling circle amplification generates physically cross-linked DNA network for stem cell fishing. J Am Chem Soc. 2020;142(7): 3422-3429. doi: 10.1021/jacs.9b11001
  9. Hu X, Wang Y, Tan Y, et al. A difunctional regeneration scaffold for knee repair based on aptamer‐directed cell recruitment. Adv Mater. 2017;29(15):1605235. doi: 10.1002/adma.201605235
  10. Yang Z, Zhao T, Gao C, et al. 3D-bioprinted difunctional scaffold for in situ cartilage regeneration based on aptamer-directed cell recruitment and growth factor-enhanced cell chondrogenesis. ACS Appl Mater Interfaces. 2021;13(20):23369-23383. doi: 10.1021/acsami.1c01844
  11. Seliktar D. Designing cell-compatible hydrogels for biomedical applications. Science. 2012;336(6085):1124-1128. doi: 10.1126/science.1214804
  12. Li C, Faulkner‐Jones A, Dun AR, et al. Rapid formation of a supramolecular polypeptide–DNA hydrogel for in situ three‐dimensional multilayer bioprinting. Angew Chem Int Ed. 2015;54(13):3957-3961. doi: 10.1002/anie.201411383
  13. Lewns FK, Tsigkou O, Cox LR, Wildman RD, Grover LM. Hydrogels and bioprinting in bone tissue engineering: creating artificial stem‐cell niches for in vitro models. Adv Mater. 2023;35(52):2301670. doi: 10.1002/adma.202301670
Conflict of interest
The authors declare no conflicts of interest.
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing