AccScience Publishing / IJB / Volume 10 / Issue 1 / DOI: 10.36922/ijb.1404
Cite this article
271
Download
960
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Microfluidic fiber spinning for 3D bioprinting: Harnessing microchannels to build macrotissues

Federico Serpe1,2 Carlo Massimo Casciola1,2 Giancarlo Ruocco1 Gianluca Cidonio1* Chiara Scognamiglio1*
Show Less
1 Centre for Life Nano- & Neuro-Science (CLN2S), Italian Institute of Technology (IIT), 00161 Rome, Italy
2 Department of Mechanical and Aerospace Engineering (DIMA), University of Rome “La Sapienza,” 00185 Rome, Italy
IJB 2024, 10(1), 1404 https://doi.org/10.36922/ijb.1404
Submitted: 27 July 2023 | Accepted: 25 August 2023 | Published: 2 January 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Microfluidics is rapidly revolutionizing the scientific panorama, providing unmatched high-throughput platforms that find application in numerous areas of physics, chemistry, biology, and materials science. Recently, microfluidic chips have been proposed, in combination with bioactive materials, as promising tools for spinning cell-laden fibers with on-demand characteristics. However, cells encapsulated in filaments produced via microfluidic spinning technology are confined in a quasi-three-dimensional (3D) environment that fails to replicate the intricate 3D architecture of biological tissues. Thanks to the recent synergistic combination of microfluidic devices with 3D bioprinting technologies that enable the production of sophisticated microfibers serving as the backbone of 3D structures, a new age of tissue engineering is emerging. This review looks at how combining microfluidics with 3D printing is contributing to the biofabrication of relevant human substitutes and implants. This paper also describes the whole manufacturing process from the production of the microfluidic tool to the printing of tissue models, focusing on cutting-edge fabrication technologies and emphasizing the most noticeable achievements for microfluidic spinning technology. A theoretical insight for thixotropic hydrogels is also proposed to predict the fiber size and shear stress developing within microfluidic channels. The potential of using microfluidic chips as bio-printheads for multi-material and multi-cellular bioprinting is discussed, highlighting the challenges that microfluidic bioprinting still faces in advancing the field of biofabrication for tissue engineering and regenerative medicine purposes.

Keywords
Microfluidic
3D bioprinting
Fiber spinning
Biofabrication
Funding
G.C. acknowledges funding from AIRC Aldi Fellowship under grant agreement No. 25412. The research leading to these results was also supported by European Research Council Synergy grant ASTRA (n. 855923).
References
  1. Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442(7101):368-373. doi: 10.1038/nature05058
  2. Convery N, Gadegaard N. 30 Years of microfluidics. Micro Nano Eng. 2019;2(November 2018):76-91. doi: 10.1016/j.mne.2019.01.003
  3. Guimarães CF, Gasperini L, Marques AP, Reis RL. 3D flow-focusing microfluidic biofabrication: One-chip-fits-all hydrogel fiber architectures. Appl Mater Today. 2021;23:101013. doi: 10.1016/j.apmt.2021.101013
  4. Abrishamkar A, Nilghaz A, Saadatmand M, Naeimirad M, deMello AJ. Microfluidic-assisted fiber production: Potentials, limitations, and prospects. Biomicrofluidics. 2022;16(6):1-32. doi: 10.1063/5.0129108
  5. Pati F, Gantelius J, Svahn HA. 3D bioprinting of tissue/organ models. Angew Chemie Int Ed. 2016;55(15):4650-4665. doi: 10.1002/anie.201505062
  6. van der Heide D, Cidonio G, Stoddart MJ, D'Este M. 3D printing of inorganic-biopolymer composites for bone regeneration. Biofabrication. 2022;14(4):042003. doi: 10.1088/1758-5090/ac8cb2
  7. Scognamiglio C, Soloperto A, Ruocco G, Cidonio G. Bioprinting stem cells: Building physiological tissues one cell at a time. Am J Physiol - Cell Physiol. 2020;319(3):C465-C480. doi: 10.1152/ajpcell.00124.2020
  8. Cidonio G, Glinka M, Kim Y-H, Dawson JI, Oreffo ROC. Nanocomposite clay-based bioinks for skeletal tissue engineering. Methods Mol Biol. 2021;2147:63-72. doi: 10.1007/978-1-0716-0611-7_6
  9. Memic A, Navaei A, Mirani B, et al. Bioprinting technologies for disease modeling. Biotechnol Lett. 2017;39(9):1279-1290. doi: 10.1007/s10529-017-2360-z
  10. Iafrate L, Benedetti MC, Donsante S, et al. Modelling skeletal pain harnessing tissue engineering. Vitr Model. 2022;1(4-5):289-307. doi: 10.1007/s44164-022-00028-7
  11. Marcotulli M, Tirelli MC, Volpi M, Jaroszewicz J. Microfluidic 3D printing of emulsion ink for engineering porous functionally graded materials. Adv Mater Technol. 2022;2201244:1-12. doi: 10.1002/admt.202201244
  12. Davoodi E, Sarikhani E, Montazerian H, et al. Extrusion and microfluidic-based bioprinting to fabricate biomimetic tissues and organs. Adv Mater Technol. 2020;5(8): 1901044. doi: 10.1002/admt.201901044
  13. Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014;507(7491):181-189. doi: 10.1038/nature13118
  14. Chen L, Yang C, Xiao Y, et al. Millifluidics, microfluidics, and nanofluidics: manipulating fluids at varying length scales. Mater Today Nano. 2021;16:100136. doi: 10.1016/j.mtnano.2021.100136
  15. Bezrukov AN, Galyametdinov YG. Evaluation of diffusion coefficients of small ions in a microfluidic channel. 2021;85(8):889-893. doi: 10.3103/S1062873821080049
  16. Böke JS, Kraus D, Henkel T. Microfluidic network simulations enable on-demand prediction of control parameters for operating lab-on-a-chip-devices. Processes. 2021;9(8):1320. doi: 10.3390/pr9081320
  17. Qin D, Xia Y, Rogers JA, Jackman RJ, Zhao X-M, Whitesides GM. Microfabrication, microstructures and microsystems. In: Manz A, Becker H, eds. Microsystem Technology in Chemistry and Life Sciences. 1998;Vol 194 Springer-Verlag. 1-20. doi: 10.1007/3-540-69544-3_1
  18. Xia Y, Whitesides GM. Soft lithography. Angew Chemie - Int Ed. 1998;37(5):550-575. doi: 10.1002/(sici)1521-3773(19980316)37:5<550::aid-anie550>3.3.co;2-7
  19. O’Neill PF, Ben Azouz A, Vázquez M, et al. Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications. Biomicrofluidics. 2014;8(5):052112. doi: 10.1063/1.4898632
  20. Qin D, Xia Y, Whitesides GM. Soft lithography for micro- and nanoscale patterning. Nat Protoc. 2010;5(3): 491-502. doi: 10.1038/nprot.2009.234
  21. Bhattacharjee N, Urrios A, Kang S, Folch A. The upcoming 3D-printing revolution in microfluidics. Lab Chip. 2016;16(10):1720-1742. doi: 10.1039/c6lc00163g
  22. Thaweskulchai T, Schulte A. A low-cost 3-in-1 3d printer as a tool for the fabrication of flow-through channels of microfluidic systems. Micromachines. 2021;12(8):947. doi: 10.3390/mi12080947
  23. Zhu F, Friedrich T, Nugegoda D, Kaslin J, Wlodkowic D. Assessment of the biocompatibility of three-dimensional-printed polymers using multispecies toxicity tests. Biomicrofluidics. 2015;9(6):61103. doi: 10.1063/1.4939031
  24. MacDonald NP, Zhu F, Hall CJ, et al. Assessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays. Lab Chip. 2016;16(2): 291-297. doi: 10.1039/c5lc01374g
  25. Joseph Rey JRH, Chen Q, Maalihan RD, et al. 3D printing of biomedically relevant polymer materials and biocompatibility. MRS Commun. 2021;11(2):197-212. doi: 10.1557/s43579-021-00038-8
  26. de Almeida Monteiro Melo Ferraz M, Nagashima JB, Venzac B, Le Gac S, Songsasen N. 3D printed mold leachates in PDMS microfluidic devices. Sci Rep. 2020;10(1):994. doi: 10.1038/s41598-020-57816-y
  27. Zhou Z, Chen D, Wang X, Jiang J. Milling positive master for polydimethylsiloxane microfluidic devices: The microfabrication and roughness issues. Micromachines. 2017;8(10). doi: 10.3390/mi8100287
  28. Guckenberger DJ, De Groot TE, Wan AMD, Beebea DJ, Young EWK. Micromilling: A method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip. 2015;15(11): 2364-2378. doi: 10.1039/c5lc00234f
  29. Ku X, Zhang Z, Liu X, Chen L. Low-cost rapid prototyping of glass microfluidic devices using a micromilling technique. Microfluid Nanofluidics. 2018;22(8):1-8. doi: 10.1007/s10404-018-2104-y
  30. Hossain MM, Rahman T. Low cost micro milling machine for prototyping plastic microfluidic devices. Proceedings. 2018;2(13):707. doi: 10.3390/proceedings2130707
  31. Virumbrales-Muñoz M, Livingston MK, Farooqui M, Skala MC, Beebe DJ, Ayuso JM. Development of a microfluidic array to study drug response in breast cancer. Molecules. 2019;24(23):1-12. doi: 10.3390/molecules24234385
  32. Costantini M, Idaszek J, Szöke K, et al. 3D bioprinting of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro neocartilage formation. Biofabrication. 2016;8(3):035002. doi: 10.1088/1758-5090/8/3/035002
  33. Costantini M, Testa S, Mozetic P, et al. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo. Biomaterials. 2017;131:98-110. doi: 10.1016/j.biomaterials.2017.03.026
  34. Idaszek J, Costantini M, Karlsen TA, et al. 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head. Biofabrication. 2019;11(4):044101. doi: 10.1088/1758-5090/ab2622
  35. Behroodi E, Latifi H, Bagheri Z, Ermis E, Roshani S, Moghaddam MS. A combined 3D printing/CNC micro-milling method to fabricate a large-scale microfluidic device with the small size 3D architectures: An application for tumor spheroid production. Sci Rep. 2020;10(1):1-14. doi: 10.1038/s41598-020-79015-5
  36. Kyle S, Jessop ZM, Al-Sabah A, Whitaker IS. Printability of candidate biomaterials for extrusion based 3D printing: State-of-the-art. Adv Healthc Mater. 2017;6(16):1-16. doi: 10.1002/adhm.201700264
  37. Waheed S, Cabot JM, Macdonald NP, et al. 3D printed microfluidic devices: Enablers and barriers. Lab Chip. 2016;16(11):1993-2013. doi: 10.1039/c6lc00284f
  38. Macdonald NP, Cabot JM, Smejkal P, Guijt RM, Paull B, Breadmore MC. Comparing microfluidic performance of three-dimensional (3D) printing platforms. Anal Chem. 2017;89(7):3858-3866. doi: 10.1021/acs.analchem.7b00136
  39. Ho CMB, Ng SH, Li KHH, Yoon Y-J. 3D printed microfluidics for biological applications. Lab Chip. 2015;15(18): 3627-3637. doi: 10.1039/c5lc00685f
  40. Zeraatkar M, de Tullio MD, Pricci A, Pignatelli F. Exploiting limitations of fused deposition modeling to enhance mixing in 3D printed microfluidic devices. Rapid Prototyp J. 2021;27(10):1850-1859. doi: 10.1108/RPJ-03-2021-0051
  41. Quero RF, Domingos Da Silveira G, Fracassi Da Silva JA, de Jesus DP. Understanding and improving FDM 3D printing to fabricate high-resolution and optically transparent microfluidic devices. Lab Chip. 2021;21(19):3715-3729. doi: 10.1039/d1lc00518a
  42. Ballacchino G, Weaver E, Mathew E, et al. Manufacturing of 3d-printed microfluidic devices for the synthesis of drug-loaded liposomal formulations. Int J Mol Sci. 2021;22(15):8064. doi: 10.3390/ijms22158064
  43. Mehta V, Vilikkathala Sudhakaran S, Rath SN. Facile route for 3D printing of transparent PETg-based hybrid biomicrofluidic devices promoting cell adhesion. ACS Biomater Sci Eng. 2021;7(8):3947-3963. doi: 10.1021/acsbiomaterials.1c00633
  44. Mader M, Rein C, Konrat E, et al. 2021, Fused deposition modeling of microfluidic chips in transparent polystyrene. Micromachines, 12(11):1348. doi: 10.3390/mi12111348
  45. Kara A, Vassiliadou A, Ongoren B, et al. Engineering 3d printed microfluidic chips for the fabrication of nanomedicines. Pharmaceutics. 2021;13(12):1-17. doi: 10.3390/pharmaceutics13122134
  46. Ching T, Li Y, Karyappa R, Ohno A. Fabrication of integrated microfluidic devices by direct ink writing (DIW) 3D printing. Sensors Actuators, B Chem. 2019;297(December 2018):126609. doi: 10.1016/j.snb.2019.05.086
  47. Karyappa R, Ching T, Hashimoto M. Embedded ink writing (EIW) of polysiloxane inks. ACS Appl Mater Interfaces. 2020;12(20):23565-23575. doi: 10.1021/acsami.0c03011
  48. Childs EH, Latchman AV, Lamont AC, Hubbard J. Additive assembly for polyjet-based multi-material 3D printed microfluidics. J Microelectromech Syst. 2020;29(5): 1094-1096. doi: 10.1109/JMEMS.2020.3003858
  49. Walczak R, Adamski K. Inkjet 3D printing of microfluidic structures - On the selection of the printer towards printing your own microfluidic chips. J. Micromech Microeng. 2015;25(8):085013. doi: 10.1088/0960-1317/25/8/085013
  50. Hwang Y, Paydar OH, Candler RN. 3D printed molds for non-planar PDMS microfluidic channels. Sensors Actuators, A Phys. 2015;226:137-142. doi: 10.1016/j.sna.2015.02.028
  51. King PH, Jones G, Morgan H, de Planquea MRR, Zauner K-P. Interdroplet bilayer arrays in millifluidic droplet traps from 3D-printed moulds. Lab Chip. 2014;14(14):722-729. doi: 10.1039/c3lc51072g
  52. Glick CC, Srimongkol MT, Schwartz AJ, et al. Rapid assembly of multilayer microfluidic structures via 3D-printed transfer molding and bonding. Microsyst Nanoeng. 2016;2(1):16063. doi: 10.1038/micronano.2016.63
  53. Vijayan S, Parthiban P, Hashimoto M. Evaluation of lateral and vertical dimensions of micromolds fabricated by a polyjetTM printer. Micromachines. 2021;12(3):1-13. doi: 10.3390/mi12030302
  54. Anderson KB, Lockwood SY, Martin RS, et al. A 3D printed fluidic device that enables integrated features. Anal Chem. 2013;85(12):5622-5626. doi: 10.1021/ac4009594
  55. Chen S, He Z, Choi S, Novosselov IV. Characterization of inkjet-printed digital microfluidics devices. Sensors. 2021;21(9):3064. doi: 10.3390/s21093064
  56. Sochol RD, Sweet E, Glick CC, et al. 3D printed microfluidic circuitry via multijet-based additive manufacturing. Lab Chip. 2016;16(4):668-678. doi: 10.1039/c5lc01389e
  57. Layani M, Wang X, Magdassi S. Novel materials for 3D printing by photopolymerization. Adv Mater. 2018;30(41):1706344. doi: 10.1002/adma.201706344
  58. Lu Y, Mapili G, Suhali G, Chen S, Roy K. A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue. J Biomed Mater Res. 2006;77(2):396-405. doi: 10.1002/jbm.a.30601
  59. Männel MJ, Selzer L, Bernhardt R, et al. Optimizing process parameters in commercial micro- stereolithography for forming emulsions and polymer microparticles in nonplanar microfluidic devices. Adv Mater Technol. 2019;1800408: 1-10. doi: 10.1002/admt.201800408
  60. Qin D, Xia Y, Whitesides GM. Rapid prototyping of complex structures with feature sizes larger than 20 μm. Adv Mater. 1996;8(11):917-919. doi: 10.1002/adma.19960081110
  61. Bertsch A, Heimgartner S, Cousseau P, Renauda P. Static micromixers based on large-scale industrial mixer geometry. Lab Chip. 2001;1(1):56-60. doi: 10.1039/b103848f
  62. Morimoto Y, Kiyosawa M, Takeuchi S. Three-dimensional printed microfluidic modules for design changeable coaxial microfluidic devices. Sens Actuators B Chem. 2018;274(July):491-500. doi: 10.1016/j.snb.2018.07.151
  63. Costantini M, Testa S, Fornetti E, et al. Biofabricating murine and human myo-substitutes for rapid volumetric muscle loss restoration. EMBO Mol Med. 2021;13(3):1-17. doi: 10.15252/emmm.202012778
  64. Li W, Yao K, Tian L, Xue C, Zhang X, Gao X. 3D printing of heterogeneous microfibers with multi-hollow structure via microfluidic spinning. J Tissue Eng Regen Med. 2022;16(10):913-922. doi: 10.1002/term.3339
  65. Maruo S, Nakamura O, Kawata S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett. 1997;22(2):132-134. doi: 10.1364/OL.22.000132
  66. Faraji Rad Z, Prewett PD, Davies GJ. High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays. Microsyst Nanoeng. 2021;7(1):71. doi: 10.1038/s41378-021-00298-3
  67. Fornell A, Söderbäck P, Liu Z, De Albuquerque Moreira M, Tenje M. Fabrication of silicon microfluidic chips for acoustic particle focusing using direct laser writing. Micromachines. 2020;11(2):113. doi: 10.3390/mi11020113
  68. Oliveira B, Veigas B, Fernandes AR, et al. Fast prototyping microfluidics: Integrating droplet digital lamp for absolute quantification of cancer biomarkers. Sensors. 2020;20(6):1624. doi: 10.3390/s20061624
  69. Yong J, Zhan Z, Singh SC, Chen F, Guo C. Microfluidic channels fabrication based on underwater superpolymphobic microgrooves produced by femtosecond laser direct writing. ACS Appl Polym Mater. 2019;1(11):2819-2825. doi: 10.1021/acsapm.9b00269
  70. Zyla G, Kovalev A, Esen C, Ostendorf A, Gorb S. Two-photon polymerization as a potential manufacturing tool for biomimetic engineering of complex structures found in nature. J Opt Microsyst. 2022;2(03):1-12. doi: 10.1117/1.JOM.2.3.031203
  71. Lölsberg J, Linkhorst J, Cinar A, Jans A, Kuehne AJC, Wessling M. 3D nanofabrication inside rapid prototyped microfluidic channels showcased by wet-spinning of single micrometre fibres. Lab Chip. 2018;18(9):1341-1348. doi: 10.1039/c7lc01366c
  72. Wang Y, Kankala RK, Zhu K, Wang S-B, Zhang YS, Chen A-Zg. Coaxial extrusion of tubular tissue constructs using a gelatin/GelMA blend bioink. ACS Biomater Sci Eng. 2019;5(10):5514-5524. doi: 10.1021/acsbiomaterials.9b00926
  73. Shao L, Gao Q, Zhao H, et al. Fiber-based mini tissue with morphology-controllable GelMA microfibers. Small. 2018;14(44):1-8. doi: 10.1002/smll.201802187
  74. Yu Y, Wei W, Wang Y, Xu C, Guo Y, Qin J. Simple spinning of heterogeneous hollow microfibers on chip. Adv Mater. 2016;28:6649-6655. doi: 10.1002/adma.201601504
  75. Hu M, Kurisawa M, Deng R, et al. Cell immobilization in gelatin – hydroxyphenylpropionic acid hydrogel fibers. Biomaterials. 2009;30(21):3523-3531. doi: 10.1016/j.biomaterials.2009.03.004
  76. Yang Y, Sun J, Liu X, et al. Wet-spinning fabrication of shear-patterned alginate hydrogel microfibers and the guidance of cell alignment. Regen Biomater. 2017;4(5):299-307. doi: 10.1093/rb/rbx017
  77. Zhang X, Weng L, Liu Q, Li D, Deng B. Facile fabrication and characterization on alginate microfibres with grooved structure via microfluidic spinning. R Soc Open Sci. 2019;6(5):181928. doi: 10.1098/rsos.181928
  78. Rinoldi C, Costantini M, Kijeńska-Gawrońska E, et al. Tendon tissue engineering:Effects of mechanical and biochemical stimulation on stem cell alignment on cell-laden hydrogel yarns. Adv Healthc Mater. 2019; 8(7):1-10. doi: 10.1002/adhm.201801218
  79. Xu Z, Wu M, Ye Q, Chen D, Liu K, Bai H. Spinning from nature: Engineered preparation and application of high-performance bio-based fibers. Engineering. 2022;14:100-112. doi: 10.1016/j.eng.2021.06.030
  80. Colosi C, Costantini M, Barbetta A, et al. Microfluidic bioprinting of heterogeneous 3d tissue constructs. Methods Mol Biol. 2017;1612:369-380. doi: 10.1007/978-1-4939-7021-6_26
  81. Wang G, Jia L, Han F, et al. Microfluidics-based fabrication of cell-laden hydrogel microfibers for potential applications in tissue engineering. Molecules. 2019;24(8). doi: 10.3390/molecules24081633
  82. Wu F, Ju X jie, He X heng, et al. A novel synthetic microfiber with controllable size for cell encapsulation and culture. J Mater Chem B. 2016;4:2455-2465. doi: 10.1039/c6tb00209a
  83. Onoe H, Okitsu T, Itou A, et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat Mater. 2013;12(6):584-590. doi: 10.1038/nmat3606
  84. Hu M, Deng R, Schumacher KM, et al. Hydrodynamic spinning of hydrogel fibers. Biomaterials. 2010;31(5):863–869. doi: 10.1016/j.biomaterials.2009.10.002
  85. Bonhomme O, Leng J, Colin A. Microfluidic wet-spinning of alginate microfibers: A theoretical analysis of fiber formation. Soft Matter. 2012;8(41):10641-10649. doi: 10.1039/c2sm25552a
  86. Kurdzinski ME, Gol Berrak, Hee AC, et al. Dynamics of high viscosity contrast confluent microfluidic flows. Sci Rep. 2017;7(1):1-11. doi: 10.1038/s41598-017-06260-6
  87. Zaeri A, Zgeib R, Cao K, Zhang F, Chang RC. Numerical analysis on the effects of microfluidic-based bioprinting parameters on the microfiber geometrical outcomes. Sci Rep. 2022;12(1):1-16. doi: 10.1038/s41598-022-07392-0
  88. Zhao M, Liu H, Zhang X, Wang H, Taoab T, Qin J. A flexible microfluidic strategy to generate grooved microfibers for guiding cell alignment. Biomater Sci. 2021;9(14):4880-4890. doi: 10.1039/D1BM00549A
  89. Cai J, Ye D, Wu Y, Fan L, Yu H. Injectable alginate fibrous hydrogel with a three-dimensional network structure fabricated by microfluidic spinning. Compos Commun. 2019;15(April):1-5. doi: 10.1016/j.coco.2019.06.004
  90. Ebrahimi M, Ostrovidov S, Bae H, Kim SB, Bae H, Khademhosseini A. Enhanced skeletal muscle formation on microfluidic spun gelatin methacryloyl (GelMA) fibres using surface patterning and agrin treatment. J Tissue Eng Regenrative Med. 2019;12:2151-2163. doi: 10.1002/term.2738
  91. Daniele MA, Radom K, Ligler FS. Microfluidic fabrication of multiaxial microvessels via hydrodynamic shaping. RSC Adv. 2014;4:23440-23446. doi: 10.1039/c4ra03667k
  92. Williams CG, Malik AN, Kim TK, Manson PN, Elisseeff JH. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials. 2005;26(11):1211-1218. doi: 10.1016/j.biomaterials.2004.04.024
  93. Lim KS, Klotz BJ, Lindberg GCJ, et al. Visible light cross-linking of gelatin hydrogels offers an enhanced cell microenvironment with improved light penetration depth. Macromol Biosci. 2019;19(6):1-14. doi: 10.1002/mabi.201900098
  94. He X, Wang W, Deng K, et al. Microfluidic fabrication of chitosan microfibers with controllable internals from tubular to peapodlike structures. RSC Adv. 2015;5: 928-936. doi: 10.1039/c4ra10696b
  95. Cui T, Yu J, Li Q, et al. Large-scale fabrication of robust artificial skins from a biodegradable sealant-loaded nanofiber scaffold to skin tissue via microfluidic blow-spinning. Adv Mater. 2020;2000982(32):1-11. doi: 10.1002/adma.202000982
  96. Jia J, Richards DJ, Pollard S, et al. Engineering alginate as bioink for bioprinting. Acta Biomater. 2014;10(10): 4323-4331. doi: 10.1016/j.actbio.2014.06.034
  97. Hernández-González AC, Téllez-Jurado L, Rodríguez- Lorenzo LM. Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review. Carbohydr Polym. 2020;229(October 2019):115514. doi: 10.1016/j.carbpol.2019.115514
  98. Costantini M, Colosi C, Świe¸szkowski W, Barbetta A. Co-axial wet-spinning in 3D bioprinting: State of the art and future perspective of microfluidic integration. Biofabrication. 2019;11(1):012001. doi: 10.1088/1758-5090/aae605
  99. Du XY, Li Q, Wu G, Chen S. Multifunctionalmicro/ nanoscale fibers based on microfluidic spinning technology. Adv Mater. 2019;31(52):1-38. doi: 10.1002/adma.201903733
  100. Cidonio G, Costantini M, Pierini F, Scognamiglio C, Agarwald T, Barbetta A. 3D printing of biphasic inks: beyond single-scale architectural control. J Mater Chem C. 2021;9(37):12489-12508. doi: 10.1039/D1TC02117F
  101. Sivashanmugam A, Arun Kumar R, Vishnu Priya M, Nair SV, Jayakumar R. An overview of injectable polymeric hydrogels for tissue engineering. Eur Polym J. 2015;72: 543-565. doi: 10.1016/j.eurpolymj.2015.05.014
  102. Chopin-Doroteo M, Mandujano-Tinoco EA, Krötzsch E. Tailoring of the rheological properties of bioinks to improve bioprinting and bioassembly for tissue replacement. Biochim Biophys Acta - Gen Subj. 2021;1865(2):129782. doi: 10.1016/j.bbagen.2020.129782
  103. Cooke ME, Rosenzweig DH. The rheology of direct and suspended extrusion bioprinting. APL Bioeng. 2021;5(1):011502. doi: 10.1063/5.0031475
  104. Townsend JM, Beck EC, Gehrke SH, Berkland CJ, Detamore MS. Flow behavior prior to crosslinking: The need for precursor rheology for placement of hydrogels in medical applications and for 3D bioprinting. Prog Polym Sci. 2019;91:126-140. doi: 10.1016/j.progpolymsci.2019.01.003
  105. Rudolph N, Osswald TA. Polymer Rheology: Fundamentals and Applications, Carl Hanser Verlag GmbH & Company KG; 2014. https://books.google.pl/books?id=11ctBQAAQBAJ
  106. Bird RB, Armstrong RC, Hassager O. Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics, Wiley; 1987.
  107. Doi M, Edwards SF. The Theory of Polymer Dynamics, Clarendon Press; 1986. https://books.google.pl/books?id=sAFQzQEACAAJ
  108. Maxwell JC. On the dynamical theory of gases. Philos Trans R Soc London. 1867;157:49-88. http://www.jstor.org/stable/108968
  109. Bird RB, Armstrong RC, Hassager O. Dynamics of Polymeric Liquids, Volume 2: Kinetic Theory, Wiley; 1987.
  110. Pourmasoumi P, Moghaddam A, Mahand SN, et al. A review on the recent progress, opportunities, and challenges of 4D printing and bioprinting in regenerative medicine. J Biomater Sci Polym Ed. 2023;34(1):108-146. doi: 10.1080/09205063.2022.2110480
  111. Paxton N, Smolan W, Böck T, Melchels F, Groll J, Jungst T. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication. 2017;9(4):044107. doi: 10.1088/1758-5090/aa8dd8
  112. Gregory T, Benhal P, Scutte A, et al. Rheological characterization of cell-laden alginate-gelatin hydrogels for 3D biofabrication. J Mech Behav Biomed Mater. 2022;136(September):105474. doi: 10.1016/j.jmbbm.2022.105474
  113. Cooke ME, Rosenzweig DH. The rheology of direct and suspended extrusion bioprinting. APL Bioeng. 2021;5(1):011502. doi: 10.1063/5.0031475
  114. Filippi M, Buchner T, Yasa O, Weirich S, Katzschmann RK. Microfluidic tissue engineering and bio-actuation. Adv Mater. 2022;34(23):2108427. doi: 10.1002/adma.202108427
  115. Cheng Y, Yu Y, Fu F, et al. Controlled fabrication of bioactive microfibers for creating tissue constructs using microfluidic techniques. ACS Appl Mater Interfaces. 2016;8(2): 1080-1086. doi: 10.1021/acsami.5b11445
  116. Boyd DA, Shields AR, Howell PB, Ligler FS. Design and fabrication of uniquely shaped thiol–ene microfibers using a two-stage hydrodynamic focusing design. Lab Chip. 2013;13:3105-3110. doi: 10.1039/c3lc50413a
  117. Kobayashi A, Yamakoshi K, Yajima Y, Utoh R, Yamada M, Seki M. Preparation of stripe-patterned heterogeneous hydrogel sheets using micro fluidic devices for high-density coculture of hepatocytes and fibroblasts. J Biosci Bioeng. 2013;116(6):761-767. doi: 10.1016/j.jbiosc.2013.05.034
  118. Gursoy A, Iranshahi K, Wei K, et al. Facile fabrication of microfluidic chips for 3D hydrodynamic focusing and wet spinning of polymeric fibers. Polymers (Basel). 2020;12(3): 1-13. doi: 10.3390/polym12030633
  119. Attalla R, Ling C, Selvaganapathy P. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications. Biomed Microdevices. 2016;18(1):17. doi: 10.1007/s10544-016-0042-6
  120. Wei D, Sun J, Bolderson J, et al. Continuous fabrication and assembly of spatial cell-laden fibers for a tissue-like construct via a photolithographic-based microfluidic chip. ACS Appl Mater Interfaces. 2017;9:14606-14617. doi: 10.1021/acsami.7b00078
  121. Pi Q, Maharjan S, Yan X, et al. Digitally tunable microfluidic bioprinting of multilayered cannular tissues. Adv Mater. 2018;30(43):1-10. doi: 10.1002/adma.201706913
  122. Xiao Y, Yang C, Zhai X, et al. Bioinspired tough and strong fibers with hierarchical core–shell structure. Adv Mater Interfaces. 2023;10(2):2201962. doi: 10.1002/admi.202201962
  123. Colosi C, Shin SR, Manoharan V, et al. Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv Mater, 2016;28(4):677-684. doi: 10.1002/adma.201503310
  124. Feng F, He J, Li J, Mao M, Li D. Multicomponent bioprinting of heterogeneous hydrogel constructs based on microfluidic printheads. Int JBioprint. 2019;5(2):39-48. doi: 10.18063/ijb.v5i2.202
  125. Miri AK, Nieto D, Iglesias L, et al. Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Adv Mater. 2018;30(27):1-9. doi: 10.1002/adma.201800242
  126. Hassan I, Selvaganapathy PR. Microfluidic printheads for highly switchable multimaterial 3D printing of soft materials. Adv Mater Technol. 2022;2101709:1-10. doi: 10.1002/admt.202101709
  127. Hardin JO, Ober TJ, Valentine AD, Lewis JA. Microfluidic printheads for multimaterial 3D printing of viscoelastic inks. Adv Mater, 2015;27(21):3279-3284. doi: 10.1002/adma.201500222
  128. Zhang L, Fu L, Zhang X, Chen L, Cai Q, Yang X. Hierarchical and heterogeneous hydrogel system as a promising strategy for diversified interfacial tissue regeneration. Biomater Sci. 2021;9(5):1547-1573. doi: 10.1039/D0BM01595D
  129. Chai N, Zhang J, Zhang Q, et al. Construction of 3D printed constructs based on microfluidic microgel for bone regeneration. Compos Part B Eng. 2021;223(June):109100. doi: 10.1016/j.compositesb.2021.109100
  130. Kamperman T, Henke S, van den Berg A, et al. Single cell microgel based modular bioinks for uncoupled cellular micro- and macroenvironments. Adv Healthc Mater. 2017;6(3):1600913. doi: 10.1002/adhm.201600913
  131. Kim B, Kim I, Choi W, Kim SW, Kim J, Lim G. Fabrication of cell-encapsulated alginate microfiber scaffold using microfluidic channel. J Manuf Sci Eng. 2008;130(2):0210161-0210166. doi: 10.1115/1.2898576
  132. Yao K, Li W, Li K, et al. Simple fabrication of multicomponent heterogeneous fibers for cell co-culture via microfluidic spinning. Macromol Biosci. 2020;20(3):1900395. doi: 10.1002/mabi.201900395
  133. Oh J, Kim K, Won SW, et al. Microfluidic fabrication of cell adhesive chitosan microtubes. Biomed Microdevices. 2013;15(3):465-472. doi: 10.1007/s10544-013-9746-z
  134. Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev. 2011;63(4-5):300-311. doi: 10.1016/j.addr.2011.03.004
  135. Cheng Y, Zheng F, Lu J, et al. Bioinspired multicompartmental microfibers from microfluidics. Adv Mater, 2014;26(30):5184-5190. doi: 10.1002/adma.201400798
  136. Cheng J, Jun Y, Qin J, Lee S-H. Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials. 2017;114:121-143. doi: 10.1016/j.biomaterials.2016.10.040
  137. Jun Y, Kang E, Chae S, Lee S-H. Microfluidic spinning of micro- and nano-scale fibers for tissue engineering. Lab Chip. 2014;14(13):2145-2160. doi: 10.1039/c3lc51414e
  138. Kang E, Choi YY, Chae SK, Moon J-H, Chang J-Y, Lee S-H. Microfluidic spinning of flat alginate fibers with grooves for cell-aligning scaffolds. Adv Mater. 2012;24(31):4271-4277. doi: 10.1002/adma.201201232
  139. Celikkin N, Presutti D, Maiullari F, et al. Combining rotary wet-spinning biofabrication and electro-mechanical stimulation for the in vitro production of functional myo-substitutes. Biofabrication. 2023;15(4):045012. doi: 10.1088/1758-5090/ace934
  140. Cidonio G, Glinka M, Dawson JI, Oreffo ROC. The cell in the ink: Improving biofabrication by printing stem cells for skeletal regenerative medicine. Biomaterials. 2019;209(March):10-24. doi: 10.1016/j.biomaterials.2019.04.009
  141. Jia L, Han F, Yang H, et al. Microfluidic fabrication of biomimetic helical hydrogel microfibers for blood-vessel-on-a-chip applications. Adv Healthc Mater. 2019;8(13):1-10. doi: 10.1002/adhm.201900435
  142. van Genderen AM, Valverde MG, Capendale PE, et al. Co-axial printing of convoluted proximal tubule for kidney disease modeling. Biofabrication. 2022;14(4):044102. doi: 10.1088/1758-5090/ac7895
  143. Xu H, Casillas J, Krishnamoorthy S, Xu C. Effects of Irgacure 2959 and lithium physical properties, and microstructure in 3D bioprinting of vascular-like constructs. Biomed Mater. 2020;15(5):055021. doi: 10.1088/1748-605X/ab954e
  144. Wang M, Li W, Mille LS, et al. Digital light processing based bioprinting with composable gradients. Adv Mater. 2022;34(1):2107038. doi: 10.1002/adma.202107038
  145. Hogan J, Sun Y, Yu K, et al. Modeling the printability of photocuring and strength adjustable hydrogel bioink during projection-based 3D bioprinting. J Manuf Process. 2021;69:583-592. doi: 10.1088/1758-5090/aba413
  146. Xie X, Wu S, Mou S, Guo N, Wang Z, Sun J. Microtissue-based bioink as a chondrocyte microshelter for DLP bioprinting. Adv Healthc Mater. 2022;11(22):2201877. doi: 10.1002/adhm.202201877
  147. Guifang G, Tomo Y, Karen H, Dai G, Cui X. Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol J. 2015;10(10):1568-1577. doi: 10.1002/biot.201400635
  148. Park JA, Yoon S, Kwon J, et al. Freeform micropatterning of living cells into cell culture medium using direct inkjet printing. Sci Rep. 2017;7(1):14610. doi: 10.1038/s41598-017-14726-w
  149. Solis LH, Ayala Y, Portillo S, Varela-Ramirez A, Aguilera R, Boland T. Thermal inkjet bioprinting triggers the activation of the VEGF pathway in human microvascular endothelial cells in vitro. Biofabrication. 2019;11(4):045005. doi: 10.1088/1758-5090/ab25f9
  150. Saadi MASR, Maguire A, Pottackal NT, et al. Direct ink writing: A 3D printing technology for diverse materials. Adv Mater. 2022;34(28):1-57. doi: 10.1002/adma.202108855
  151. Jung Y, Shafranek RT, Tsui JH, Walcott J, Nelson A, Kim D-H. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix. Acta Biomater. 2021;119: 75-88. doi: 10.1016/j.actbio.2020.11.006
  152. Connell CDO, Konate S, Onofrillo C, et al. Bioprinting free-form co-axial bioprinting of a gelatin methacryloyl bio-ink by direct in situ photo-crosslinking during extrusion. Bioprinting. 2020;19(April):e00087. doi: 10.1016/j.bprint.2020.e00087
  153. Bertlein S, Brown G, Lim KS, et al. Thiol–ene clickable gelatin: A platform bioink for multiple 3D biofabrication technologies. Adv Mater. 2017;29(44):1-6. doi: 10.1002/adma.201703404
  154. Ooi HW, Mota C, ten Cate AT, Calore A, Moroni L, Baker MB. Thiol–ene alginate hydrogels as versatile bioinks for bioprinting. Biomacromolecules. 2018;19(8):3390-3400. doi: 10.1021/acs.biomac.8b00696
  155. Bhattacharyya A, Janarthanan G, Kim T, et al. Modulation of bioactive calcium phosphate micro/nanoparticle size and shape during in situ synthesis of photo-crosslinkable gelatin methacryloyl based nanocomposite hydrogels for 3D bioprinting and tissue engineering. Biomater Res. 2022;26(1):54. doi: 10.1186/s40824-022-00301-6
  156. Rastin H, Ormsby RT, Atkins GJ, Losic D. 3D bioprinting of methylcellulose/gelatin-methacryloyl (MC/GelMA) bioink with high shape integrity. ACS Appl Bio Mater. 2020;3(3):1815-1826. doi: 10.1021/acsabm.0c00169
  157. Bertassoni LE, Cardoso JC, Manoharan V, et al. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication. 2014;6(2):024105. doi: 10.1088/1758-5082/6/2/024105
  158. Romanazzo S, Molley TG, Nemec S, et al. Synthetic bone-like structures through omnidirectional ceramic bioprinting in cell suspensions. Adv Funct Mater. 2021;2008216:1-12. doi: 10.1002/adfm.202008216
  159. Spencer AR, Sani ES, Soucy JR, et al. Bioprinting of a cell-laden conductive hydrogel composite. ACS Appl Mater Interfaces. 2019;11:30518-30533. doi: 10.1021/acsami.9b07353
  160. Dikyol C, Altunbek M, Koc B. Embedded multimaterial bioprinting platform for biofabrication of biomimetic vascular structures. J Mater Res. 2021;36(19):3851-3864. doi: 10.1557/s43578-021-00254-x
  161. Chalard A, Mauduit M, Souleille S, Joseph P, Malaquin L, Fitremann J. 3D printing of a biocompatible low molecular weight supramolecular hydrogel by dimethylsulfoxide water solvent exchange. Addit Manuf. 2020;33(February):101162. doi: 10.1016/j.addma.2020.101162
  162. Colosi C, Costantini M, Latini R, et al. Rapid prototyping of chitosan-coated alginate scaffolds through the use of a 3D fiber deposition technique. J Mater Chem B. 2014;2(39): 6779-6791. doi: 10.1039/c4tb00732h
  163. Duchi S, Onofrillo C, O’Connell CD, et al. Handheld co-axial bioprinting: Application to in situ surgical cartilage repair. Sci Rep. 2017;7(1):5837. doi: 10.1038/s41598-017-05699-x
  164. Hakimi N, Cheng R, Leng L, et al. Handheld skin printer: In situ formation of planar biomaterials and tissues. Lab Chip. 2018;18(10):1440-1451. doi: 10.1039/c7lc01236e
  165. Ying G, Manríquez J, Wu D, et al. An open-source handheld extruder loaded with pore-forming bioink for in situ wound dressing. Mater Today Bio. 2020;8(July):100074. doi: 10.1016/j.mtbio.2020.100074
  166. Pagan E, Stefanek E, Seyfoori A, et al. A handheld bioprinter for multi-material printing of complex constructs. Biofabrication. 2023;15(3):035012. doi: 10.1088/1758-5090/acc42c
  167. Salaris F, Colosi C, Brighi C, et al. 3D bioprinted human cortical neural constructs derived from induced pluripotent stem cells. J Clin Med. 2019;8(1595):1-13. doi: 10.3390%2Fjcm8101595
  168. Yu Y, Shang L, Guo J, Wang J, Zhao Y. Design of capillary microfluidics for spinning cell-laden microfibers. Nat Protoc. 2018;13(11):2557-2579. doi: 10.1038/s41596-018-0051-4
  169. Gao Q, He Y, Fu J, Liu A, Ma L. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials. 2015;61:203-215. doi: 10.1016/j.biomaterials.2015.05.031
  170. Gao G, Park JY, Kim BS, Jang J, Cho D-W. Coaxial cell printing of freestanding, perfusable, and functional in vitro vascular models for recapitulation of native vascular endothelium pathophysiology. Adv Healthc Mater. 2018;7(23):1801102. doi: 10.1002/adhm.201801102
  171. Wu Z, Cai H, Ao Z, Xu J, Heaps S, Guo F. Microfluidic printing of tunable hollow microfibers for vascular tissue engineering. Adv Mater Technol. 2021;6(8):1-9. doi: 10.1002/admt.202000683
  172. Gao Q, Liu Z, Lin Z, et al. 3D bioprinting of vessel-like structures with multi-level fluidic channels 3D bioprinting of vessel-like structures with multi-level fluidic channels. ACS Biomater Sci Eng. 2017;3(3):399-408. doi: 10.1021/acsbiomaterials.6b00643
  173. Wang D, Maharjan S, Kuang X, et al. Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels. Sci Adv. 2022;8(43):1-18. doi: 10.1126/sciadv.abq6900
  174. Silva CA, Cortés-Rodriguez CJ, Hazur J, Reakasame S, Boccaccini AR. Rationaldesign of a triple-layered coaxial extruder system: In silico and in vitro evaluations directed towards optimizing cell viability. Int JBioprint. 2020;6(4): 96-105. doi: 10.18063/ijb.v6i4.282
  175. Zuo Y, He X, Yang Y, et al. Microfluidic-based generation of functional microfibers for biomimetic complex tissue construction. Acta Biomater. 2016;38:153-162. doi: 10.1016/j.actbio.2016.04.036
  176. Li S, Liu Y, Li Y, Sun Y, Hu Q. A novel method for fabricating engineered structures with branched micro-channel using hollow hydrogel fibers. Biomicrofluidics. 2016;10(6):064104. doi: 10.1063/1.4967456
  177. Puertas-Bartolomé M, Włodarczyk-Biegun MK, del Campo A, Vázquez-Lasa B, Román JS. 3D printing of a reactive hydrogel bio-ink using a static mixing tool. Polymers. 2020;12(9):1986. doi: 10.3390/polym12091986
  178. Fernando C, Johana E, Quevedo-moreno DA, et al. High-throughput and continuous chaotic bioprinting of spatially controlled bacterial microcosms. ACS Biomater Sci Eng. 2021;7:2192-2197. doi: 10.1021/acsbiomaterials.0c01646
  179. Chávez-Madero C, de León-Derby MD, Samandari M, et al. Using chaotic advection for facile high-throughput fabrication of ordered multilayer micro- and nanostructures: Continuous chaotic printing. Biofabrication. 2020;12(3):35023. doi: 10.1088/1758-5090/ab84cc
  180. Samandari M, Alipanah F, Majidzadeh-A K, Alvarez MM, Santiago GT-de, Tamayol A. Controlling cellular organization in bioprinting through designed 3D microcompartmentalization. Appl Phys Rev. 2021;8(2):1-14. doi: 10.1063/5.0040732
  181. Guimarães CF, Gasperini L, Ribeiro RS, Carvalho AF, Marquesab AP, Reis RL. High-throughput fabrication of cell-laden 3D biomaterial gradients. Mater Horizons. 2020;7(9):2414-2421. doi: 10.1039/D0MH00818D
  182. Lavrentieva A, Fleischhammer T, Enders A, Pirmahboub H, Bahnemann J, Pepelanova I. Fabrication of stiffness gradients of GelMA hydrogels using a 3D printed micromixer. Macromol Biosci. 2020;20(7):e2000107. doi: 10.1002/mabi.202000107
  183. Kuzucu M, Vera G, Beaumont M, et al. Extrusion-based 3D bioprinting of gradients of stiff ness, cell density, and immobilized peptide using thermogelling hydrogels. ACS Biomater Sci Eng. 2021;7:2192-2197. doi: 10.1021/acsbiomaterials.1c00183
  184. Attalla R, Puersten E, Jain N, Selvaganapathy PR. 3D bioprinting of heterogeneous bi- and tri-layered hollow channels within gel scaffolds using scalable multi-axial microfluidic extrusion nozzle. Biofabrication. 2019;11(1):015012. doi: 10.1088/1758-5090/aaf7c7
  185. Beyer ST, Bsoul A, Ahmadi A. 3D alginate constructs for tissue engineering printed using a coaxial flow focusing microfluidic device. In: 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), IEEE. 2013;1206-1209. doi: 10.1109/TRANSDUCERS.2013.6626990
  186. Abelseth E, Abelseth L, De La Vega L, Beyer ST, Wadsworth SJ, Willerth SM. 3D printing of neural tissues derived from human induced pluripotent stem cells using a fibrin-based bioink. ACS Biomater Sci Eng. 2019;5(1):234-243. doi: 10.1021/acsbiomaterials.8b01235
  187. Mirani B, Stefanek E, Godau B, Hossein Dabiri SM, Akbari M. Microfluidic 3D printing of a photo-cross-linkable bioink using insights from computational modeling. ACS Biomater Sci Eng. 2021;7(7):3269-3280. doi: 10.1021/acsbiomaterials.1c00084
  188. Akbari M, Khademhosseini A. Tissue bioprinting for biology and medicine. Cell. 2022;185(15):2644-2648. doi: 10.1016/j.cell.2022.06.015
  189. Beyer ST, Mohamed T, Walus K. A microfluidics based 3D bioprinter with on-the-fly multimaterial switching capability. 17th Int Conf Miniaturized Syst Chem Life Sci MicroTAS. 2013;1(October):176-178.
  190. Perez MR, Sharma R, Masri NZ. 3D bioprinting mesenchymal stem cell-derived neural tissues using a fibrin-based bioink. Biomolecules. 2021;11(1250):1-15. doi: 10.3390/biom11081250
  191. Lee C, Abelseth E, de la Vega L, Willerth SM. Bioprinting a novel glioblastoma tumor model using a fibrin-based bioink for drug screening. Mater Today Chem. 2019;12:78-84. doi: 10.1016/j.mtchem.2018.12.005
  192. Smits IPM, Blaschuk OW, Willerth SM. Novel N-cadherin antagonist causes glioblastoma cell death in a 3D bioprinted co-culture model. Biochem Biophys Res Commun. 2020;529(2):162-168. doi: 10.1016/j.bbrc.2020.06.001
  193. Sharma R, Smits IPM, De La Vega L, Lee C, Willerth SM. 3D bioprinting pluripotent stem cell derived neural tissues using a novel fibrin bioink containing drug releasing microspheres. Front Bioeng Biotechnol. 2020;8(February):1-12. doi: 10.3389/fbioe.2020.00057
  194. Sharma R, Kirsch R, Valente KP, Perez MR, Willerth SM. Physical and mechanical characterization of fibrin-based bioprinted constructs containing drug-releasing microspheres for neural tissue engineering applications. Processes. 2021;9(7):1205. doi: 10.3390/pr9071205
  195. Dickman CTD, Russo V, Thain K, et al. Functional characterization of 3D contractile smooth muscle tissues generated using a unique microfluidic 3D bioprinting technology. FASEB J, 2020;34(1):1652-1664. doi: 10.1096/fj.201901063RR
  196. Addario G, Djudjaj S, Farè S, Boor P, Moroni L, Mota C. Microfluidic bioprinting towards a renal in vitro model. Bioprinting. 2020;20(July):e00108. doi: 10.1016/j.bprint.2020.e00108
  197. Serex L, Bertsch A, Renaud P. Microfluidics: A new layer of control for extrusion-based 3D printing. Micromachines. 2018;9(2):86. doi: 10.3390/mi9020086
  198. Serex L, Sharma K, Rizov V, Bertsch A, McKinney JD, Renaud P. Microfluidic-assisted bioprinting of tissues and organoids at high cell concentrations. Biofabrication. 2021;13(12). doi: 10.1088/1758-5090/abca80
  199. Lee KG, Park KJ, Seok S, et al. 3D printed modules for integrated microfluidic devices. RSC Adv. 2014;4(62): 32876-32880. doi: 10.1039/c4ra05072j
  200. Bhargava KC, Thompson B, Malmstadt N. Discrete elements for 3D microfluidics. Proc Natl Acad Sci USA. 2014;111(42):15013-15018. doi: 10.1073/pnas.1414764111
  201. Vittayarukskul K, Lee AP. A truly Lego®-like modular microfluidics platform. J MicromechMicroeng. 2017; 27(3):35004. doi: 10.1088/1361-6439/aa53ed
  202. Yuen PK. A reconfigurable stick-n-play modular microfluidic system using magnetic interconnects. Lab Chip. 2016;16(19):3700-3707. doi: 10.1039/c6lc00741d
  203. Chae S, Kang E, Khademhosseini A, Lee SH. Micro/ nanometer-scale fiber with highly ordered structures by mimicking the spinning process of silkworm. Adv Mater. 2013;25(22):3071-3078. doi: 10.1002/adma.201300837
  204. Ahn SY, Mun CH, Lee SH. Microfluidic spinning of fibrous alginate carrier having highly enhanced drug loading capability and delayed release profile. RSC Adv. 2015;5:15172-15181. doi: 10.1039/c4ra11438h
  205. Sugimoto M, Kitagawa Y, Yamada M, Yajima Y, Utoha R, Sekia Minoru. Micropassage-embedding composite hydrogel fibers enable quantitative evaluation of cancer cell invasion under 3D coculture conditions. Lab Chip. 2018;18(9):1378-1387. doi: 10.1039/C7LC01280B
  206. Zhou X, Nowicki M, Sun H, et al. 3D bioprinting-tunable small-diameter blood vessels with biomimetic biphasic cell layers. ACS Appl Mater Interfaces. 2020;12(41): 45904-45915. doi: 10.1021/acsami.0c14871
Conflict of interest
The authors declare no conflict of interest.
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing