AccScience Publishing / IJB / Volume 10 / Issue 4 / DOI: 10.36922/ijb.3372
REVIEW

Antibacterial compounds-incorporated functional biomaterials for chronic wound healing application via 3D bioprinting: The mechanism of action

Nur Izzah Md Fadilah1 Nur Aifa Asyhira Khairul Nizam1 Mh Busra Fauzi1,2*
Show Less
1 Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
2 Advance Bioactive Materials-Cells (Adv-BioMaC) UKM Research Group, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
IJB 2024, 10(4), 3372 https://doi.org/10.36922/ijb.3372
Submitted: 7 April 2024 | Accepted: 17 May 2024 | Published: 5 July 2024
(This article belongs to the Special Issue Biomimetic and bioinspired printed structures)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Wounds represent a critical issue in the healthcare industry since they are highly susceptible to infections that in turn lead to more serious complications. With bacterial infections gradually growing to be a challenge to wound healing, fighting bacterial resistance has become one of the important pillars of addressing issues faced by healthcare personnel. Thus, gaining an understanding of the distinct stages of wound healing is vital to further improve relevant therapies incorporating the application of antibacterial compounds. Recently, three-dimensional (3D)-printed functional biomaterials have emerged as an alternative treatment or potential carriers incorporating relevant antibacterial agents, offering a new approach to skin tissue engineering. Novel strategies for skin tissue engineering are grounded in the integration of bioactive ingredients and antibacterial agents into biomaterials with different morphologies to improve cell behaviors and promote wound healing by preventing bacterial colonization. This paper reviews the function of natural and synthetic polymers, effects of antibacterial properties, and cell interactions in terms of the wound healing process. Extensive research has demonstrated that 3D functional biomaterials exert their therapeutic effects through multifaceted pathways, including but not limited to, modulating inflammation, facilitating tissue regeneration, promoting cell proliferation, enhancing angiogenesis, and controlling infection. This review also provides general insights into the elegant design for 3D scaffold and further refinement of wound dressing.

Keywords
Antibacterial properties
Biomaterials
3D printing
Mechanism of action
Wound healing
Funding
This work was funded by the Geran Fundamental Fakulti Perubatan (GFFP), Universiti Kebangsaan Malaysia (Grant Code: FF-2024-007).
References
  1. Stan D, Tanase C, Avram M, et al. Wound healing applications of creams and “smart” hydrogels. Exp Dermatol. 2021;30(9):1218-1232. doi: 10.1111/exd.14396
  2. Wei C, Feng Y, Che D, et al. Biomaterials in skin tissue engineering. Int J Polym Mater Polym Biomater. 2022;71(13):993-1011. doi: 10.1080/00914037.2021.1933977
  3. Oomens CW, van Vijven M, Peters GW. Skin mechanics. In: Payan Y, Ohayon J, eds. Biomechanics of Living Organs. Elsevier; 2017:347-357. doi: 10.1016/B978-0-12-804009-6.00016-X
  4. D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci. 2013;14(6):12222-12248. doi: 10.3390/ijms140612222
  5. Supe S, Takudage P. Methods for evaluating penetration of drug into the skin: a review. Skin Res Technol. 2021;27(3):299-308. doi: 10.1111/srt.12968
  6. Darwin E, Tomic-Canic M. Healing chronic wounds: current challenges and potential solutions. Curr Dermatol Rep. 2018;7:296-302. doi: 10.1007/s13671-018-0239-4
  7. Fadilah NIM, Rahman MBA, Yusof LM, Mustapha NM, Ahmad H. The therapeutic effect and in vivo assessment of Palmitoyl-GDPH on the wound healing process. Pharmaceutics. 2021;13(2):193. doi: 10.3390/pharmaceutics13020193
  8. Md Fadilah NI, Mohd Abdul Kader Jailani MS, Badrul Hisham MAI, et al. Cell secretomes for wound healing and tissue regeneration: next generation acellular based tissue engineered products. J Tissue Eng. 2022;13:20417314221114273. doi: 10.1177/20417314221114273
  9. Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics. 2020;12(8):735. doi: 10.3390/pharmaceutics12080735
  10. Li R, Liu K, Huang X, et al. Bioactive materials promote wound healing through modulation of cell behaviors. Adv Sci. 2022;9(10):2105152. doi: 10.1002/advs.202105152
  11. Han G, Ceilley R. Chronic wound healing: a review of current management and treatments. Adv Ther. 2017;34:599-610. doi: 10.1007/s12325-017-0478-y
  12. Mir M, Ali MN, Barakullah A, et al. Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater. 2018;7:1-21. doi: 10.1007/s40204-018-0083-4
  13. Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019;99(1):665-706. doi: 10.1152/physrev.00067.2017
  14. Sánchez ML, Valdez H, Conde M, Viaña-Mendieta P, Boccaccini AR. Polymers and bioactive compounds with a macrophage modulation effect for the rational design of hydrogels for skin regeneration. Pharmaceutics. 2023;15(6):1655. doi: 10.3390/pharmaceutics15061655
  15. Shao M, Bigham A, Yousefiasl S, et al. Recapitulating antioxidant and antibacterial compounds into a package for tissue regeneration: dual function materials with synergistic effect. Small. 2023;19(19):2207057. doi: 10.1002/smll.202207057
  16. Umur E, Bayrak E, Arslan F, et al. Advances in three dimensional bioprinting for wound healing: a comprehensive review. Appl Sci. 2023;13(18):10269. doi: 10.3390/app131810269
  17. Antezana PE, Municoy S, Álvarez-Echazú MI, et al. The 3D bioprinted scaffolds for wound healing. Pharmaceutics. 2022;14(2):464. doi: 10.3390/pharmaceutics14020464
  18. Jorgensen AM, Gorkun A, Mahajan N, et al. Multicellular bioprinted skin facilitates human-like skin architecture in vivo. Sci Transl Med. 2023;15(716):eadf7547. doi: 10.1126/scitranslmed.adf7547
  19. Masri S, Fadilah NIM, Hao LQ, et al. Multifunctionalised skin substitute of hybrid gelatin-polyvinyl alcohol bioinks for chronic wound: injectable vs. 3D bioprinting. Drug Deliv Transl Res. 2024;14(4):1-23. doi: 10.1007/s13346-023-01447-z
  20. Wan W, Cai F, Huang J, Chen S, Liao Q. A skin-inspired 3D bilayer scaffold enhances granulation tissue formation and anti-infection for diabetic wound healing. J Mater Chem B. 2019;7(18):2954-2961. doi: 10.1039/C8TB03341B
  21. Tabriz AG, Douroumis D. Recent advances in 3D printing for wound healing: a systematic review. J Drug Deliv Sci Technol. 2022;74:103564. doi: 10.1016/j.jddst.2022.103564
  22. O’brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88-95. doi: 10.1016/S1369-7021(11)70058-X
  23. Kruse CR, Nuutila K, Lee CC, et al. The external microenvironment of healing skin wounds. Wound Repair Regen. 2015;23(4):456-464. doi: 10.1111/wrr.12303
  24. Wang Y, Chen G, Zhang H, Zhao C, Sun L, Zhao Y. Emerging functional biomaterials as medical patches. ACS Nano. 2021;15(4):5977-6007. doi: 10.1021/acsnano.0c10724
  25. Uchida DT, Bruschi ML. 3D printing as a technological strategy for the personalized treatment of wound healing. AAPS PharmSciTech. 2023;24(1):41. doi: 10.1208/s12249-023-02503-0
  26. Fadilah NIM, Riha SM, Mazlan Z, et al. Functionalised-biomatrix for wound healing and cutaneous regeneration: future impactful medical products in clinical translation and precision medicine. Front Bioeng Biotechnol. 2023;11:1160577. doi: 10.3389/fbioe.2023.1160577
  27. Agarwal T, Costantini M, Maiti TK. Extrusion 3D printing with Pectin-based ink formulations: recent trends in tissue engineering and food manufacturing. Biomed Eng Adv. 2021;2:100018. doi: 10.1016/j.bea.2021.100018
  28. Fadilah NIM, Phang SJ, Kamaruzaman N, et al. Antioxidant biomaterials in cutaneous wound healing and tissue regeneration: a critical review. Antioxidants. 2023;12(4):787. doi: 10.3390/antiox12040787
  29. Guo L, Liang Z, Yang L, et al. The role of natural polymers in bone tissue engineering. J Control Release. 2021;338: 571-82. doi: 10.1016/j.jconrel.2021.08.055
  30. Fadilah NIM, Maarof M, Motta A, Tabata Y, Fauzi MB. The discovery and development of natural-based biomaterials with demonstrated wound healing properties: a reliable approach in clinical trials. Biomedicines. 2022;10(9):2226. doi: 10.3390/biomedicines10092226
  31. Khoeini R, Nosrati H, Akbarzadeh A, et al. Natural and synthetic bioinks for 3D bioprinting. Adv NanoBiomed Res. 2021;1(8):2000097. doi: 10.1002/anbr.202000097
  32. Gobi R, Ravichandiran P, Babu RS, Yoo DJ. Biopolymer and synthetic polymer-based nanocomposites in wound dressing applications: a review. Polymers (Basel). 2021;13(12):1962. doi: 10.3390/polym13121962
  33. Shah SA, Sohail M, Khan S, et al. Biopolymer-based biomaterials for accelerated diabetic wound healing: a critical review. Int J Biol Macromol. 2019;139:975-993. doi: 10.1016/j.ijbiomac.2019.08.007
  34. Hacker MC, Krieghoff J, Mikos AG. Chapter 33 - synthetic polymers. In: Atala A, Lanza R, Mikos AG, Nerem R, eds. Principles of Regenerative Medicine. 3rd ed. Boston: Academic Press; 2019:559-590. doi: 10.21741/9781644901892-1
  35. Mogoşanu GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharm. 2014;463(2):127-136. doi: 10.1016/j.ijpharm.2013.12.015
  36. Chen L, Song X, Xing F, et al. A review on antimicrobial coatings for biomaterial implants and medical devices. J Biomed Nanotechnol. 2020;16(6):789-809. doi: 10.1116/jbn.2020.2942
  37. Pang Q, Jiang Z, Wu K, Hou R, Zhu Y. Nanomaterials-based wound dressing for advanced management of infected wound. Antibiotics. 2023;12(2):351-382.
  38. Almaguer-Flores A, Silva-Bermúdez P, Rodil SE. 4 - Nanostructured biomaterials with antimicrobial activity for tissue engineering. In: Guarino V, Iafisco M, Spriano S, eds. Nanostructured Biomaterials for Regenerative Medicine. Woodhead Publishing; 2020:81-137. doi: 10.1016/B978-0-08-102594-9.00004-8
  39. Fadilah NIM, Isa ILM, Zaman WSWK, Tabata Y, Fauzi MB. The effect of nanoparticle-incorporated natural-based biomaterials towards cells on activated pathways: a systematic review. Polymers. 2022;14(3):476. doi: 10.3390/polym14030476
  40. Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018;4(3):482-501. doi: 10.3934/microbiol.2018.3.482
  41. Zhu J, Jiang G, Song G, et al. Incorporation of ZnO/bioactive glass nanoparticles into alginate/chitosan composite hydrogels for wound closure. ACS Appl Bio Mater. 2019;2(11):5042-5052. doi: 10.1021/acsabm.9b00727
  42. Liang Y, Liang Y, Zhang H, Guo B. Antibacterial biomaterials for skin wound dressing. Asian J Pharm Sci. 2022;17(3): 353-384. doi: 10.1016/j.ajps.2022.01.001
  43. Ahmed W, Zhai Z, Gao C. Adaptive antibacterial biomaterial surfaces and their applications. Mater Today Bio. 2019;2:100017. doi: 10.1016/j.mtbio.2019.100017
  44. Agarwal R, García AJ. Chapter 37 - surface modification of biomaterials. In: Atala A, Lanza R, Mikos AG, Nerem R, eds. Principles of Regenerative Medicine, 3rd ed. Boston: Academic Press; 2019:651-660. doi: 10.1016/B978-0-12-381422-7.10036-7
  45. Nouri A, Rohani Shirvan A, Li Y, Wen C. Surface modification of additively manufactured metallic biomaterials with active antipathogenic properties. Smart Mater Manuf. 2023;1:100001. doi: 10.1016/j.smmf.2022.100001
  46. Klojdová I, Milota T, Smetanová J, Stathopoulos C. Encapsulation: a strategy to deliver therapeutics and bioactive compounds? Pharmaceuticals (Basel). 2023; 16(3):362. doi: 10.3390/ph16030362
  47. Drobota M, Ursache S, Aflori M. Surface functionalities of polymers for biomaterial applications. Polymers (Basel). 2022;14(12):2307. doi: 10.3390/polym14122307
  48. Uberoi A, McCready-Vangi A, Grice EA. The wound microbiota: microbial mechanisms of impaired wound healing and infection. Nat Rev Microbiol. 2024. doi: 10.1038/s41579-024-01035-z
  49. Sachdeva C, Satyamoorthy K, Murali TS. Microbial interplay in skin and chronic wounds. Curr Clin Microbiol Rep. 2022;9(3):21-31. doi: 10.1007/s40588-022-00180-4
  50. Maheswary T, Nurul AA, Fauzi MB. The insights of microbes’ roles in wound healing: a comprehensive review. Pharmaceutics. 2021;13(7):981. doi: 10.3390/pharmaceutics13070981
  51. Chiller K, Selkin BA, Murakawa GJ. Skin microflora and bacterial infections of the skin. J Investig Dermatol Symp Proc. 2001;6(3):170-174. doi: 10.1046/j.0022-202x.2001.00043.x
  52. Cavallo I, Sivori F, Mastrofrancesco A, et al. Bacterial biofilm in chronic wounds and possible therapeutic approaches. Biology. 2024;13(2):109. doi: 10.3390/biology13020109
  53. Latif A, Shehzad A, Niazi S, et al. Probiotics: mechanism of action, health benefits and their application in food industries. Front Microbiol. 2023;14:1216674. doi: 10.3389/fmicb.2023.1216674
  54. Jørgensen AB, Jonsson I, Friis-Hansen L, Brandstrup B. Collagenase-producing bacteria are common in anastomotic leakage after colorectal surgery: a systematic review. Int J Colorectal Dis. 2023;38(1):275. doi: 10.1007/s00384-023-04562-y
  55. Puca V, Marulli RZ, Grande R, et al. Microbial species isolated from infected wounds and antimicrobial resistance analysis: data emerging from a three-years retrospective study. Antibiotics (Basel). 2021;10(10):1162. doi: 10.3390/antibiotics10101162
  56. Rolsma S, Frank DW, Barbieri JT. 5 - Pseudomonas aeruginosa toxins. In: Alouf J, Ladant D, Popoff MR, eds. The Comprehensive Sourcebook of Bacterial Protein Toxins. 4th ed. Boston: Academic Press; 2015:133-160. doi: 10.1007/978-1-4939-0473-0_14
  57. Alshehri D, Saadah O, Mosli M, Edris S, Alhindi R, Bahieldin A. Dysbiosis of gut microbiota in inflammatory bowel disease: current therapies and potential for microbiota-modulating therapeutic approaches. Bosn J Basic Med Sci. 2021;21(3):270-283. doi: 10.17305/bjbms.2020.5016
  58. Mandal MD, Mandal S. Honey: its medicinal property and antibacterial activity. Asian Pac J Trop Biomed. 2011;1(2): 154-160. doi: 10.1016/s2221-1691(11)60016-6
  59. Almasaudi S. The antibacterial activities of honey. Saudi J Biol Sci. 2021;28(4):2188-2196. doi: 10.1016/j.sjbs.2020.10.017
  60. Tashkandi H. Honey in wound healing: an updated review. Open Life Sci. 2021;16(1):1091-1100. doi: 10.1515/biol-2021-0084
  61. Gardikiotis I, Cojocaru FD, Mihai CT, Balan V, Dodi G. Borrowing the features of biopolymers for emerging wound healing dressings: a review. Int J Mol Sci. 2022;23(15):8778. doi: 10.3390/ijms23158778
  62. Boniakowski AE, Kimball AS, Jacobs BN, Kunkel SL, Gallagher KA. Macrophage-mediated inflammation in normal and diabetic wound healing. J Immunol. 2017;199(1):17-24. doi: 10.4049/jimmunol.1700223
  63. Martin P, Leibovich SJ. Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol. 2005;15(11):599-607. doi: 10.1016/j.tcb.2005.09.002
  64. Lohmann N, Schirmer L, Atallah P, et al. Glycosaminoglycan-based hydrogels capture inflammatory chemokines and rescue defective wound healing in mice. Sci Transl Med. 2017;9(386):eaai9044. doi: 10.1126/scitranslmed.aai9044
  65. Liu Q, Huang Y, Lan Y, et al. Acceleration of skin regeneration in full‐thickness burns by incorporation of bFGF‐loaded alginate microspheres into a CMCS–PVA hydrogel. J Tissue Eng Regen Med. 2017;11(5):1562-1573. doi: 10.1002/term.2057
  66. Gull N, Khan SM, Butt OM, et al. Inflammation targeted chitosan-based hydrogel for controlled release of diclofenac sodium. Int J Biol Macromol. 2020;162:175-187. doi: 10.1002/term.2057
  67. Carrejo NC, Moore AN, Lopez Silva TL, et al. Multidomain peptide hydrogel accelerates healing of full-thickness wounds in diabetic mice. ACS Biomater Sci Eng. 2018;4(4):1386-1396. doi: 10.1021/acsbiomaterials.8b00031
  68. Oryan A, Alemzadeh E, Mohammadi AA, Moshiri A. Healing potential of injectable Aloe vera hydrogel loaded by adipose-derived stem cell in skin tissue-engineering in a rat burn wound model. Cell Tissue Res. 2019;377:215-227. doi: 10.1007/s00441-019-03015-9
  69. La Monica F, Campora S, Ghersi G. Collagen-based scaffolds for chronic skin wound treatment. Gels. 2024;10(2):137. doi: 10.3390/gels10020137
  70. Sankar S, Kodiveri Muthukaliannan G. Deciphering the crosstalk between inflammation and biofilm in chronic wound healing: phytocompounds loaded bionanomaterials as therapeutics. Saudi J Biol Sci. 2024;31(4):103963. doi: 10.1016/j.sjbs.2024.103963
  71. Guo B, Ma PX. Conducting polymers for tissue engineering. Biomacromolecules. 2018;19(6):1764-1782. doi: 10.1021/acs.biomac.8b00276
  72. Ghorbani M, Nezhad-Mokhtari P, Ramazani S. Aloe vera-loaded nanofibrous scaffold based on Zein/ Polycaprolactone/Collagen for wound healing. Int J Biol Macromol. 2020;153:921-930. doi: 10.1016/j.ijbiomac.2020.03.036
  73. Zhang Z, Li Z, Li Y, et al. Sodium alginate/collagen hydrogel loaded with human umbilical cord mesenchymal stem cells promotes wound healing and skin remodeling. Cell Tissue Res. 2021;383(2):809-821. doi: 10.1007/s00441-020-03321-7
  74. Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4(1):22. doi: 10.1038/s41536-019-0083-6
  75. Kim K-O, Lee Y, Hwang J-W, et al. Wound healing properties of a 3-D scaffold comprising soluble silkworm gland hydrolysate and human collagen. Colloids Surf B Biointerfaces. 2014;116:318-326. doi: 10.1016/j.colsurfb.2013.12.004
  76. Liu Y, Liu X, Guo H, et al. 3D bioprinting bioglass to construct vascularized full-thickness skin substitutes for wound healing. Materials Today Bio. 2024;24:100899. doi: 10.1016/j.mtbio.2023.100899
  77. Chang M, Guo F, Zhou Z, et al. HBP induces the expression of monocyte chemoattractant protein-1 via the FAK/ PI3K/AKT and p38 MAPK/NF-κB pathways in vascular endothelial cells. Cell Signal. 2018;43:85-94. doi: 10.1016/j.cellsig.2017.12.008
  78. Patenall BL, Carter KA, Ramsey MR. Kick-starting wound healing: a review of pro-healing drugs. Int J Mol Sci. 2024;25(2):1304. doi: 10.3390/ijms25021304
  79. Hu P, Chiarini A, Wu J, et al. Exosomes of adult human fibroblasts cultured on 3D silk fibroin nonwovens intensely stimulate neoangiogenesis. Burns Trauma. 2021;9:tkab003. doi: 10.1093/burnst/tkab003
  80. Shi Z, Yao C, Shui Y, Li S, Yan H. Research progress on the mechanism of angiogenesis in wound repair and regeneration. Front Physiol. 2023;14:1284981. doi: 10.3389/fphys.2023.1284981
  81. Jana S, Datta P, Das H, et al. Copper and cobalt doped bioactive glass-fish dermal collagen electrospun mat triggers key events of diabetic wound healing in full-thickness skin defect model. J Mech Behav Biomed Mater. 2022;134:105414. doi: 10.1016/j.jmbbm.2022.105414
  82. Tan Q, Chen B, Yan X, et al. Promotion of diabetic wound healing by collagen scaffold with collagen-binding vascular endothelial growth factor in a diabetic rat model. J Tissue Eng Regen Med. 2014;8(3):195-201. doi: 10.1002/term.1513
  83. Long G, Liu D, He X, et al. A dual functional collagen scaffold coordinates angiogenesis and inflammation for diabetic wound healing. Biomater Sci. 2020;8(22):6337-6349. doi: 10.1039/D0BM00999G
  84. Edwards R, Harding KG. Bacteria and wound healing. Curr Opin Infect Dis. 2004;17(2):91-96. doi: 10.1097/00001432-200404000-00004
  85. Bowler PG. The 10(5) bacterial growth guideline: reassessing its clinical relevance in wound healing. Ostomy Wound Manage. 2003;49(1):44-53.
  86. Blackburn J, Kopecki Z, Ousey KJ. Skin integrity, antimicrobial stewardship and infection control: a critical review of current best practice. Wound Pract Res. 2024;32(1):34-43. doi: 10.33235/wpr.32.1.34-43
  87. Gardner SE, Frantz RA, Doebbeling BN. The validity of the clinical signs and symptoms used to identify localized chronic wound infection. Wound Repair Regen. 2001;9(3):178-186. doi: 10.1046/j.1524-475x.2001.00178.x.
  88. Salleh A, Naomi R, Utami ND, et al. The potential of silver nanoparticles for antiviral and antibacterial applications: a mechanism of action. Nanomaterials (Basel). 2020;10(8):1566. doi: 10.3390/nano10081566
  89. Rybka M, Mazurek Ł, Konop M. Beneficial effect of wound dressings containing silver and silver nanoparticles in wound healing-from experimental studies to clinical practice. Life (Basel). 2022;13(1):69. doi: 10.3390/life13010069
  90. Fadilah NIM, Ahmat N, Hao LQ, et al. Biological safety assessments of high-purified ovine collagen type i biomatrix for future therapeutic product: International Organisation for Standardisation (ISO) and Good Laboratory Practice (GLP) Settings. Polymers (Basel). 2023;15(11):2436. doi: 10.3390/polym15112436
  91. Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009;78:929-958. doi: 10.1146/annurev.biochem.77.032207.120833
  92. Baltazar T, Merola J, Catarino C, et al. Three dimensional bioprinting of a vascularized and perfusable skin graft using human keratinocytes, fibroblasts, pericytes, and endothelial cells. Tissue Eng Part A. 2020;26(5–6):227-238. doi: 10.1089/ten.tea.2019.0201
  93. Haruna K, Obot I, Ankah N, Sorour A, Saleh T. Gelatin: a green corrosion inhibitor for carbon steel in oil well acidizing environment. J Mol Liquids. 2018;264:515-525. doi: 10.1016/j.molliq.2018.05.058
  94. Masri S, Maarof M, Abd Aziz I, Idrus R, Fauzi MB. Performance of hybrid gelatin-PVA bioinks integrated with genipin through extrusion-based 3D bioprinting: an in vitro evaluation using human dermal fibroblasts. Int J Bioprint. 2023;9(3):677. doi: 10.18063/ijb.677
  95. Mourya V, Inamdar NN. Chitosan-modifications and applications: opportunities galore. React Funct Polym. 2008;68(6):1013-1051. doi: 10.1016/j.reactfunctpolym.2008.03.002
  96. Aranaz I, Alcántara AR, Civera MC, et al. Chitosan: an overview of its properties and applications. Polymers (Basel). 2021;13(19):56. doi: 10.3390/polym13193256
  97. Intini C, Elviri L, Cabral J, et al. 3D-printed chitosan-based scaffolds: an in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats. Carbohydr Polym. 2018;199:593-602. doi: 10.1016/j.carbpol.2018.07.057
  98. Gupta RC, Lall R, Srivastava A, Sinha A. Hyaluronic acid: molecular mechanisms and therapeutic trajectory. Front Vet Sci. 2019;6:192. doi: 10.3389/fvets.2019.00192
  99. Snetkov P, Zakharova K, Morozkina S, Olekhnovich R, Uspenskaya M. Hyaluronic acid: the influence of molecular weight on structural, physical, physico-chemical, and degradable properties of biopolymer. Polymers (Basel). 2020;12(8):1800. doi: 10.3390/polym12081800
  100. Später T, Mariyanats AO, Syachina MA, et al. In vitro and in vivo analysis of adhesive, anti-inflammatory, and proangiogenic properties of novel 3D printed hyaluronic acid glycidyl methacrylate hydrogel scaffolds for tissue engineering. ACS Biomater Sci Eng. 2020;6(10):5744-5757. doi: 10.1021/acsbiomaterials.0c00741
  101. Fernando IPS, Lee W, Han EJ, Ahn G. Alginate-based nanomaterials: fabrication techniques, properties, and applications. Chem Eng J. 2020;391:123823. doi: 10.1016/j.cej.2019.123823
  102. Li Y, Xu Z, Wang J, Pei X, Chen J, Wan Q. Alginate-based biomaterial-mediated regulation of macrophages in bone tissue engineering. Int J Biol Macromol. 2023:230;123246. doi: 10.1016/j.ijbiomac.2023.123246
  103. Fayyazbakhsh F, Khayat MJ, Leu MC. 3D-printed gelatin-alginate hydrogel dressings for burn wound healing: a comprehensive study. Int J Bioprint. 2022;8(4):618. doi: 10.18063/ijb.v8i4.618
  104. Dai H, Huang Y, Huang H. Eco-friendly polyvinyl alcohol/ carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydr Polym. 2018;185:1-11. doi: 10.1016/j.carbpol.2017.12.073
  105. Karimi A, Navidbakhsh M. Mechanical properties of PVA material for tissue engineering applications. Mater Technol. 2014;29(2):90-100. doi: 10.1179/1753555713Y.0000000115
  106. Harmanci S, Dutta A, Cesur S, et al. Production of 3D printed bi-layer and tri-layer sandwich scaffolds with polycaprolactone and poly (vinyl alcohol)-metformin towards diabetic wound healing. Polymers. 2022;14(23):5306. doi: 10.3390/polym14235306
  107. Casalini T, Rossi F, Castrovinci A, Perale G. A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front Bioeng Biotechnol. 2019;7:259. doi: 10.3389/fbioe.2019.00259
  108. Ranakoti L, Gangil B, Mishra SK, et al. Critical review on polylactic acid: properties, structure, processing, biocomposites, and nanocomposites. Materials (Basel). 2022;15(12):4312. doi: 10.3390/ma15124312
  109. Domínguez-Robles J, Martin NK, Fong ML, et al. Antioxidant PLA composites containing lignin for 3d printing applications: a potential material for healthcare applications. Pharmaceutics. 2019;11(4):165. doi: 10.3390/pharmaceutics11040165
  110. Rahmani S, Maroufkhani M, Mohammadzadeh-Komuleh S, Khoubi-Arani Z. Chapter 7 - Polymer nanocomposites for biomedical applications. In: Barhoum A, Jeevanandam J, Danquah MK, eds. Fundamentals of Bionanomaterials. Elsevier; 2022:175-215. doi: 10.1016/B978-0-12-824147-9.00007-8
  111. Hillier K. Polyethylene glycol. In: Enna SJ, Bylund DB, eds. xPharm: The Comprehensive Pharmacology Reference. New York: Elsevier; 2007:1-3.
  112. Ilhan E, Cesur S, Guler E, et al. Development of Satureja cuneifolia-loaded sodium alginate/polyethylene glycol scaffolds produced by 3D-printing technology as a diabetic wound dressing material. Int J Biol Macromol. 2020;161:1040-1054. doi: 10.1016/j.ijbiomac.2020.06.086
  113. Sharma S, Parmar A, Kori S, Sandhir R. PLGA-based nanoparticles: a new paradigm in biomedical applications. TrAC Trends Anal Chem. 2016;80:30-40. doi: 10.1016/j.trac.2015.06.014
  114. Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S. PLGA: a unique polymer for drug delivery. Ther Deliv. 2015;6(1):41-58. doi: 10.4155/tde.14.91
  115. Teo YC, Abbas A, Park EJ, et al. 3D printed bioactive PLGA dermal scaffold for burn wound treatment. ACS Mater Au. 2023;3(3):265-272. doi: 10.1021/acsmaterialsau.2c00079
  116. Hajiali F, Tajbakhsh S, Shojaei A. Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a review. Polymer Rev. 2018;58(1):164-207. doi: 10.1080/15583724.2017.1332640
  117. Guarino V, Gentile G, Sorrentino L, Ambrosio L. Polycaprolactone: synthesis, properties, and applications. In: Encyclopedia of Polymer Science and Technology. Hoboken, New Jersey, US: Wiley; 2002:1-36. doi: 10.1002/0471440264.pst658
  118. Domínguez-Robles J, Cuartas-Gómez E, Dynes S, et al. Poly(caprolactone)/lignin-based 3D-printed dressings loaded with a novel combination of bioactive agents for wound-healing applications. Sustain Mater Technol. 2023;35:e00581. doi: 10.1016/j.susmat.2023.e00581
  119. Afghah F, Ullah M, Seyyed Monfared Zanjani J, et al. 3D printing of silver-doped polycaprolactone-poly(propylene succinate) composite scaffolds for skin tissue engineering. Biomed Mater. 2020;15(3):035015. doi: 10.1088/1748-605X/ab7417
  120. Fang Z, Lin T, Fan S, et al. Antibacterial, injectable, and adhesive hydrogel promotes skin healing. Front Bioeng Biotechnol. 2023;11:1180073. doi: 10.3389/fbioe.2023.1180073
  121. Hu B, Berkey C, Feliciano T, et al. Thermal-disrupting interface mitigates intercellular cohesion loss for accurate topical antibacterial therapy. Adv Mater. 2020;32(12):e1907030. doi: 10.1002/adma.201907030
  122. Wei S, Xu P, Yao Z, et al. A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes. Acta Biomater. 2021;124:205-218. doi: 10.1016/j.actbio.2021.01.046
  123. Zhao X, Pei D, Yang Y, et al. Green tea derivative driven smart hydrogels with desired functions for chronic diabetic wound treatment. Adv Funct Mater. 2021;31(18):2009442. doi: 10.1002/adfm.202009442
  124. Tang X, Chen X, Zhang S, et al. Silk-inspired in situ hydrogel with anti-tumor immunity enhanced photodynamic therapy for melanoma and infected wound healing. Adv Funct Mater. 2021;31(17):2101320. doi: 10.1002/adfm.202101320
  125. Liang Y, Li Z, Huang Y, Yu R, Guo B. Dual-dynamic-bond cross-linked antibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing. ACS Nano. 2021;15(4):7078-7093. doi: 10.1021/acsnano.1c00204
  126. Yang Z, Huang R, Zheng B, et al. Highly stretchable, adhesive, biocompatible, and antibacterial hydrogel dressings for wound healing. Adv Sci. 2021;8(8):2003627. doi: 10.1002/advs.202003627
  127. Wang L, Zhang X, Yang K, et al. A novel double-crosslinking-double-network design for injectable hydrogels with enhanced tissue adhesion and antibacterial capability for wound treatment. Adv Funct Mater. 2020;30(1):1904156. doi: 10.1002/adfm.201904156
  128. Mai B, Jia M, Liu S, et al. Smart hydrogel-based DVDMS/ bFGF nanohybrids for antibacterial phototherapy with multiple damaging sites and accelerated wound healing. ACS Appl Mater Interfaces. 2020;12(9):10156-10169. doi: 10.1021/acsami.0c00298
  129. Deng H, Yu Z, Chen S, et al. Facile and eco-friendly fabrication of polysaccharides-based nanocomposite hydrogel for photothermal treatment of wound infection. Carbohydr Polym. 2020;230:115565. doi: 10.1016/j.carbpol.2019.115565
  130. Yao X, Zhu G, Zhu P, et al. Omniphobic ZIF-8@hydrogel membrane by microfluidic-emulsion-templating method for wound healing. Adv Funct Mater. 2020;30(13):1909389. doi: 10.1002/adfm.201909389
  131. Yu N, Wang X, Qiu L, et al. Bacteria-triggered hyaluronan/ AgNPs/gentamicin nanocarrier for synergistic bacteria disinfection and wound healing application. Chem Eng J. 2020;380:122582. doi: 10.1016/j.cej.2019.122582
  132. Qiu Y, Wang Q, Chen Y, Xia S, Huang W, Wei Q. A novel multilayer composite membrane for wound healing in mice skin defect model. Polymers. 2020;12(3):573. doi: 10.3390/polym12030573.
  133. Schuhladen K, Mukoo P, Liverani L, Neščáková Z, Boccaccini AR. Manuka honey and bioactive glass impart methylcellulose foams with antibacterial effects for wound-healing applications. Biomed Mater. 2020;15(6):065002. doi: 10.1088/1748-605X/ab87e5

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing