AccScience Publishing / IJB / Volume 10 / Issue 4 / DOI: 10.36922/ijb.3497
REVIEW

Advancements in bioprinting for the treatment of hearing loss: A review

Yanyan Ding1 Qin Liu1 Jinwu Chen2 Hua Cai1 Yue Qiu1 Ming Li1 Le Xie1 Zhenyu Zhao3* Ying Xiao1*
Show Less
1 Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
2 Department of Trauma Surgery, CR & WISCO General Hospital, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
3 Department of Electrical and Computer Engineering, Faculty of Engineering, National University of Singapore, Singapore
IJB 2024, 10(4), 3497 https://doi.org/10.36922/ijb.3497
Submitted: 24 April 2024 | Accepted: 23 May 2024 | Published: 4 July 2024
© 2024 by the Author(s).. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Hearing loss is a prevalent worldwide health concern, characterized by structural or functional abnormalities in any part of the ear resulting in varying degrees of auditory dysfunction. Despite significant progress, there exists a notable deficiency in reliable and safe therapeutic interventions for addressing hearing loss. Bioprinting, a novel method in the realm of advanced tissue engineering, exhibits significant potential in addressing ear-related ailments. This technology provides a wide range of repair mechanisms specifically designed to address the distinct anatomical and functional requirements of the outer ear, middle ear, and inner ear, potentially leading to advancements in the treatment of different types of hearing loss. Furthermore, bioprinting holds promise for producing tissue constructs that are both anatomically accurate and functionally suitable, potentially revolutionizing the current treatment landscape. Nevertheless, thorough research and development efforts are necessary to fully harness the capabilities of bioprinting and establish it as a widely accepted treatment option for hearing loss.

Keywords
Bioprinting; Hearing Loss
Regenerative medicine
Funding
This work was supported by grants from the National Natural Science Foundation of China (Nos. 82201300, 82201301, 82301324), the Joint Fund of Hubei Provincial Health and Family Planning Commission (WJ2018H0110), the Science Foundation of Union Hospital (2021XHYN113), and the National University of Singapore.
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Deafness and Hearing Loss; 2024. https://www.who.int/news-room/fact-sheets/detail/ deafness-and-hearing-loss.
  2. Cunningham LL, Tucci DL. Hearing loss in adults. N Engl J Med. 2017;377:2465-2473. doi: 10.1056/NEJMra1616601
  3. Nieman CL, Oh ES. Hearing loss. Ann Intern Med. 2020;173:ITC81-ITC96. doi: 10.7326/AITC202012010
  4. Zoccali F, Colizza A, Cialente F, et al. 3D printing in otolaryngology surgery: descriptive review of literature to define the state of the art. Healthcare (Basel). 2022; 11(1):108. doi: 10.3390/healthcare11010108
  5. Smith RJ, Bale JF, Jr., White KR. Sensorineural hearing loss in children. Lancet. 2005;365:879-890. doi: 10.1016/S0140-6736(05)71047-3
  6. Augustine R. Skin bioprinting: a novel approach for creating artificial skin from synthetic and natural building blocks. Prog Biomater. 2018;7:77-92. doi: 10.1007/s40204-018-0087-0
  7. Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev. 2018;132: 296-332. doi: 10.1016/j.addr.2018.07.004
  8. Carou-Senra P, Rodríguez-Pombo L, Awad A, Basit AW, Alvarez-Lorenzo C, Goyanes A. Inkjet printing of pharmaceuticals. Adv Mater. 2024;36:e2309164. doi: 10.1002/adma.202309164
  9. Ostrovidov S, Salehi S, Costantini M, et al. 3D bioprinting in skeletal muscle tissue engineering. Small. 2019;15(24):e1805530. doi: 10.1002/smll.201805530
  10. Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/ organ regenerative engineering. Biomaterials. 2020; 226:119536. doi: 10.1016/j.biomaterials.2019.119536
  11. Chartrain NA, Williams CB, Whittington AR. A review on fabricating tissue scaffolds using vat photopolymerization. Acta Biomater. 2018;74:90-111. doi: 10.1016/j.actbio.2018.05.010
  12. Bezek LB, Chatham CA, Dillard DA, Williams CB. Mechanical properties of tissue-mimicking composites formed by material jetting additive manufacturing. J Mech Behav Biomed Mater. 2022;125:104938. doi: 10.1016/j.jmbbm.2021.104938
  13. Ng WL, Shkolnikov V. Optimizing cell deposition for inkjet-based bioprinting. Int J Bioprint. 2024;10(2):2135. doi: 10.36922/ijb.2135
  14. Boularaoui S, Al Hussein G, Khan KA. An overview of extrusion-based bioprinting with a focus on induced shear stress and its effect on cell viability. Bioprinting. 2020;20(24):20e00093/1-e00093/17. doi: 10.1016/j.bprint.2020.e00093
  15. Boularaoui S, Shanti A, Khan KA. Harnessing shear stress preconditioning to improve cell viability in 3D post-printed biostructures using extrusion bioprinting. Bioprinting. 2022;25:e00184/1-e00184/9. doi: 10.1016/j.bprint.2021.e00184
  16. Ng WL, Huang X, Shkolnikov V, Goh GL, Suntornnond R, Yeong WY. Controlling droplet impact velocity and droplet volume: key factors to achieving high cell viability in sub-nanoliter droplet-based bioprinting. Int J Bioprint. 2021;8(1):424. doi: 10.18063/ijb.v8i1.424
  17. Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater. 2013;9(9):8037-8045. doi: 10.1016/j.actbio.2013.06.014
  18. Suntornnond R, Ng WL, Huang X, Yeow CHE, Yeong WY. Improving printability of hydrogel-based bio-inks for thermal inkjet bioprinting applications via saponification and heat treatment processes. J Mater Chem B. 2022;10: 5989-6000. doi: 10.1039/d2tb00442a
  19. Ng WL, May WYY, Naing W. Society for Biomaterials Annual Meeting and Exposition 2017: Where Materials Become Medicine: Society for Biomaterials 40th Annual Meeting and Exposition, vol. 627. Minneapolis, MN, USA: Society for Biomaterials; 2017.
  20. Ng WL, Yeong WY, Naing MW. Polyvinylpyrrolidone-based bio-ink improves cell viability and homogeneity during drop-on-demand printing. Materials (Basel). 2017;10(2):190. doi: 10.3390/ma10020190
  21. Ng WL, Huang X, Shkolnikov V, et al. Polyvinylpyrrolidone-based bioink: influence of bioink properties on printing performance and cell proliferation during inkjet-based bioprinting. Bio-des Manuf. 2023;6(2):676-690. doi: 10.1007/s42242-023-00245-3
  22. Zhuang P, Ng WL, An J, Chua CK, Tan LP. Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications. PLoS One. 2019;14:e0216776. doi: 10.1371/journal.pone.0216776
  23. Ng WL, Goh MH, Yeong WY, Naing MW. Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs. Biomater Sci. 2018;6:562-574. doi: 10.1039/c7bm01015j
  24. Fedorovich NE, Haverslag RT, Dhert WJ, Alblas J. The role of endothelial progenitor cells in prevascularized bone tissue engineering: development of heterogeneous constructs. Tissue Eng Part A. 2010;16(7):2355-2367. doi: 10.1089/ten.TEA.2009.0603
  25. Mao, Q, Wang Y, Li Y, et al. Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting. Mater Sci Eng C Mater Biol Appl. 2020; 109:110625. doi: 10.1016/j.msec.2020.110625
  26. Leberfinger AN, Ravnic DJ, Dhawan A, Ozbolat IT. Concise review: bioprinting of stem cells for transplantable tissue fabrication. Stem Cells Transl Med. 2017;6(10):1940-1948. doi: 10.1002/sctm.17-0148
  27. Sekar MP, Budharaju H, Zennifer A, et al. Current standards and ethical landscape of engineered tissues-3D bioprinting perspective. J Tissue Eng. 2021;12:20417314211027677. doi: 10.1177/20417314211027677
  28. Tashman JW, Shiwarski DJ, Feinberg AW. Development of a high-performance open-source 3D bioprinter. Sci Rep. 2022;12:22652. doi: 10.1038/s41598-022-26809-4
  29. Jeon B, Lee C, Kim M, Choi TH, Kim S, Kim S. Fabrication of three-dimensional scan-to-print ear model for microtia reconstruction. J Surg Res. 2016;206:490-497. doi: 10.1016/j.jss.2016.08.004
  30. Joo OY, Kim TH, Kim YS, et al. Fabrication of 3D-printed implant for two-stage ear reconstruction surgery and its clinical application. Yonsei Med J. 2023;64:291-296. doi: 10.3349/ymj.2022.0547
  31. Andrews J, Kopacz AA, Hohman MH. Ear microtia. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
  32. Romano JJ, Iliff NT, Manson PN. Use of Medpor porous polyethylene implants in 140 patients with facial fractures. J Craniofac Surg. 1993;4(3):142-147. doi: 10.1097/00001665-199307000-00007
  33. Ma Y, Lloyd MS. Systematic review of Medpor versus autologous ear reconstruction. J Craniofac Surg. 2022;33(2):602-606. doi: 10.1097/SCS.0000000000008130
  34. Zielinska D, Fisch P, Moehrlen U, et al. Combining bioengineered human skin with bioprinted cartilage for ear reconstruction. Sci Adv. 2023;9(40):eadh1890. doi: 10.1126/sciadv.adh1890
  35. Wang X, Neu CP, Pierce DM. Advances toward multiscale computational models of cartilage mechanics and mechanobiology. Curr Opin Biomed Eng. 2019;11:51-57.
  36. Xie, X, Wu S, Mou S, et al. Microtissue-based bioink as a chondrocyte microshelter for DLP bioprinting. Adv Healthc Mater. 2022;11(22):e2201877. doi: 10.1002/adhm.202201877
  37. Hirano N, Kusuhara H, Sueyoshi Y, et al. Ethanol treatment of nanoPGA/PCL composite scaffolds enhances human chondrocyte development in the cellular microenvironment of tissue-engineered auricle constructs. PLoS One. 2021;16(7):e0253149. doi: 10.1371/journal.pone.0253149
  38. He A, Xia H, Xiao K, et al. Cell yield, chondrogenic potential, and regenerated cartilage type of chondrocytes derived from ear, nasoseptal, and costal cartilage. J Tissue Eng Regen Med. 2018;12(4):1123-1132. doi: 10.1002/term.2613
  39. Cao T, Chang S, Wang Y, Wang B, Zhang Q. Review of 602 microtia reconstructions: revisions and specific recommendations for each subtype. Plast Reconstr Surg. 2021;148(2):307e-308e. doi: 10.1097/PRS.0000000000008399
  40. Wersenyi G, Scheper V, Spagnol S, Eixelberger T, Wittenberg T. Cost-effective 3D scanning and printing technologies for outer ear reconstruction: current status. Head Face Med. 2023;19:46. doi: 10.1186/s13005-023-00394-x
  41. Lee JS, Hong JM, Jung JW, et al. 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication. 2014;6(2):024103. doi: 10.1088/1758-5082/6/2/024103
  42. Zhou G, Jiang H, Yin Z, et al. In vitro regeneration of patient-specific ear-shaped cartilage and its first clinical application for auricular reconstruction. EBioMedicine. 2018;28: 287-302. doi: 10.1016/j.ebiom.2018.01.011

43 Mannoor MS, Jiang Z, James T, et al. 3D printed bionic ears. Nano Lett. 2013;13(6):2634-2639. doi: 10.1021/nl4007744

  1. Chen Y, Zhang J, Liu X, et al. Noninvasive in vivo 3D bioprinting. Sci Adv. 2020;6(23):eaba7406. doi: 10.1126/sciadv.aba7406
  2. Della Volpe A, Ippolito V, Pastore V, et al. Use of a 3D reconstruction model in a patient with severe atresia auris for optimal placement of Bonebridge transcutaneous bone conduction implant. Eur Arch Otorhinolaryngol. 2021;278(9):3559-3564. doi: 10.1007/s00405-020-06528-0
  3. Hu H, Chen J, Li S, Xu T, Li Y. 3D printing technology and applied materials in eardrum regeneration. J Biomater Sci Polym Ed. 2023;34(7):950-985. doi: 10.1080/09205063.2022.2147350
  4. Maharajan N, Cho GW, Jang CH. Application of mesenchymal stem cell for tympanic membrane regeneration by tissue engineering approach. Int J Pediatr Otorhinolaryngol. 2020;133:109969. doi: 10.1016/j.ijporl.2020.109969
  5. Jang CH, Ahn S, Lee JW, Lee BH, Lee H, Kim G. Mesenchymal stem cell-laden hybrid scaffold for regenerating subacute tympanic membrane perforation. Mater Sci Eng C Mater Biol Appl. 2017;72:456-463. doi: 10.1016/j.msec.2016.11.094
  6. Kuo CY, Wilson E, Fuson A, et al. Repair of tympanic membrane perforations with customized bioprinted ear grafts using Chinchilla models. Tissue Eng Part A. 2018;24(5–6):527-535. doi: 10.1089/ten.TEA.2017.0246
  7. Jang CH, Kim W, Moon C, Kim G. Bioprinted collagen-based cell-laden scaffold with growth factors for tympanic membrane regeneration in chronic perforation model. IEEE Trans Nanobioscience. 2022;21(3):370-379. doi: 10.1109/TNB.2021.3085599
  8. Luers JC, Huttenbrink KB. Surgical anatomy and pathology of the middle ear. J Anat. 2016;228(2):338-353. doi: 10.1111/joa.12389
  9. Gu Y, Pigeot S, Ahrens L, et al. Toward 3D bioprinting of osseous tissue of predefined shape using single-matrix cell-bioink constructs. Adv Healthc Mater. 2003;12(9): e2202550. doi: 10.1002/adhm.202202550
  10. Forget A, Gianni-Barrera R, Uccelli A, et al. Mechanically defined microenvironment promotes stabilization of microvasculature, which correlates with the enrichment of a novel Piezo-1(+) population of circulating CD11b(+)/ CD115(+) monocytes. Adv Mater. 2019;31(21):e1808050. doi: 10.1002/adma.201808050
  11. Lethaus B, Poort L, Böckmann R, et al. Additive manufacturing for microvascular reconstruction of the mandible in 20 patients. J Craniomaxillofac Surg. 2012;40(1):43-46. doi: 10.1016/j.jcms.2011.01.007
  12. Li C, Yang M, Xie Y, et al. Application of the polystyrene model made by 3-D printing rapid prototyping technology for operation planning in revision lumbar discectomy. J Orthop Sci. 2015;20(3):475-480. doi: 10.1007/s00776-015-0706-8
  13. Heikkinen AK, Lähde S, Rissanen V, et al. Feasibility of 3D-printed middle ear prostheses in partial ossicular chain reconstruction. Int J Bioprint. 2023;9(4):727. doi: 10.18063/ijb.727
  14. Wood CB, Yawn R, Lowery AS, O’Connell BP, Haynes D, Wanna GB. Long-term hearing outcomes following total ossicular reconstruction with titanium prostheses. Otolaryngol Head Neck Surg. 2019;161(1);123-129. doi: 10.1177/0194599819831284
  15. Yung M. Long-term results of ossiculoplasty: reasons for surgical failure. Otol Neurotol. 2006;27(1):20-26. doi: 10.1097/01.mao.0000176173.94764.f5
  16. Kaftan H, Bohme A, Martin H. Geometric parameters of the ossicular chain as a function of its integrity: a micro- CT study in human temporal bones. Otol Neurotol. 2015;36(1):178-183. doi: 10.1097/MAO.0000000000000315
  17. Watson J, Hatamleh MM. Complete integration of technology for improved reproduction of auricular prostheses. J Prosthet Dent. 2014;111(5):430-436. doi: 10.1016/j.prosdent.2013.07.018
  18. Kozin ED, Remenschneider AK, Cheng S, Nakajima HH, Lee DJ. Three-dimensional printed prosthesis for repair of superior canal dehiscence. Otolaryngol Head Neck Surg. 2015;153(4):616-619. doi: 10.1177/0194599815592602
  19. Kuru I, Maier H, Muller M, Lenarz T, Lueth TC. A 3D-printed functioning anatomical human middle ear model. Hear Res. 2016;340:204-213. doi: 10.1016/j.heares.2015.12.025
  20. Hirsch JD, Vincent RL, Eisenman DJ. Surgical reconstruction of the ossicular chain with custom 3D printed ossicular prosthesis. 3D Print Med. 2017;3(1):7. doi: 10.1186/s41205-017-0015-2
  21. Dalchow CV, Grun D, Stupp HF. Reconstruction of the ossicular chain with titanium implants. Otolaryngol Head Neck Surg. 2001;125(6):628-630. doi: 10.1067/mhn.2001.120397
  22. Hillman TA, Shelton C. Ossicular chain reconstruction: titanium versus plastipore. Laryngoscope. 2003;113(10): 1731-1735. doi: 10.1097/00005537-200310000-00013
  23. He H, Li D, Lin Z, et al. Temperature-programmable and enzymatically solidifiable gelatin-based bioinks enable facile extrusion bioprinting. Biofabrication. 2020;12(4): 045003. doi: 10.1088/1758-5090/ab9906
  24. Wang J, Puel JL. Toward cochlear therapies. Physiol Rev. 2018;98(4):2477-2522. doi: 10.1152/physrev.00053.2017
  25. Xiao Y, Li D. The role of epigenetic modifications in sensory hair cell development, survival, and regulation. Front Cell Neurosci. 2023;17:1210279. doi: 10.3389/fncel.2023.1210279
  26. Schreiber BE, Agrup C, Haskard DO, Luxon LM. Sudden sensorineural hearing loss. Lancet. 2010;375(9721): 1203-1211. doi: 10.1016/S0140-6736(09)62071-7
  27. He Z, Ding Y, Xu X, et al. Stem cell-based therapies in hearing loss. Front Cell Dev Biol. 2021;9:730042. doi: 10.3389/fcell.2021.730042
  28. Li M, Mu Y, Cai H, Wu H, Ding Y. Application of new materials in auditory disease treatment. Front Cell Neurosci. 2021;15:831591. doi: 10.3389/fncel.2021.831591
  29. Liu C, Campbell SB, Li J, et al. High throughput omnidirectional printing of tubular microstructures from elastomeric polymers. Adv Healthc Mater. 2022;11(23):e2201346. doi: 10.1002/adhm.202201346
  30. Lei IM, Jiang C, Lei CL, et al. 3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients. Nat Commun. 2021;12(1):6260. doi: 10.1038/s41467-021-26491-6
  31. Haobo Li, J L., Yin H. Organoids induce hair cell regeneration: 3D bio-printed inner ear organ of Corti. CNKI 2024;02:001282. doi: 10.27012/d.cnki.gdhuu.2023.001282
  32. Junming Zhang XL. Auditory cell injury to study the protective mechanism of consturction of organ of Corti organgoids. CNKI 2024;02:000415. doi: 10.27012/d.cnki.gdhuu.2023.000415.
  33. Jaffredo M, Duchamp O, Touya N, et al. Proof of concept of intracochlear drug administration by laser-assisted bioprinting in mice. Hear Res. 2023; 438:108880. doi: 10.1016/j.heares.2023.108880
  34. Xu X, Zhao J, Wang M, Wang L, Yang J. 3D printed polyvinyl alcohol tablets with multiple release profiles. Sci Rep. 2019;9:12487. doi: 10.1038/s41598-019-48921-8
  35. Rizzo ML, Turco S, Spina F, et al. 3D printing and 3D bioprinting technology in medicine: ethical and legal issues. Clin Ter. 2023;174(1):80-84. doi: 10.7417/CT.2023.2501
  36. Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater. 2019;84:16-33. doi: 10.1016/j.actbio.2018.11.039
  37. Sahranavard M, Sarkari S, Safavi S, Ghorbani F. Three-dimensional bio-printing of decellularized extracellular matrix-based bio-inks for cartilage regeneration: a systematic review. Biomater Transl. 2022;3(2):105-115. doi: 10.12336/biomatertransl.2022.02.004
  38. Karabulut H, Ulag S, Dalbayrak B, et al. A novel approach for the fabrication of 3D-printed dental membrane scaffolds including antimicrobial pomegranate extract. Pharmaceutics. 2023;15(3):737. doi: 10.3390/pharmaceutics15030737
  39. VanKoevering KK, Malloy KM. Emerging role of three-dimensional printing in simulation in otolaryngology. Otolaryngol Clin North Am. 2017;50(5):947-958. doi: 10.1016/j.otc.2017.05.006
  40. Tack P, Victor J, Gemmel P, Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online. 2016;15:115. doi: 10.1186/s12938-016-0236-4
  41. Lin HH, Lonic D, Lo LJ. 3D printing in orthognathic surgery – a literature review. J Formos Med Assoc. 2018;117(7): 547-558. doi: 10.1016/j.jfma.2018.01.008
  42. Da Cruz MJ, Francis HW. Face and content validation of a novel three-dimensional printed temporal bone for surgical skills development. J Laryngol Otol 2015; 129(suppl 3):S23-S29. doi: 10.1017/S0022215115001346
  43. Rose AS, Webster CE, Harrysson OL, et al. Pre-operative simulation of pediatric mastoid surgery with 3D-printed temporal bone models. Int J Pediatr Otorhinolaryngol. 2015;79(5): 740-744. doi: 10.1016/j.ijporl.2015.03.004
  44. Rose AS, Kimbell JS, Webster CE, et al. Multi-material 3D models for temporal bone surgical simulation. Ann Otol Rhinol Laryngol. 2015;124(7):528-536. doi: 10.1177/0003489415570937
  45. Ayan, B. et al. Aspiration-assisted bioprinting for precise positioning of biologics. Sci Adv. 2020;6(10):eaaw5111. doi: 10.1126/sciadv.aaw5111
  46. Dey M, Ozbolat IT. 3D bioprinting of cells, tissues and organs. Sci Rep. 2020;10(1):14023. doi: 10.1038/s41598-020-70086-y
  47. Pignataro L, Mantovani M, Torretta S, Felisati G, Sambataro G. ENT assessment in the integrated management of candidate for (maxillary) sinus lift. Acta Otorhinolaryngol Ital. 2008;28(3):110-119.
  48. Ammirati M, Ma J, Cheatham ML, et al. Drilling the posterior wall of the petrous pyramid: a microneurosurgical anatomical study. J Neurosurg. 1993;78(3):452-455. doi: 10.3171/jns.1993.78.3.0452
  49. Kemp P, Stralen JV, De Graaf P, et al. Cone-beam CT compared to multi-slice CT for the diagnostic analysis of conductive hearing loss: a feasibility study. J Int Adv Otol. 2020;16(2):222-226. doi: 10.5152/iao.2020.5883
  50. Emerman AB, Zhang ZR, Chakrabarti O, Hegde RS. Compartment-restricted biotinylation reveals novel features of prion protein metabolism in vivo. Mol Biol Cell. 2010;21(24):4325-4337. doi: 10.1091/mbc.E10-09-0742
  51. McMillan A, McMillan N, Gupta N, Kanotra SP, Salem AK. 3D bioprinting in otolaryngology: a review. Adv Healthc Mater. 2023;12(19): e2203268. doi: 10.1002/adhm.202203268
  52. Dodziuk H. Applications of 3D printing in healthcare. Kardiochir Torakochirurgia Pol. 2016;13(3):283-293. doi: 10.5114/kitp.2016.62625
  53. Johansson M, Asp F, Berninger E. Children with congenital unilateral sensorineural hearing loss: effects of late hearing aid amplification-a pilot study. Ear Hear. 2020;41:55-66. doi: 10.1097/AUD.0000000000000730
  54. Johnstone PM, Yeager KR, Noss E. Spatial hearing in a child with auditory neuropathy spectrum disorder and bilateral cochlear implants. Int J Audiol. 2013;52(6):400-408. doi: 10.3109/14992027.2013.779755
  55. Jorgensen AM, Yoo JJ, Atala A. Solid organ bioprinting: strategies to achieve organ function. Chem Rev. 2020;120(19):11093-11127. doi: 10.1021/acs.chemrev.0c00145
  56. Naghieh S, Lindberg G, Tamaddon M, Liu C. Biofabrication strategies for musculoskeletal disorders: evolution towards clinical applications. Bioengineering (Basel). 2021; 8(9):123. doi: 10.3390/bioengineering8090123
  57. Langridge B, Griffin M, Butler PE. Regenerative medicine for skeletal muscle loss: a review of current tissue engineering approaches. J Mater Sci Mater Med. 2021;32(1):15. doi: 10.1007/s10856-020-06476-5
  58. Shah Mohammadi M, Buchen JT, Pasquina PF, et al. Critical considerations for regeneration of vascularized composite tissues. Tissue Eng Part B Rev. 2021;27(4):366-381. doi: 10.1089/ten.TEB.2020.0223
  59. Jain P, Kathuria H, Dubey N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials. 2022;287:121639. doi: 10.1016/j.biomaterials.2022.121639
  60. Goddard E, Dodds S. Ethics and policy for bioprinting. Methods Mol Biol. 2020;2140:43-64. doi: 10.1007/978-1-0716-0520-2_4
  61. Ivanovski S, Breik O, Carluccio D, et al. 3D printing for bone regeneration: challenges and opportunities for achieving predictability. Periodontol. 2000;93(1):358-384. doi: 10.1111/prd.12525
  62. Merlo A, Mokkapati V, Pandit S, Mijakovic I. Boron nitride nanomaterials: biocompatibility and bio-applications. Biomater Sci. 2018;6(9):2298-2311. doi: 10.1039/c8bm00516h
  63. Kus-Liskiewicz M, Fickers P, Ben Tahar I. Biocompatibility and cytotoxicity of gold nanoparticles: recent advances in methodologies and regulations. Int J Mol Sci. 2021;22(20):10952. doi: 10.3390/ijms222010952
  64. Adabi M, Naghibzadeh M, Adabi M, et al. Biocompatibility and nanostructured materials: applications in nanomedicine. Artif Cells Nanomed Biotechnol. 2017;45(4):833-842. doi: 10.1080/21691401.2016.1178134
  65. Naz S, Gul A, Zia M, Javed R. Synthesis, biomedical applications, and toxicity of CuO nanoparticles. Appl Microbiol Biotechnol. 2023;107(4): 1039-1061. doi: 10.1007/s00253-023-12364-z
  66. Przygoda RT. Safety assessment and global regulatory requirements for genetic toxicity evaluations of medical devices. Environ Mol Mutagen. 2017; 58(5):375-379. doi: 10.1002/em.22102
  67. Ali Zahid A, Chakraborty A, Shamiya Y, Ravi SP, Paul A. Leveraging the advancements in functional biomaterials and scaffold fabrication technologies for chronic wound healing applications. Mater Horiz. 2022;9(7):1850-1865. doi: 10.1039/d2mh00115b
  68. Delalat B, Harding F, Gundsambuu B, et al. 3D printed lattices as an activation and expansion platform for T cell therapy. Biomaterials. 2017;140:58-68. doi: 10.1016/j.biomaterials.2017.05.009
  69. Lindner N, Blaeser A. Scalable biofabrication: a perspective on the current state and future potentials of process automation in 3D-bioprinting applications. Front Bioeng Biotechnol. 2022;10:855042. doi: 10.3389/fbioe.2022.855042
  70. Ng WL, Lee JM, Zhou M, et al. Vat polymerization-based bioprinting-process, materials, applications and regulatory challenges. Biofabrication. 2020;12(2):022001. doi: 10.1088/1758-5090/ab6034
  71. Chan WW, Yu F, Le QB, et al. Towards biomanufacturing of cell-derived matrices. Int J Mol Sci. 2021;22(21):11929. doi: 10.3390/ijms222111929
  72. Murphy SV, De Coppi P, Atala A. Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng. 2020;4:370-380. doi: 10.1038/s41551-019-0471-7
  73. Bai J, Ge G, Wang Q, et al. Engineering stem cell recruitment and osteoinduction via bioadhesive molecular mimics to improve osteoporotic bone-implant integration. Research (Wash D C). 2022;2022:9823784. doi: 10.34133/2022/9823784
  74. Chen S, Wang H, Liu D, et al. Early osteoimmunomodulation by mucin hydrogels augments the healing and revascularization of rat critical-size calvarial bone defects. Bioact Mater. 2023;25:176-188. doi: 10.1016/j.bioactmat.2023.01.022
  75. Maruyama M, Rhee C, Utsunomiya T, et al. Modulation of the inflammatory response and bone healing. Front Endocrinol (Lausanne). 2020;11:386. doi: 10.3389/fendo.2020.00386
  76. Rahmati M, Stötzel S, Khassawna TE, et al. Early osteoimmunomodulatory effects of magnesium-calcium-zinc alloys. J Tissue Eng. 2021;12:20417314211047100. doi: 10.1177/20417314211047100

120 Wang M, Yu Y, Dai K, et al. Improved osteogenesis and angiogenesis of magnesium-doped calcium phosphate cement via macrophage immunomodulation. Biomater Sci. 2016;4(11):1574-1583. doi: 10.1039/c6bm00290k

  1. Zhou Y, Liao S, Chu Y, et al. An injectable bioink with rapid prototyping in the air and in-situmild polymerization for 3D bioprinting. Biofabrication. 2021;13(4). doi: 10.1088/1758-5090/ac23e4
  2. Park TY, Yang YJ, Ha DH, Cho DW, Cha HJ. Marine-derived natural polymer-based bioprinting ink for biocompatible, durable, and controllable 3D constructs. Biofabrication. 2019;11:035001. doi: 10.1088/1758-5090/ab0c6f
  3. Sun Y, Yu K, Nie J, et al. Modeling the printability of photocuring and strength adjustable hydrogel bioink during projection-based 3D bioprinting. Biofabrication. 2021;13(3). doi: 10.1088/1758-5090/aba413
  4. Singh YP, Bandyopadhyay A, Mandal BB. 3D bioprinting using cross-linker-free silk-gelatin bioink for cartilage tissue engineering. ACS Appl Mater Interfaces. 2019:11:33684-33696. doi: 10.1021/acsami.9b11644
  5. Lee M, Bae K, Levinson C, Zenobi-Wong M. Nanocomposite bioink exploits dynamic covalent bonds between nanoparticles and polysaccharides for precision bioprinting. Biofabrication. 2020;12: 025025. doi: 10.1088/1758-5090/ab782d
  6. Wei Y, Li L, Xie C, et al. Current status of auricular reconstruction strategy development. J Craniofac Surg. 2023; 10-1097. doi: 10.1097/SCS.0000000000009908.
  7. Ikeda AK, Bhrany AD, Sie KCY, Bly RA. Management of patients with unilateral microtia and aural atresia: recent advances and updates. Curr Opin Otolaryngol Head Neck Surg. 2021;29(6):526-533. doi: 10.1097/MOO.0000000000000758
  8. Kim B, Kim J, Lee S. Unleashing the power of undifferentiated induced pluripotent stem cell bioprinting: current progress and future prospects. Int J Stem Cells. 2024;17(1):38-50. doi: 10.15283/ijsc23146
  9. Cho S, Lee C, Skylar-Scott MA, Heilshorn SC, Wu JC. Reconstructing the heart using iPSCs: engineering strategies and applications. J Mol Cell Cardiol. 2021;157:56-65. doi: 10.1016/j.yjmcc.2021.04.006
  10. Gu Q, Tomaskovic-Crook E, Wallace GG, Crook JM. 3D bioprinting human induced pluripotent stem cell constructs for in situ cell proliferation and successive multilineage differentiation. Adv Healthc Mater. 2017;6(17):1700175. doi: 10.1002/adhm.201700175
  11. Sullivan MA, Sullivan MA, Lane S, Volkerling A, et al. Three-dimensional bioprinting of stem cell-derived central nervous system cells enables astrocyte growth, vasculogenesis, and enhances neural differentiation/function. Biotechnol Bioeng. 2023;120(10):3079-3091. doi: 10.1002/bit.28470
  12. Prominski A, Li P, Miao BA, Tian B. Nanoenabled bioelectrical modulation. Acc Mater Res. 2021;2(10): 895-906. doi: 10.1021/accountsmr.1c00132
  13. Pesantez Torres F, Tokranova N, Amodeo E, et al. Interfacing neural cells with typical microelectronics materials for future manufacturing. Biosens Bioelectron. 2023;242: 115749. doi: 10.1016/j.bios.2023.115749
  14. Du X, Wei D, Huang L, Zhu M, Zhang Y, Zhu Y. 3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2019:103;109731. doi: 10.1016/j.msec.2019.05.016
  15. Chen H, Xue H, Zeng H, Dai M, Tang C, Liu L. 3D printed scaffolds based on hyaluronic acid bioinks for tissue engineering: a review. Biomater Res. 2023;27(1):137. doi: 10.1186/s40824-023-00460-0
  16. Miri AK, Mostafavi E, Khorsandi D, Hu SK, Malpica M, Khademhosseini A. Bioprinters for organs-on-chips. Biofabrication. 2019;11(4):042002. doi: 10.1088/1758-5090/ab2798
  17. Bosmans C, Ginés Rodriguez N, Karperien M, et al. Towards single-cell bioprinting: micropatterning tools for organ-on-chip development. Trends Biotechnol. 2024;42(6): 739-759. doi: 10.1016/j.tibtech.2023.11.014
  18. Vera D, García-Díaz M, Torras N, et al. A 3D bioprinted hydrogel gut-on-chip with integrated electrodes for transepithelial electrical resistance (TEER) measurements. Biofabrication. 2024;16(3):035008. doi: 10.1088/1758-5090/ad3aa4
  19. Tolabi H, Davari N, Khajehmohammadi M, et al. Progress of microfluidic hydrogel-based scaffolds and organ-on-chips for the cartilage tissue engineering. Adv Mater. 2023;35:e2208852. doi: 10.1002/adma.202208852
  20. Wei X, Zhou W, Tang Z, et al. Magnesium surface-activated 3D printed porous PEEK scaffolds for in vivo osseointegration by promoting angiogenesis and osteogenesis. Bioact Mater. 2023;20:16-28. doi: 10.1016/j.bioactmat.2022.05.011
  21. Arakawa CK, Badeau BA, Zheng Y, DeForest CA. Multicellular vascularized engineered tissues through user-programmable biomaterial photodegradation. Adv Mater. 2017;29(37):1703156. doi: 10.1002/adma.201703156
  22. Madl CM, Heilshorn SC, Blau HM. Bioengineering strategies to accelerate stem cell therapeutics. Nature. 2018;557(7705):335-342. doi: 10.1038/s41586-018-0089-z
  23. Yang J, Yang K, Man W, et al. 3D bio-printed living nerve-like fibers refine the ecological niche for long-distance spinal cord injury regeneration. Bioact Mater. 2023;25:160-175. doi: 10.1016/j.bioactmat.2023.01.023
  24. Kamperman T, Karperien M, Le Gac S, Leijten J. Single-cell microgels: technology, challenges, and applications. Trends Biotechnol. 2018;36(8):850-865. doi: 10.1016/j.tibtech.2018.03.001
  25. Malki M, Fleischer S, Shapira A, Dvir T. Gold nanorod-based engineered cardiac patch for suture-free engraftment by near IR. Nano Lett. 2018;18(7):4069-4073. doi: 10.1021/acs.nanolett.7b04924
  26. Bhamare N, Tardalkar K, Parulekar P, Khadilkar A, Joshi M. 3D printing of human ear pinna using cartilage specific ink. Biomed Mater. 2021;16(5):055008. doi: 10.1088/1748-605X/ac15b0.
  27. Lai J, Liu Y, Lu G, et al. 4D bioprinting of programmed dynamic tissues. Bioact Mater. 2024;37:348-377. doi: 10.1016/j.bioactmat.2024.03.033
  28. Zhou W, Qiao Z, Zare EN, et al. 4D-printed dynamic materials in biomedical applications: chemistry, challenges, and their future perspectives in the clinical sector. J Med Chem. 2020;63(15):8003-8024. doi: 10.1021/acs.jmedchem.9b02115
  29. Yarali E, Mirzaali MJ, Ghalayaniesfahani A, et al. 4D printing for biomedical applications. Adv Mater. 2024;4:2402301. doi: 10.1002/adma.202402301
  30. Chen A, Wang W, Mao Z, He Y. Multimaterial 3D and 4D bioprinting of heterogenous constructs for tissue engineering. Adv Mater. 2023;9:2307686. doi: 10.1002/adma.202307686
  31. Miri AK, Khalilpour A, Cecen B, Maharjan S, Shin SR, Khademhosseini A. Multiscale bioprinting of vascularized models. Biomaterials. 2019;198:204-216. doi: 10.1016/j.biomaterials.2018.08.006
  32. Kirillova A, Maxson R, Stoychev G, Gomillion CT, Ionov L. 4D biofabrication using shape-morphing hydrogels. Adv Mater. 2017;29(46). doi: 10.1002/adma.201703443
  33. Neumann M, di Marco G, Iudin D, et al. Stimuli-responsive hydrogels: the dynamic smart biomaterials of tomorrow. Macromolecules. 2023;56(21):8377-8392. doi: 10.1021/acs.macromol.3c00967
  34. Lui YS, Sow WT, Tan LP, Wu Y, Lai Y, Li H. 4D printing and stimuli-responsive materials in biomedical aspects. Acta Biomater. 2019;92:19-36. doi: 10.1016/j.actbio.2019.05.005
  35. Keshavarz M, Jahanshahi M, Hasany M, et al. Smart alginate inks for tissue engineering applications. Mater Today Bio. 2023;23:100829. doi: 10.1016/j.mtbio.2023.100829
  36. Tournier P, Saint-Pé G, Lagneau N, et al. Clickable dynamic bioinks enable post-printing modifications of construct composition and mechanical properties controlled over time and space. Adv Sci (Weinh). 2023;10(30):e2300055. doi: 10.1002/advs.202300055

 

 



 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing