AccScience Publishing / IJB / Volume 10 / Issue 3 / DOI: 10.36922/ijb.2193

Engineered 3D-printed poly(vinyl alcohol) vascular grafts: Impact of thermal treatment and functionalization

Ionut-Cristian Radu1 Derniza Cozorici1 Madalina-Ioana Necolau1 Roxana Cristina Popescu2,3 Eugenia Tanasa1 Laurentia Alexandrescu4 Catalin Zaharia1* Rafael Luque5
Show Less
1 Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology POLITEHNICA Bucharest, Bucharest, Romania
2 Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University of Science and Technology POLITEHNICA Bucharest, Bucharest, Romania
3 Group of Biophysics and Radiobiology, Department of Life and Environmental Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei,” Magurele, Romania
4 Rubber Research Department, National Research and Development Institute for Textile and Leather, Division Leather and Footwear Research Institute (INCDTP Division ICPI), Bucharest, Romania
5 Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón, Ecuador
IJB 2024, 10(3), 2193
Submitted: 6 November 2023 | Accepted: 31 March 2024 | Published: 10 June 2024
(This article belongs to the Special Issue Biomimetic and bioinspired printed structures)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( )

Cardiovascular diseases, a leading cause of global mortality, are driving increased demand for artificial blood vessels for surgical repair. This study discloses the fabrication of three-dimensional (3D)-printed small blood vessels as tissue-engineered grafts. Large-diameter artery and vein grafts are readily available in the market, but small-diameter blood vessels face issues due to the lack of suitable materials. Lysine-biofunctionalized and unmodified poly(vinyl alcohol) grafts (PVA grafts) (2 mm inner diameter and 3 mm outer diameter) suitable for veins and venules were designed using Fusion 360 software, Autodesk Fusion. The PVA channels were fabricated from the 3D virtual model through fused deposition modeling using a PVA filament. These channels underwent thermal treatment to adjust their crystallinity, chemical crosslinking, and functionalization to optimize their mechanical properties and biocompatibility. Crosslinking and biofunctionalization were assessed using Fourier-transform infrared spectroscopy with attenuated total reflectance, while X-ray diffraction and differential scanning calorimetry were utilized for structural analysis. PVA grafts were biologically tested using three specific types of cell cultures: bEnd.3 brain endothelial cells, L929 fibroblast cells, and U937 monocyte-like cells. The hemocompatibility of the optimized vascular grafts was evaluated using horse blood, following the guidelines outlined in ASTM F756-13 Standard Practice for Assessment of Hemolytic Properties of Materials. The direct method for hemoglobin determination was specifically employed. Additionally, we developed an external polyethylene terephthalate glycol (PETG) 3D-printed platform to house the PVA grafts in parallel. The assembled platform (PETG and PVA graft) was connected to both an inlet and an outlet to facilitate the passage of an aqueous flow through the internal section of the PVA grafts during a flow test conducted under simulated body conditions (vacuum and blood pressure: 40 mbar). The flow was induced by a vacuum pump connected to the outlet of the platform, while the inlet was connected to a feeding glass. In summation, we have established a suitable protocol for producing small vascular grafts and demonstrated that the optimization process could significantly affect graft properties.

3D printing
Poly(vinyl alcohol)
Vascular graft
Small vein
This work was supported by a grant from the Ministry of Research, Innovation, and Digitization (CNCS/ CCCDI–UEFISCDI; project number: PN-III-P4-ID-PCE-2020-1448; within PNCDI III).
  1. Criqui M, Aboyans V. Epidemiology of peripheral artery disease. Circ Res. 2015;116(9):1509-1526. doi: 10.1161/CIRCRESAHA.116.303849
  2. Leal BBJ, Wakabayashi N, Oyama K, et al. Vascular tissue engineering: polymers and methodologies for small caliber vascular grafts. Front Cardiovasc Med. 2021;7:592361. doi: 10.3389/fcvm.2020.592361
  3. Copes F, Pien N, Van Vlierberghe S, et al. Collagen-based tissue engineering strategies for vascular medicine. Front Bioeng Biotechnol. 2019;7:166. doi: 10.3389/fbioe.2019.00166
  4. Herrington W, Lacey B, Sherliker P, et al. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res. 2016;118(4):535-546. doi: 10.1161/CIRCRESAHA.115.307611
  5. Carrabba M, Madeddu P. Current strategies for the manufacture of small size tissue engineering vascular grafts. Front Bioeng Biotechnol. 2018;6:41. doi: 10.3389/fbioe.2018.00041
  6. Ucuzian AA, Greisler HP. 6.628 - vascular grafts. In: Ducheyne P, ed. Comprehensive Biomaterials. Oxford: Elsevier; 2011: 449-467.
  7. Shim TL, Wright JD, Rubin BG, et al. A vascular graft for endometrial cancer groin recurrence. Gynecol Oncol. 2007;104(3):753-756. doi: 10.1016/j.ygyno.2006.10.023
  8. Song TK, Harris EJ, Jr, Raghavan S, et al. Major blood vessel reconstruction during sarcoma surgery. Arch Surg. 2009;144(9):817-822. doi: 10.1001/archsurg.2009.149
  9. Radke D, Jia W, Sharma D, et al. Tissue engineering at the blood-contacting surface: a review of challenges and strategies in vascular graft development. Adv Healthc Mater. 2018;7(15):e1701461. doi: 10.1002/adhm.201701461
  10. Li M-X, Wei Q-Q, Mo H-L, et al. Challenges and advances in materials and fabrication technologies of small-diameter vascular grafts. Biomater Res. 2023;27(1):91. doi: 10.1186/s40824-023-00424-4
  11. Ratner B. Vascular grafts: technology success/technology failure. BME Front. 2023;4:0003. doi: 10.34133/bmef.0003
  12. Seifu DG, Purnama A, Mequanint K, et al. Small-diameter vascular tissue engineering. Nat Rev Cardiol. 2013;10(7): 410-421. doi: 10.1038/nrcardio.2013.77
  13. Hann SY, Cui H, Zalud NC, et al. An in vitro analysis of the effect of geometry-induced flows on endothelial cell behavior in 3D printed small-diameter blood vessels. Biomater Adv. 2022;137:212832. doi: 10.1016/j.bioadv.2022.212832
  14. Vernon G. Alexis Carrel: ‘father of transplant surgery’ and supporter of eugenics. Br J Gen Pract. 2019;69(684):352. doi: 10.3399/bjgp19X704441
  15. Dutkowski P, De Rougemont O, Clavien PA. Alexis Carrel: genius, innovator and ideologist. Am J Transplant. 2008;8(10):1998-2003. doi: 10.1111/j.1600-6143.2008.02364.x
  16. Kunlin J. [Long vein transplantation in treatment of ischemia caused by arteritis]. Rev Chir. 1951;70(7-8):206-235.
  17. Kannan RY, Salacinski HJ, Butler PE, et al. Current status of prosthetic bypass grafts: a review. J Biomed Mater Res B Appl Biomater. 2005;74(1):570-581. doi: 10.1002/jbm.b.30247 
  18. Rashid ST, Fuller B, Hamilton G, et al. Tissue engineering of a hybrid bypass graft for coronary and lower limb bypass surgery. FASEB J. 2008;22(6):2084-2089. doi: 10.1096/fj.07-096586 
  19. Abbott WM, Callow A, Moore W, et al. Evaluation and performance standards for arterial prostheses. J Vasc Surg. 1993;17(4):746-756. doi: 10.1067/mva.1993.45222
  20. Jackson MR, Belott TP, Dickason T, et al. The consequences of a failed femoropopliteal bypass grafting: comparison of saphenous vein and PTFE grafts. J Vasc Surg. 2000;32(3):498- 504; 504-505. doi: 10.1067/mva.2000.108634
  21. Tiwari A, Salacinski H, Seifalian AM, et al. New prostheses for use in bypass grafts with special emphasis on polyurethanes. Cardiovasc Surg. 2002;10(3):191-197. doi: 10.1016/s0967-2109(02)00004-2
  22. Brothers TE, Stanley JC, Burkel WE, et al. Small-caliber polyurethane and polytetrafluoroethylene grafts: a comparative study in a canine aortoiliac model. J Biomed Mater Res. 1990;24(6):761-771. doi: 10.1002/jbm.820240610
  23. Desmet W, Vanhaecke J, Vrolix M, et al. Isolated single coronary artery: a review of 50,000 consecutive coronary angiographies. Eur Heart J. 1992;13(12):1637-1640. doi: 10.1093/oxfordjournals.eurheartj.a060117
  24. Hutchin P, Jacobs JR, Devin JB, et al. Bovine graft arteriovenous fistulas for maintenance hemodialysis. Surg Gynecol Obstet. 1975;141(2): 255-258.
  25. Hatzibaloglou A, Velissaris I, Kaitzis D, et al. ProCol vascular bioprosthesis for vascular access: midterm results. J Vasc Access. 2004;5(1):16-18. doi: 10.1177/112972980400500104
  26. Madden RL, Lipkowitz GS, Browne BJ, et al. Experience with cryopreserved cadaveric femoral vein allografts used for hemodialysis access. Ann Vasc Surg. 2004;18(4):453-458. doi: 10.1007/s10016-004-0055-0
  27. Braghirolli DI, Helfer VE, Chagastelles PC, et al. Electrospun scaffolds functionalized with heparin and vascular endothelial growth factor increase the proliferation of endothelial progenitor cells. Biomed Mater. 2017;12(2):025003. doi: 10.1088/1748-605X/aa5bbc
  28. Benrashid E, McCoy CC, Youngwirth LM, et al. Tissue engineered vascular grafts: origins, development, and current strategies for clinical application. Methods. 2016;99:13-19. doi: 10.1016/j.ymeth.2015.07.014
  29. Maurmann N, Sperling L-E, Pranke P. Electrospun and electrosprayed scaffolds for tissue engineering. In: Chun HJ, Park CH, Kwon IK, and Khang G, eds. Cutting-Edge Enabling Technologies for Regenerative Medicine. Singapore: Springer Singapore; 2018: 79-100.
  30. Braghirolli DI, Steffens DPranke P. Electrospinning for regenerative medicine: a review of the main topics. Drug Discov Today. 2014;19(6):743-753. doi: 10.1016/j.drudis.2014.03.024
  31. Li J, Cai Z, Cheng J, et al. Characterization of a heparinized decellularized scaffold and its effects on mechanical and structural properties. J Biomater Sci Polym Ed. 2020;31(8):999-1023. doi: 10.1080/09205063.2020.1736741
  32. Eufrásio-da-Silva T, Ruiz-Hernandez E, O’Dwyer J, et al. Enhancing medial layer recellularization of tissue-engineered blood vessels using radial microchannels. Regen Med. 2019;14(11):1013-1028. doi: 10.2217/rme-2019-0011
  33. Rivera-Hernández G, Antunes-Ricardo M, Martínez- Morales P, et al. Polyvinyl alcohol based-drug delivery systems for cancer treatment. Int J Pharm. 2021;600:120478. doi: 10.1016/j.ijpharm.2021.120478
  34. Aslam M, Kalyar MA, Raza ZA. Polyvinyl alcohol: a review of research status and use of polyvinyl alcohol based nanocomposites. Polymer Eng Sci. 2018;58(12):2119-2132. doi: 10.1002/pen.24855
  35. Dong R-s, Lu F, Liu P-d, et al. Preparation of nanocellulose-polyvinyl alcohol composite hydrogels from Desmodium intortum (Mill.) Urb.: chemical property characterization. Ind Crops Prod. 2022;176:114371. doi: 10.1016/j.indcrop.2021.114371 
  36. Ghafelebashi A, Khosravani S, Kazemi MH, et al. A novel fabricated polyvinyl alcohol/ bentonite nanocomposite hydrogel generated into colloidal gas aphron. Colloids Surf A: Physicochem Eng Aspects. 2022;650:129580. doi: 10.1016/j.colsurfa.2022.129580
  37. Elamin D, Chami G. Description of a revision technique for failed polyvinyl alcohol hydrogel implant in patient with Freiberg’s disease. J Foot Ankle Surg. 2022;61(1):181-184. doi: 10.1053/j.jfas.2021.07.013
  38. Qin M, Huo Y, Han G, et al. Three-dimensional boron nitride network/polyvinyl alcohol composite hydrogel with solid-liquid interpenetrating heat conduction network for thermal management. J Mater Sci Technol. 2022;127:183-191. doi: 10.1016/j.jmst.2022.04.013
  39. Zhang J, Wang Y, Wei Q, et al. A 3D printable, highly stretchable, self-healing hydrogel-based sensor based on polyvinyl alcohol/sodium tetraborate/sodium alginate for human motion monitoring. Int J Biol Macromol. 2022;219:1216-1226. doi: 10.1016/j.ijbiomac.2022.08.175
  40. Verbraeken B, Lavrysen E, Aboukais R, et al. Polyvinyl alcohol sponges to facilitate cerebral bypass surgery: technical note. World Neurosurg. 2021;156:53-55. doi: 10.1016/j.wneu.2021.09.007
  41. Li P, Cao L, Sang F, et al. Polyvinyl alcohol/sodium alginate composite sponge with 3D ordered/disordered porous structure for rapidly controlling noncompressible hemorrhage. Biomater Adv. 2022;134:112698. doi: 10.1016/j.msec.2022.112698
  42. Darrell HRIksoo C. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996;7(3): 216. doi: 10.1088/0957-4484/7/3/009
  43. García-Hernández AB, Morales-Sánchez E, Berdeja- Martínez BM, et al. PVA-based electrospun biomembranes with hydrolyzed collagen and ethanolic extract of hypericum perforatum for potential use as wound dressing: fabrication and characterization. Polymers (Basel). 2022;14(10):1981. doi: 10.3390/polym14101981
  44. Serio F, da Cruz AF, Chandra A, et al. Electrospun polyvinyl-alcohol/gum arabic nanofibers: biomimetic platform for in vitro cell growth and cancer nanomedicine delivery. Int J Biol Macromol. 2021;188:764-773. doi: 1
  45. Roy AS, Gupta S, Sindhu S, et al. Dielectric properties of novel PVA/ZnO hybrid nanocomposite films. Composites Part B: Eng. 2013;47:314-319. doi: 10.1016/j.compositesb.2012.10.029
  46. Itoh H, Li Y, Chan KHK, et al. Morphology and mechanical properties of PVA nanofibers spun by free surface electrospinning. Polymer Bull. 2016;73(10):2761-2777. doi: 10.1007/s00289-016-1620-8
  47. Alexandre N, Amorim I, Caseiro AR, et al. Long term performance evaluation of small-diameter vascular grafts based on polyvinyl alcohol hydrogel and dextran and MSCs-based therapies using the ovine pre-clinical animal model. Int J Pharm. 2016;513(1-2):332-346. doi: 10.1016/j.ijpharm.2016.09.045
  48. Zeng Y, Huang C, Duan D, et al. Injectable temperature-sensitive hydrogel system incorporating deferoxamine-loaded microspheres promotes H-type blood vessel-related bone repair of a critical size femoral defect. Acta Biomater. 2022;153:108-123. doi: 10.1016/j.actbio.2022.09.018.
  49. Jeong Y, Yao Y, Mekonnen TH, et al. Changing compliance of poly(vinyl alcohol) tubular scaffold for vascular graft applications through modifying interlayer adhesion and crosslinking density. Front Mater. 2021;7:595295. doi: 10.3389/fmats.2020.595295
  50. Chaouat M, Le Visage C, Baille WE, et al. A novel cross-linked poly(vinyl alcohol) (PVA) for vascular grafts. Adv Funct Mater. 2008;18(19):2855-2861. doi: 10.1002/adfm.200701261
  51. Tian Y, Zhou J, Feng J. The effect of thermal history on crystalline structure and mechanical properties of β-nucleated isotactic polypropylene. Mater Res Express. 2018;5(4):045304. doi: 10.1088/2053-1591/aab9c7 
  52. Polaskova M, Peer P, Cermak R, et al. Effect of thermal treatment on crystallinity of poly(ethylene oxide) electrospun fibers. Polymers. 2019;11(9):1384. doi: 10.3390/polym11091384
  53. Zizhou R, Wang X, Houshyar S. Review of polymeric biomimetic small-diameter vascular grafts to tackle intimal hyperplasia. ACS Omega. 2022;7(26):22125-22148. doi: 10.1021/acsomega.2c01740
  54. Hao D, Fan Y, Xiao W, et al. Rapid endothelialization of small diameter vascular grafts by a bioactive integrin-binding ligand specifically targeting endothelial progenitor cells and endothelial cells. Acta Biomater. 2020;108:178-193. doi: 10.1016/j.actbio.2020.03.005
  55. Mansur HS, Sadahira CM, Souza AN, et al. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng. C, 2008;28(4):539-548. doi: 10.1016/j.msec.2007.10.088
  56. Guo L, Sato H, Hashimoto T, et al. FTIR study on hydrogen-bonding interactions in biodegradable polymer blends of poly(3-hydroxybutyrate) and poly(4-vinylphenol). Macromolecules 2010;43(8):3897-3902. doi: 10.1021/ma100307m
  57. Farris S, Song J, Huang Q. Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. J Agric Food Chem. 2010;58(2):998-1003. doi: 10.1021/jf9031603
  58. Jessie Lue S, Chen JY, Ming Yang J. Crystallinity and stability of poly(vinyl alcohol)‐fumed silica mixed matrix membranes. J Macromol Sci, Part B 2007;47(1):39-51. doi: 10.1080/15568310701744133
  59. Pingan H, Mengjun J, Yanyan Z, et al. A silica/PVA adhesive hybrid material with high transparency, thermostability and mechanical strength. RSC Adv. 2017;7(5):2450-2459. doi: 10.1039/C6RA25579E
  60. Aziz SB, Marf AS, Dannoun EMA, et al. The study of the degree of crystallinity, electrical equivalent circuit, and dielectric properties of polyvinyl alcohol (pva)-based biopolymer electrolytes. Polymers. 2020;12(10):2184.
  61. Hong P-D, Chen J-H, Wu H-L. Solvent effect on structural change of poly(vinyl alcohol) physical gels. J Appl Polymer Sci. 1998;69(12):2477-2486. doi: 10.1002/(SICI)1097-4628(19980919)69:12<2477::AID-APP19>3.0.CO;2-U
  62. Vinila VS, Isac J. Chapter 14 - synthesis and structural studies of superconducting perovskite GdBa2Ca3Cu4O10.5+δ nanosystems. In: Thomas S, Kalarikkal N, Abraham AR, eds. Design, Fabrication, and Characterization of Multifunctional Nanomaterials. Amsterdam, Netherlands: Elsevier; 2022: 319-341.
  63. Weidenfeller B, Rode H, Weidenfeller L, et al. Crystallinity, thermal diffusivity, and electrical conductivity of carbon black filled polyamide 46. J Appl Polymer Sci. 2020;137(29):48882. doi: 10.1002/app.48882
  64. Pellerito J, Polak J. Introduction to Vascular Ultrasonography. Elsevier; 2019: 882.
  65. Shi X, He L, Zhang S-M, et al. Human iPS cell-derived tissue engineered vascular graft: recent advances and future directions. Stem Cell Rev Rep. 2021;17(3):862-877. doi: 10.1007/s12015-020-10091-w
  66. Angajala A, Lim S, Phillips JB, et al. Diverse roles of mitochondria in immune responses: novel insights into immuno-metabolism. Front Immunol. 2018;9:1605. doi: 10.3389/fimmu.2018.01605
  67. Ghasemi M, Turnbull T, Sebastian S, et al. The MTT assay: utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int J Mol Sci. 2021;22(23):12827.
  68. Soliman AM, Barreda DR. Acute inflammation in tissue healing. Int J Mol Sci. 2023;24(1):641.
Conflict of interest
The authors declare no conflicts of interest.
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing