AccScience Publishing / GPD / Online First / DOI: 10.36922/GPD025340063
REVIEW ARTICLE

The potential relationship between YAP and PCNP in esophageal carcinoma and its influence on carcinogenesis

Weihang Sun1,2,3 Faji Liu3,4,5 Tiantian Sun3,5 Xu Han3,5 Junru Jia3,5 Haiqiang Wang3,5 Xinying Ji1,2* Yang An3* Junhui Guo4*
Show Less
1 Henan Provincial Research Center of Engineering Technology for Nuclear Protein Medical Detection, Zhengzhou Health College, Zhengzhou, Henan, China
2 Department of Nuclear Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, Henan, China
3 Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
4 Department of Oncology, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
5 School of Stomatology, Henan University, Kaifeng, Henan, China
Received: 19 August 2025 | Revised: 22 November 2025 | Accepted: 2 December 2025 | Published online: 17 December 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Esophageal cancer is one of the malignant tumors with high incidence and mortality rates worldwide. Its occurrence and development involve abnormal regulation of multiple signaling pathways. In recent years, the role of Hippo signaling and PEST-containing nuclear protein (PCNP) in esophageal cancer has gradually received attention. As a key regulator of organ size and tissue homeostasis, the Hippo pathway exerts its biological effects primarily through its core effector Yes-associated protein (YAP)/TAZ; accumulating evidence confirms that aberrant activation of YAP is closely linked to esophageal cancer occurrence, progression, lymph node metastasis, and chemoresistance, making it a critical oncogenic driver. PCNP, a highly conserved nuclear protein, together with its E3 enzyme NIRF, is involved in modulating cell cycle progression, DNA damage repair, and apoptotic signaling under physiological conditions. However, its overexpression in esophageal cancer tissues has been associated with accelerated tumor growth and unfavorable patient outcomes, potentially through interactions with downstream oncogenic mediators such as NRF2. This review summarizes the research progress on the Hippo pathway and PCNP, and proposes a possible mechanistic interplay between them in esophageal cancer based on their functions, focusing on exploring their mechanisms of action, regulatory relationships, and potential therapeutic targets in the occurrence and development of esophageal cancer, in order to provide ideas for diagnosis, prognosis, and targeted therapy of esophageal cancer.

Keywords
Hippo pathway
PEST-containing nuclear protein
Esophageal cancer
YAP/TAZ
Targeted therapy
Funding
This work was supported by the Cultivation Project for Innovation Team in Teachers’ Teaching Proficiency by Zhengzhou Health College (No. 2024jxcxtd01) and the Innovation Project for College Students of Henan University (No. 202510475073, 202510475143, 20253201155).
Conflict of interest
Xinying Ji is an Associate Editor, whereas Yang An serves as a member of the Youth Editorial Board of this journal, but they were not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Feng RM, Zong YN, Cao SM, Xu RH. Current cancer situation in China: Good or bad news from the 2018 Global Cancer Statistics? Cancer Commun (Lond). 2019;39(1):22. doi: 10.1186/s40880-019-0368-6

 

  1. Kamal UH, Jamil A, Fatima E, et al. Mortality patterns of esophageal cancer in the United States: A 21-year retrospective analysis. Am J Clin Oncol. 2025;48:57-66. doi: 10.1097/COC.0000000000001147

 

  1. Domper Arnal MJ, Ferrandez Arenas A, Lanas Arbeloa A. Esophageal cancer: Risk factors, screening and endoscopic treatment in Western and Eastern countries. World J Gastroenterol. 2015;21(26):7933-7943. doi: 10.3748/wjg.v21.i26.7933

 

  1. Cao W, Qin K, Li F, Chen W. Comparative study of cancer profiles between 2020 and 2022 using global cancer statistics (GLOBOCAN). J Natl Cancer Cent. 2024;4(2):128-134. doi: 10.1016/j.jncc.2024.05.001

 

  1. Mulder DT, O’Mahony JF, Doubeni CA, Lansdorp- Vogelaar I, Schermer MHN. The ethics of cancer screening based on race and ethnicity. Ann Intern Med. 2024;177(9):1259-1264. doi: 10.7326/M24-0377

 

  1. Toh Y, Oki E, Ohgaki K, et al. Alcohol drinking, cigarette smoking, and the development of squamous cell carcinoma of the esophagus: Molecular mechanisms of carcinogenesis. Int J Clin Oncol. 2010;15(2):135-144. doi: 10.1007/s10147-010-0057-6

 

  1. Cook MB, Kamangar F, Whiteman DC, et al. Cigarette smoking and adenocarcinomas of the esophagus and esophagogastric junction: A pooled analysis from the international BEACON consortium. J Natl Cancer Inst. 2010;102(17):1344-1353. doi: 10.1093/jnci/djq289

 

  1. Corley DA, Kubo A, Zhao W. Abdominal obesity and the risk of esophageal and gastric cardia carcinomas. Cancer Epidemiol Biomark Prev. 2008;17(2):352-358. doi: 10.1158/1055-9965.Epi-07-0748

 

  1. Lander S, Lander E, Gibson MK. Esophageal cancer: Overview, risk factors, and reasons for the rise. Curr Gastroenterol Rep. 2023;25(11):275-279. doi: 10.1007/s11894-023-00899-0

 

  1. Cameron RB, Ajani JA, Wu AJ. Adjuvant nivolumab after preoperative chemoradiotherapy and surgery in esophageal cancer: A shifting paradigm. J Thorac Cardiovasc Surg. 2022;164(2):433-437. doi: 10.1016/j.jtcvs.2021.08.082

 

  1. Yang W, Xing X, Yeung SCJ, et al. Neoadjuvant programmed cell death 1 blockade combined with chemotherapy for resectable esophageal squamous cell carcinoma. J Immunother Cancer. 2022;10(1):e003497. doi: 10.1136/jitc-2021-003497

 

  1. Janjigian YY, Kawazoe A, Bai Y, et al. Pembrolizumab plus trastuzumab and chemotherapy for HER2-positive gastric or gastro-oesophageal junction adenocarcinoma: Interim analyses from the phase 3 KEYNOTE-811 randomised placebo-controlled trial. Lancet. 2023;402(10418):2197-2208. doi: 10.1016/s0140-6736(23)02033-0

 

  1. Zhang S, Guo M, Jiang X, et al. PXR triggers YAP-TEAD binding and Sirt2-driven YAP deacetylation and polyubiquitination to promote liver enlargement and regeneration in mice. Pharmacol Res. 2023;188:106666. doi: 10.1016/j.phrs.2023.106666

 

  1. Zanconato F, Cordenonsi M, Piccolo S. YAP and TAZ: A signalling hub of the tumour microenvironment. Nat Rev Cancer. 2019;19(8):454-464. doi: 10.1038/s41568-019-0168-y

 

  1. Liu Y, Zhuo S, Zhou Y, et al. Yap-Sox9 signaling determines hepatocyte plasticity and lineage-specific hepatocarcinogenesis. J Hepatol. 2022;76(3):652-664. doi: 10.1016/j.jhep.2021.11.010

 

  1. Kuo YZ, Kang YR, Chang WL, et al. YAP1 acts as a negative regulator of pro-tumor TAZ expression in esophageal squamous cell carcinoma. Cell Oncol (Dordr). 2022;45(5):893-909. doi: 10.1007/s13402-022-00695-4

 

  1. Mori T, Li Y, Hata H, Kochi H. NIRF is a ubiquitin ligase that is capable of ubiquitinating PCNP, a PEST-containing nuclear protein. FEBS Lett. 2004;557(1-3):209-214. doi: 10.1016/s0014-5793(03)01495-9

 

  1. Pan D. The hippo signaling pathway in development and cancer. Dev Cell. 2010;19(4):491-505. doi: 10.1016/j.devcel.2010.09.011

 

  1. Driskill JH, Pan D. The hippo pathway in liver homeostasis and pathophysiology. Annu Rev Pathol. 2021;16(1):299-322. doi: 10.1146/annurev-pathol-030420-105050

 

  1. Mana-Capelli S, McCollum D. Angiomotins stimulate LATS kinase autophosphorylation and act as scaffolds that promote Hippo signaling. J Biol Chem. 2018;293(47):18230-18241. doi: 10.1074/jbc.RA118.004187

 

  1. Oka T, Mazack V, Sudol M. Mst2 and Lats kinases regulate apoptotic function of Yes kinase-associated protein (YAP). J Biol Chem. 2008;283(41):27534-27546. doi: 10.1074/jbc.M804380200

 

  1. Lin KC, Park HW, Guan KL. Regulation of the hippo pathway transcription factor TEAD. Trends Biochem Sci. 2017;42(11):862-872. doi: 10.1016/j.tibs.2017.09.003

 

  1. Moroishi T, Hayashi T, Pan WW, et al. The hippo pathway kinases LATS1/2 suppress cancer immunity. Cell. 2016;167(6):1525-1539.e17. doi: 10.1016/j.cell.2016.11.005

 

  1. Wang K, Degerny C, Xu M, Yang XJ. YAP, TAZ, and Yorkie: A conserved family of signal-responsive transcriptional coregulators in animal development and human disease. Biochem Cell Biol. 2009;87(1):77-91. doi: 10.1139/O08-114

 

  1. Liu L, Lu Z, Hu X, Su T, Su L, Pu H. Clinical significance of YAP1 and TAZ in esophageal squamous cell carcinoma. Medicine (Baltimore). 2021;100(28):e26597. doi: 10.1097/MD.0000000000026597

 

  1. Maehama T, Nishio M, Otani J, Mak TW, Suzuki A. The role of Hippo-YAP signaling in squamous cell carcinomas. Cancer Sci. 2021;112(1):51-60. doi: 10.1111/cas.14725

 

  1. Salem O, Jia S, Qian BZ, Hansen CG. AR activates YAP/ TAZ differentially in prostate cancer. Life Sci Alliance. 2023;6(9):e202201620. doi: 10.26508/lsa.202201620

 

  1. Wei L, Gao J, Wang L, Tao Q, Tu C. Hippo/YAP signaling pathway: A new therapeutic target for diabetes mellitus and vascular complications. Ther Adv Endocrinol Metab. 2023;14:20420188231220134. doi: 10.1177/20420188231220134

 

  1. Chen D, Sun Y, Wei Y, et al. LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat Med. 2012;18(10):1511-1517. doi: 10.1038/nm.2940

 

  1. Fan S, Gao Y, Qu A, et al. YAP-TEAD mediates PPAR alpha-induced hepatomegaly and liver regeneration in mice. Hepatology. 2022;75(1):74-88. doi: 10.1002/hep.32105

 

  1. Camargo FD, Gokhale S, Johnnidis JB, et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol. 2007;17(23):2054-2060. doi: 10.1016/j.cub.2007.10.039

 

  1. Heallen T, Zhang M, Wang J, et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011;332(6028):458-461. doi: 10.1126/science.1199010

 

  1. Barry ER, Morikawa T, Butler BL, et al. Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature. 2013;493(7430):106-110. doi: 10.1038/nature11693

 

  1. Ma H, Wang J, Zhao X, et al. Periostin promotes colorectal tumorigenesis through integrin-FAK-Src pathway-mediated YAP/TAZ activation. Cell Rep. 2020;30(3):793-806.e6. doi: 10.1016/j.celrep.2019.12.075

 

  1. Zhang Y, Zhu Q, Cao X, Ni B. RGS16 regulates Hippo-YAP activity to promote esophageal cancer cell proliferation and migration. Biochem Biophys Res Commun. 2023;675:122-129. doi: 10.1016/j.bbrc.2023.04.033

 

  1. Wang C, Cheng L, Song S, Wu S, Sun G. Gli1 interacts with YAP1 to promote tumorigenesis in esophageal squamous cell carcinoma. J Cell Physiol. 2020;235(11):8224-8235. doi: 10.1002/jcp.29477

 

  1. Kamachi Y, Kondoh H. Sox proteins: Regulators of cell fate specification and differentiation. Development. 2013;140(20):4129-4144. doi: 10.1242/dev.091793

 

  1. Chai Y, Li Q, Zhao H, et al. SOX2 antagonizes WWC1 to drive YAP1 activation in esophageal squamous cell carcinoma. Cancer Med. 2019;8(16):7055-7064. doi: 10.1002/cam4.2569

 

  1. Poncy A, Antoniou A, Cordi S, Pierreux CE, Jacquemin P, Lemaigre FP. Transcription factors SOX4 and SOX9 cooperatively control development of bile ducts. Dev Biol. 2015;404(2):136-148. doi: 10.1016/j.ydbio.2015.05.012

 

  1. Wang L, Zhang Z, Yu X, et al. Unbalanced YAP-SOX9 circuit drives stemness and malignant progression in esophageal squamous cell carcinoma. Oncogene. 2019;38(12):2042-2055. doi: 10.1038/s41388-018-0476-9

 

  1. Gao X, Lu M, Xu W, Liu C, Wu J. miR-195 inhibits esophageal cancer cell proliferation and promotes apoptosis by downregulating YAP1. Int J Clin Exp Pathol. 2019;12(1):275-281.

 

  1. Wang X, Zhao Y, Lu Q, et al. MiR-34a-5p inhibits proliferation, migration, invasion and epithelial-mesenchymal transition in esophageal squamous cell carcinoma by targeting LEF1 and inactivation of the hippo-YAP1/TAZ signaling pathway. J Cancer. 2020;11(10):3072-3081. doi: 10.7150/jca.39861

 

  1. Imanaka Y, Tsuchiya S, Sato F, Shimada Y, Shimizu K, Tsujimoto G. MicroRNA-141 confers resistance to cisplatin-induced apoptosis by targeting YAP1 in human esophageal squamous cell carcinoma. J Hum Genet. 2011;56(4):270-276. doi: 10.1038/jhg.2011.1

 

  1. Yan J, Shi L, Lin S, Li Y. MicroRNA-624-mediated ARRDC3/ YAP/HIF1alpha axis enhances esophageal squamous cell carcinoma cell resistance to cisplatin and paclitaxel. Bioengineered. 2021;12(1):5334-5347. doi: 10.1080/21655979.2021.1938497

 

  1. Choe MH, Yoon Y, Kim J, Hwang SG, Han YH, Kim JS. miR-550a-3-5p acts as a tumor suppressor and reverses BRAF inhibitor resistance through the direct targeting of YAP. Cell Death Dis. 2018;9(6):640. doi: 10.1038/s41419-018-0698-3

 

  1. Seki N. A commentary on MicroRNA-141 confers resistance to cisplatin-induced apoptosis by targeting YAP1 in human esophageal squamous cell carcinoma. J Hum Genet. 2011;56(5):339-340. doi: 10.1038/jhg.2011.26

 

  1. Sun Q, Lu H, Zhang W, et al. RNF106 aggravates esophageal squamous cell carcinoma progression through LATS2/YAP axis. Arch Biochem Biophys. 2023;742:109640. doi: 10.1016/j.abb.2023.109640

 

  1. Li F, Xu Y, Liu B, et al. YAP1-Mediated CDK6 activation confers radiation resistance in esophageal cancer - rationale for the combination of YAP1 and CDK4/6 inhibitors in esophageal cancer. Clin Cancer Res. 2019;25(7):2264-2277. doi: 10.1158/1078-0432.CCR-18-1029

 

  1. Mason DE, Collins JM, Dawahare JH, et al. YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility. J Cell Biol. 2019;218(4):1369-1389. doi: 10.1083/jcb.201806065

 

  1. Lu Y, Wang Z, Zhou L, et al. FAT1 and PTPN14 regulate the malignant progression and chemotherapy resistance of esophageal cancer through the hippo signaling pathway. Anal Cell Pathol (Amst). 2021;2021:9290372. doi: 10.1155/2021/9290372

 

  1. Wang XW, Zhao R, Yang ZY, et al. YAP inhibitor verteporfin suppresses tumor angiogenesis and overcomes chemoresistance in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol. 2023;149(10):7703-7716. doi: 10.1007/s00432-023-04722-1

 

  1. Wang H, Zhang S, Zhang Y, et al. TAZ is indispensable for c-MYC-induced hepatocarcinogenesis. J Hepatol. 2022;76(1):123-134. doi: 10.1016/j.jhep.2021.08.021

 

  1. Huang J, Zhuang C, Chen J, et al. Targeted drug/gene/ photodynamic therapy via a stimuli-responsive dendritic-polymer-based nanococktail for treatment of EGFR-TKI-resistant non-small-cell lung cancer. Adv Mater. 2022;34(27):e2201516. doi: 10.1002/adma.202201516

 

  1. Kurppa KJ, Liu Y, To C, et al. Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer Cell. 2020;37(1):104-122.e12. doi: 10.1016/j.ccell.2019.12.006

 

  1. Wang Y, Chen H, Fu Y, et al. MiR-195 inhibits proliferation and growth and induces apoptosis of endometrial stromal cells by targeting FKN. Int J Clin Exp Pathol. 2013;6(12):2824-34.

 

  1. Cai Y, Fu X, Deng Y. Histone demethylase JMJD1C regulates esophageal cancer proliferation Via YAP1 signaling. Am J Cancer Res. 2017;7(1):115-124.

 

  1. Sigal A, Milo R, Cohen A, et al. Dynamic proteomics in individual human cells uncovers widespread cell-cycle dependence of nuclear proteins. Nat Methods. 2006;3(7):525-531. doi: 10.1038/nmeth892

 

  1. Ramisetty SK, Langlete P, Lale R, Dias RS. In vitro studies of DNA condensation by bridging protein in a crowding environment. Int J Biol Macromol. 2017;103:845-853. doi: 10.1016/j.ijbiomac.2017.05.079

 

  1. Boon R, Silveira GG, Mostoslavsky R. Nuclear metabolism and the regulation of the epigenome. Nat Metab. 2020;2(11):1190-1203. doi: 10.1038/s42255-020-00285-4

 

  1. Hurst V, Shimada K, Gasser SM. Nuclear actin and actin-binding proteins in DNA repair. Trends Cell Biol. 2019;29(6):462-476. doi: 10.1016/j.tcb.2019.02.010

 

  1. Rechsteiner M, Rogers SW. PEST sequences and regulation by proteolysis. Trends Biochem Sci. 1996;21(7):267-71.

 

  1. Sarfraz M, Afzal A, Khattak S, et al. Multifaceted behavior of PEST sequence enriched nuclear proteins in cancer biology and role in gene therapy. J Cell Physiol. 2021;236(3):1658-1676. doi: 10.1002/jcp.30011

 

  1. Li B, Hu Q, Xu R, et al. Hax-1 is rapidly degraded by the proteasome dependent on its PEST sequence. BMC Cell Biol. 2012;13:20. doi: 10.1186/1471-2121-13-20

 

  1. Khan NH, Chen HJ, Fan Y, et al. Biology of PEST-containing nuclear protein: A potential molecular target for cancer research. Front Oncol. 2022;12:784597. doi: 10.3389/fonc.2022.784597

 

  1. Mori T, Li Y, Hata H, Ono K, Kochi H. NIRF, a novel RING finger protein, is involved in cell-cycle regulation. Biochem Biophys Res Commun. 2002;296(3):530-536. doi: 10.1016/s0006-291x(02)00890-2

 

  1. Chakraborty A, Werner JK Jr., Koldobskiy MA, et al. Casein kinase-2 mediates cell survival through phosphorylation and degradation of inositol hexakisphosphate kinase-2. Proc Natl Acad Sci U S A. 2011;108(6):2205-2209. doi: 10.1073/pnas.1019381108

 

  1. Chapin HC, Caplan MJ. The cell biology of polycystic kidney disease. J Cell Biol. 2010;191(4):701-710. doi: 10.1083/jcb.201006173

 

  1. Wu DD, Gao YR, Li T, et al. PEST-containing nuclear protein mediates the proliferation, migration, and invasion of human neuroblastoma cells through MAPK and PI3K/AKT/mTOR signaling pathways. BMC Cancer. 2018;18(1):499. doi: 10.1186/s12885-018-4391-9

 

  1. Chen YG, Liu HX, Hong Y, et al. PCNP is a novel regulator of proliferation, migration, and invasion in human thyroid cancer. Int J Biol Sci. 2022;18(9):3605-3620. doi: 10.7150/ijbs.70394

 

  1. Fujimori A, Matsuda Y, Takemoto Y, et al. Cloning and mapping of Np95 gene which encodes a novel nuclear protein associated with cell proliferation. Mamm Genome. 1998;9(12):1032-1035. doi: 10.1007/s003359900920

 

  1. Hopfner R, Mousli M, Jeltsch JM, et al. ICBP90, a novel human CCAAT binding protein, involved in the regulation of topoisomerase IIalpha expression. Cancer Res. 2000;60(1):121-128.

 

  1. Mousli M, Hopfner R, Abbady AQ, et al. ICBP90 belongs to a new family of proteins with an expression that is deregulated in cancer cells. Br J Cancer. 2003;89(1):120-127. doi: 10.1038/sj.bjc.6601068

 

  1. Mori T, Ikeda DD, Fukushima T, Takenoshita S, Kochi H. NIRF constitutes a nodal point in the cell cycle network and is a candidate tumor suppressor. Cell Cycle. 2011;10(19):3284-3299. doi: 10.4161/cc.10.19.17176

 

  1. Liao Y, Zhang W, Liu Y, Zhu C, Zou Z. The role of ubiquitination in health and disease. MedComm (2020). 2024;5(10):e736. doi: 10.1002/mco2.736

 

  1. Wang F, Zhang P, Ma Y, et al. NIRF is frequently upregulated in colorectal cancer and its oncogenicity can be suppressed by let-7a microRNA. Cancer Lett. 2012;314(2):223-231. doi: 10.1016/j.canlet.2011.09.033

 

  1. Yoshimoto M, Tokuda A, Eguchi A, Nozawa Y, Mori T, Yaginuma Y. Alterations of UHRF family expression and was regulated by high risk type HPV16 in uterine cervical cancer. Exp Cell Res. 2024;437(2):114018. doi: 10.1016/j.yexcr.2024.114018

 

  1. Li Y, Mori T, Hata H, Homma Y, Kochi H. NIRF induces G1 arrest and associates with Cdk2. Biochem Biophys Res Commun. 2004;319(2):464-468. doi: 10.1016/j.bbrc.2004.04.190

 

  1. Mori T, Ikeda DD, Yamaguchi Y, Unoki M. NIRF/UHRF2 occupies a central position in the cell cycle network and allows coupling with the epigenetic landscape. FEBS Lett. 2012;586(11):1570-1583. doi: 10.1016/j.febslet.2012.04.038

 

  1. Xu T, Wu K, Shi J, et al. LINC00858 promotes colon cancer progression through activation of STAT3/5 signaling by recruiting transcription factor RAD21 to upregulate PCNP. Cell Death Discov. 2022;8(1):228. doi: 10.1038/s41420-022-00832-w

 

  1. Wang DY, Hong Y, Chen YG, et al. PEST-containing nuclear protein regulates cell proliferation, migration, and invasion in lung adenocarcinoma. Oncogenesis. 2019;8(3):22. doi: 10.1038/s41389-019-0132-4

 

  1. Dong P, Fu H, Chen L, et al. PCNP promotes ovarian cancer progression by accelerating beta-catenin nuclear accumulation and triggering EMT transition. J Cell Mol Med. 2020;24(14):8221-8235. doi: 10.1111/jcmm.15491

 

  1. Astone M, Tesoriero C, Schiavone M, et al. Wnt/beta-catenin signaling regulates Yap/Taz activity during embryonic development in zebrafish. Int J Mol Sci. 2024;25(18):10005. doi: 10.3390/ijms251810005

 

  1. Cai S, Ye L, Zhong Q, Zhang X. Silencing EPHB2 diminished the malignant biological properties of esophagus cancer cells by blocking autophagy and Wnt/beta-catenin pathway. J Biochem Mol Toxicol. 2024;38(10):e23853. doi: 10.1002/jbt.23853

 

  1. Yan J, Zhou Y, Wang Y, Liu Y. PARG promotes esophagus cancer cell metastasis by activation of the Wnt/beta-catenin pathway. Biochem Genet. 2024;62(2):761-774. doi: 10.1007/s10528-023-10434-5

 

  1. Bressanin D, Evangelisti C, Ricci F, et al. Harnessing the PI3K/Akt/mTOR pathway in T-cell acute lymphoblastic leukemia: Eliminating activity by targeting at different levels. Oncotarget. 2012;3(8):811-823. doi: 10.18632/oncotarget.579

 

  1. Rodon J, Dienstmann R, Serra V, Tabernero J. Development of PI3K inhibitors: Lessons learned from early clinical trials. Nat Rev Clin Oncol. 2013;10(3):143-153. doi: 10.1038/nrclinonc.2013.10

 

  1. Wang H, Liu C, Jin K, Li X, Zheng J, Wang D. Research advances in signaling pathways related to the malignant progression of HSIL to invasive cervical cancer: A review. Biomed Pharmacother. 2024;180:117483. doi: 10.1016/j.biopha.2024.117483

 

  1. Tasioudi KE, Sakellariou S, Levidou G, et al. Immunohistochemical and molecular analysis of PI3K/ AKT/mTOR pathway in esophageal carcinoma. APMIS. 2015;123(8):639-647. doi: 10.1111/apm.12398

 

  1. Chen H, Li Y, Liu Y, et al. Epinodosin suppresses the proliferation, invasion, and migration of esophageal squamous cell carcinoma by mediating miRNA-143-3p/ Bcl-2 axis. Phytother Res. 2023;37(11):5378-5393. doi: 10.1002/ptr.7978

 

  1. Agrawal S, Podber A, Gillespie M, Dietz N, Hansen LA, Nandipati KC. Regulation of pro-apoptotic and anti-apoptotic factors in obesity-related esophageal adenocarcinoma. Mol Biol Rep. 2024;51(1):1049. doi: 10.1007/s11033-024-09931-6

 

  1. Van Dross R, Yao S, Asad S, et al. Constitutively active K-cyclin/ cdk6 kinase in Kaposi sarcoma-associated herpesvirus-infected cells. J Natl Cancer Inst. 2005;97(9):656-66. doi: 10.1093/jnci/dji113

 

  1. Lepke M, Putter V, Staib C, et al. Identification, characterization and chromosomal localization of the cognate human and murine DBF4 genes. Mol Gen Genet. 1999;262(2):220-229. doi: 10.1007/s004380051078

 

  1. Nemer M, Stuebing EW. WEE1-like CDK tyrosine kinase mRNA level is regulated temporally and spatially in sea urchin embryos. Mech Dev. 1996;58(1-2):75-88. doi: 10.1016/s0925-4773(96)00560-6

 

  1. Lolla P, Shah A, Unnikannan CP, Oddi V, Bhandari R. Inositol pyrophosphates promote MYC polyubiquitination by FBW7 to regulate cell survival. Biochem J. 2021;478(8):1647-1661. doi: 10.1042/BCJ20210081

 

  1. Zhang D, Zhao L, Luo M, Lei J, Shao S. Yap-Myc signaling induces pancreatic stellate cell activation through regulating glutaminolysis. Exp Cell Res. 2022;411(1):113000. doi: 10.1016/j.yexcr.2021.113000

 

  1. Xiu Z, Liu J, Wu X, et al. Cytochalasin H isolated from mangrove-derived endophytic fungus inhibits epithelial-mesenchymal transition and cancer stemness via YAP/ TAZ signaling pathway in non-small cell lung cancer cells. J Cancer. 2021;12(4):1169-1178. doi: 10.7150/jca.50512
Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing